
5 Examples of M/M/1 type models

In this chapter we present some simple variations on the M/M/1 system. In the M/M/1
system customers arrive according to a Poisson process and the service times of the cus-
tomers are independent and identically exponentially distributed. This system can be
described by a Markov process with states i, where i is simply the number of customers in
the system. The transition-rate diagram of the M/M/1 model is shown in figure 1, where
λ is the arrival rate and µ the service rate.
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Figure 1: Transition-rate diagram for the M/M/1 model

Let pi denote the (equilibrium) probability of state i, i ≥ 0. From the transition-rate
diagram it is easy to derive the equilibrium equations for the state probabilities pi yielding

p0λ = p1µ,

pi(λ+ µ) = pi−1λ+ pi+1µ, i = 1, 2 . . . ,

or by rearranging all terms at the same side of the equation,

−p0λ+ p1µ = 0, (1)

pi−1λ− pi(λ+ µ) + pi+1µ = 0, i = 1, 2 . . . (2)

Together with the normalization equation,

1 =
∞∑
i=0

pi,

this set of equations has a (unique) geometric solution

pi = (1− ρ)ρi, i = 0, 1, 2, . . . , (3)

where ρ = λ/µ. Note that ρ is the root, less than unity, of the quadratic equation

λ− ρ(λ+ µ) + ρ2µ = 0.

An important feature of the system above is that transitions are restricted to neigh-
boring states only, i.e., from state i to state i− 1 or from state i to i+ 1. In the following
sections we will consider models that share this feature, but in these models the simple
state i is replaced by a set of states referred to as level i and the equilibrium distribution
is a matrix generalization of (3); i.e., ρ will be replaced by a rate matrix R.
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The excess probabilities for the waiting time W may be computed by conditioning
on the state at arrival. Given that there are i customers in the system at arrival, the
waiting time is Erlang-k distributed with mean k/µ. By PASTA, the probability of finding
i customers at arrival is pi. Hence, we get

P (W > t) =
∞∑
i=0

(1− ρ)ρi
i−1∑
j=0

(µt)j

j!
e−µt =

∞∑
j=0

(µt)j

j!
e−µt

∞∑
i=j+1

(1− ρ)ρi

=
∞∑
j=0

(µt)j

j!
e−µtρj+1 = ρe−µ(1−ρ)t, t ≥ 0. (4)

5.1 Machine with set-up times

Let us consider a machine processing jobs in order of arrival. Jobs arrive according to a
Poisson stream with rate λ and the processing times are exponential with mean 1/µ. For
stability we assume that ρ = λ/µ < 1. The machine is turned off when the system is
empty and it is turned on again when a new job arrives. The set-up time is exponential
with mean 1/θ. We are interested in the effect of the set-up time on the production lead
time.

This model can be represented as a Markov process with states (i, j) where i is the
number of jobs in the system and j indicates whether the machine is on or off: j = 0
means that the machine is off, j = 1 means that it is on. The transition-rate diagram is
displayed in figure 2. It looks similar to figure 1, except that each state i has been replaced
by the set of states {(i, 0), (i, 1)}. This set of states is called level i. Transitions are now
restricted to neigboring levels.
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Figure 2: Transition-rate diagram for the M/M/1 model with set-up times

Let p(i, j) denote the equilibrium probability of state (i, j), i ≥ 0, j = 0, 1; clearly
p(0, 1) = 0 since state (0, 1) is transient. State (0, 1) is included in the state space for
notational convenience: then level 0 consists of two states, as all other levels. From the
transition-rate diagram we obtain by equating the flow out of a state and the flow into
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that state the following set of equilibrium equations,

p(0, 0)λ = p(1, 1)µ, (5)

p(i, 0)(λ+ θ) = p(i− 1, 0)λ, i = 1, 2, . . . (6)

p(i, 1)(λ+ µ) = p(i− 1, 1)λ+ p(i, 0)θ + p(i+ 1, 1)µ, i = 1, 2, . . . (7)

The structure of the equations (6)-(7) is closely related to the similar set of equations (2).
This becomes more striking by rewriting (6)-(7) in vector-matrix notation:

p0B1 + p1B2 = 0, (8)

pi−1A0 + piA1 + pi+1A2 = 0, i = 1, 2, . . . (9)

where pi = (p(i, 0), p(i, 1)) and

A0 =

(
λ 0
0 λ

)
, A1 =

(
−(λ+ θ) θ

0 −(λ+ µ)

)
, A2 =

(
0 0
0 µ

)
,

B1 =

(
−λ 0
0 −λ

)
, B2 =

(
0 0
µ 0

)
.

Obviously, if we can determine the equilibrium probabilities p(i, j), then we can also com-
pute the mean number of jobs in the system, and by Little’s law, the mean production lead
time. We now present two methods to determine the equilibrium probabilities. The first
one is known as the matrix-geometric method, the other one is referred to as the spectral
expansion method; see, e.g. [3, 1, 2]. Let us start with the matrix-geometric approach.

We first simplify the equilibrium equations (9) by eliminating the vector pi+1. By
equating the flow from level i to level i+ 1 to the flow from level i+ 1 to i (this is known
as the balance principle) we obtain

(p(i, 0) + p(i, 1))λ = p(i+ 1, 1)µ

or in vector-matrix notation
piA3 = pi+1A2

where

A3 =

(
0 λ
0 λ

)
.

Substituting this equation into (9) yields

pi−1A0 + pi(A1 + A3) = 0, i > 1,

or
pi = −pi−1A0(A1 + A3)

−1 = pi−1R, (10)

where

R = −A0(A1 + A3)
−1 =

(
λ/(λ+ θ) λ/µ

0 λ/µ

)
.
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Iterating (10) leads to the matrix-geometric solution

pi = p0R
i, i = 0, 1, 2, . . . . (11)

Hence it is very similar to the solution for the M/M/1 model given by (cf. (3))

pi = p0ρ
i, i = 0, 1, 2, . . . .

Finally, p0 follows from the equations (8) and the normalization equation

1 =
∑
i,j

p(i, j) = p0(I −R)−1e,

where I is the identity matrix and e the column vector of ones. From (11) we obtain for
E(L), the mean number of jobs in the system,

E(L) =
∞∑
i=1

ipie =
∞∑
i=1

ip0R
ie = p0R(I −R)−2e.

We now demonstrate the spectral expansion method. This method first seeks solutions
of the equations (9) of the simple form

pi = y · xi, i = 0, 1, 2, . . . ,

where y = (y(0), y(1)) is a non-null vector and |x| < 1. The latter is required, since we
want to be able to normalize the solution afterwards. Substitution of this form into (9)
and dividing by common powers of x gives

y
(
A0 + xA1 + x2A2

)
= 0.

Hence, the desired values of x are the roots inside the unit circle of the determinant equation

det(A0 + xA1 + x2A2) = 0. (12)

In this case we have

det(A0 + xA1 + x2A2) = (λ− (λ+ θ)x)(µx− λ)(x− 1).

Hence, we find two roots, namely

x1 =
λ

λ+ θ
, x2 =

λ

µ
.

For i = 1, 2, let yi be a non-null solution of

y
(
A0 + xiA1 + x2iA2

)
= 0.
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Thus we can take

y1(0) = 1, y1(1) = − θx1
λ− (λ+ µ)x1 + µx21

and
y2(0) = 0, y2(1) = 1.

Note that, since the equilibrium equations are linear, any linear combination of the two
simple solutions satisfies (9). Now the final step of the spectral expansion method is to
determine a combination that also satisfies the boundary equations (8). So we set

pi = c1y1x
i
1 + c2y2x

i
2, i = 0, 1, 2, . . . (13)

where the coefficients c1 and c2 follow from the boundary equations (8) and the normal-
ization equation

1 =
c1y1e

1− x1
+

c2y2e

1− x2
.

Since the equilibrium equations are dependent, we may omit one of the equations (8), and,
for example, only use

0 = p(0, 1) = c1y1(1) + c2y2(1),

together with the normalization equation to determine the (unique) coefficients c1 and c2.
Using representation (13) we obtain

E(L) =
∞∑
i=1

ipie =
c1y1x1e

(1− x1)2
+

c2y2x2e

(1− x2)2
.

The two methods presented above are closely related: x1 and x2 are the eigenvalues of
the rate matrix R and y1 and y2 are the corresponding eigenvectors.

Remark 5.1 There is also a third method to determine the equilibrium probabilities,
based on the use of generating functions. Introduce the (partial) generating functions

Pj(z) =
∞∑
i=0

p(i, j)zi, j = 0, 1,

defined for all |z| ≤ 1. Multiplying (6) and (7) by zi and summing over all i = 1, 2, . . .
yields

(P0(z)− p(0, 0)) (λ+ θ) = P0(z)λz,

(P1(z)− p(0, 1)) (λ+ µ) = P1(z)λz + (P0(z)− p(0, 0)) θ + (P1(z)− p(0, 1)− p(1, 1)z)
µ

z
.
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Using p(0, 1) = 0 and (5), we get

P0(z) =
p(0, 0)

1− λ
λ+θ

z
, (14)

P1(z) =
P0(z)θ − p(0, 0)(λ+ θ)

(z − 1)(µ
z
− λ)

=
p(0, 0)ρz

(1− ρz)(1− λ
λ+θ

z)
,

=
p(0, 0)ρ

ρ− λ
λ+θ

(
1

1− ρz −
1

1− λ
λ+θ

z

)
, (15)

where ρ = λ
µ
. The probability p(0, 0) follows from the normalization equation

P0(1) + P1(1) = 1,

yielding

p(0, 0) = (1− ρ)
θ

λ+ θ
.

From (14) and (15) we conclude that for i = 0, 1, 2, . . .

p(i, 0) = p(0, 0)

(
λ

λ+ θ

)i
,

p(i, 1) =
p(0, 0)ρ

ρ− λ
λ+θ

(
ρi −

(
λ

λ+ θ

)i)
,

which agrees with the form (13).

Remark 5.2 The mean number of jobs in the system, E(L), and the mean production
lead time, E(S), can also be determined by combining the PASTA property and Little’s
law. Based on PASTA we know that the average number of jobs in the system seen by an
arriving job equals E(L), and each of them (also the one being processed) has a (residual)
processing time with mean 1/µ. With probability 1− ρ the machine is not in operation on
arrival, so that the job also has to wait for the setup phase with mean 1/θ. Further, the
job has to wait for its own processing time. Hence

E(S) = (1− ρ)
1

θ
+ E(L)

1

µ
+

1

µ
,

and together with Little’s law
E(L) = λE(S),

we find

E(S) =
1/µ

1− ρ +
1

θ
.
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The first term at the right-hand side is the mean production lead time in the system
without set-up times (i.e., the machine is always on). The second term is the mean set-up
time. Clearly, the mean set-up time is exactly the extra mean delay caused by turning off
the machine when there is no work. In fact, it can be shown (by using, e.g., a sample path
argument) that the extra delay is an exponential time with mean 1/θ.

5.2 Unreliable machine

In this section we consider an unreliable machine processing jobs. The machine breaks
down at random instants, whether it is processing a job or not. To obtain some insight in
the effects of the breakdowns we study the following simple model.

Jobs arrive according to a Poisson stream with rate λ. The processing times are ex-
ponential with mean 1/µ. The up time of the machine is exponentially distributed with
mean 1/η. The repair time is also exponentially distributed with mean 1/θ.

This system can be described by a Markov process with states (i, j) where i is the
number of jobs in the system and j indicates the state of the machine; the machine is up
if j = 1, it is down and in repair if j = 0. The transition-rate diagram of this system
is shown in figure 3. It again looks similar to figure 1, except that each state i has been
replaced by the set of states {(i, 0), (i, 1)}.
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Figure 3: Transition-rate diagram for the M/M/1 model with random breakdowns

Let ρU denote the fraction of time the machine is up, so

ρU =
1/η

1/η + 1/θ
.

Then, for stability, we have to require that

λ

µ
< ρU . (16)

Let p(i, j) denote the equilibrium probability of state (i, j). From the transition-rate dia-
gram we get the following balance equations for the states (0, 0) and (0, 1),

p(0, 0)(λ+ θ) = p(0, 1)η, (17)

p(0, 1)(λ+ η) = p(0, 0)θ + p(1, 1)µ, (18)
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and for all states (i, j) with i ≥ 1,

p(i, 0)(λ+ θ) = p(i− 1, 0)λ+ p(i, 1)η, i = 1, 2, . . . (19)

p(i, 1)(λ+ η + µ) = p(i, 0)θ + p(i+ 1, 1)µ+ p(i− 1, 1)λ, i = 1, 2, . . . (20)

In vector-matrix notation these equations can be written as (cf. (9))

p0B1 + p1A2 = 0, (21)

pi−1A0 + piA1 + pi+1A2 = 0, i = 1, 2, . . . , (22)

where pi = (p(i, 0), p(i, 1)) and

A0 =

(
λ 0
0 λ

)
, A1 =

(
−(λ+ θ) θ

η −(λ+ µ+ η)

)
, A2 =

(
0 0
0 µ

)
,

B1 =

(
−(λ+ θ) θ

η −(λ+ η)

)
.

Similarly as for the M/M/1 model with set-up times we can show that the solution to
these equations has a matrix-geometric form

pi = p0R
i, i = 0, 1, 2, . . . ,

with

R =
λ

µ

(
(η + µ)/(λ+ θ) 1

η/(λ+ θ) 1

)
,

or the following spectral expansion form

pi = c1y1x
i
1 + c2y2x

i
2, i = 0, 1, 2, . . .

with x1 and x2 being the roots of

µ(λ+ θ)x2 − λ(λ+ µ+ η + θ)x+ λ2 = 0.

Based on these expressions for the equilibrium probabilities p(i, j) it is easy to find closed-
form expressions for the mean number of jobs in the system, E(L), and the mean production
lead time, E(S).

Remark 5.3 The equilibrium probabilities can also be determined by using generating
functions. Define for all |z| ≤ 1

P (z) = (P0(z), P1(z)) =
∞∑
i=0

piz
i.

Multiplying (22) by zi and adding over all i = 1, 2, . . . yields

P (z)A0z + (P (z)− p0)A1 + (P (z)− p0 − p1z)A2
1

z
= 0,
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so, multiplying by z and rearranging terms,

P (z)
(
A0z

2 + A1z + A2

)
= p0A1z + (p0 + p1z)A2.

By substituting (21) we obtain

P (z)
(
A0z

2 + A1z + A0

)
= p0 (A1z + A2 −B1z) . (23)

To determine the unknown vector p0 at the right hand side, we need the solutions of

det
(
A0z

2 + A1z + A0

)
= 0.

This equation has exactly two solutions in the unit disk, z1 = 1 and z2 with |z2| < 1. Let
vi be a nonzero column vector satisfying(

A0z
2
i + A1zi + A0

)
vi = 0.

Clearly, v1 = e (i.e., the vector of ones). Post-multiplying (23) by v2 yields

p0 (A1z2 + A2 −B1z2) v2 = 0. (24)

To get another equation for p0, we take the derivative of (23), set z = 1 and post-multiply
by e, which results in

P (1) (2A0 + A1) e = p0 (A1 −B1) e.

By using that P (1) = 1
η+θ

(η, θ) we obtain

λ− θ

η + θ
µ = −µp(0, 1),

or by rearranging terms,

ρ =
θ

η + θ
− p(0, 1). (25)

where ρ = λ
µ
. Indeed, θ

η+θ
is the fraction of time the machine is up, so by subtracting the

fraction of time that it is idle and up gives the occupation rate. The vector p0 can now be
determined from (24) and (25).

5.3 The M/Er/1 model

We consider a single-server queue. Customers arrive according to a Poisson process with
rate λ and they are served in order of arrival. The service times are Erlang-r distributed
with mean r/µ. For stability we require that the occupation rate

ρ = λ · r
µ
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Figure 4: Transition-rate diagram for the M/Er/1 model

is less than one. This system can be described by a Markov process with states (i, j) where
i is the number of customers waiting in the queue and j is the remaining number of service
phases of the customer in service. The transition-rate diagram is shown in figure 4.

Let p(i, j) denote the equilibrium probability of state (i, j). From the transition-rate
diagram we get the following balance equations for the states (i, j) with i ≥ 1,

p(i, j)(λ+ µ) = p(i− 1, j)λ+ p(i, j + 1)µ, j = 1, . . . , r − 1, (26)

p(i, r)(λ+ µ) = p(i− 1, r)λ+ p(i+ 1, 1)µ, (27)

or in vector-matrix notation

pi−1A0 + piA1 + pi+1A2 = 0, i ≥ 1, (28)

where pi = (p(i, 1), . . . , p(i, r)) and

A0 =

λ 0

0
. . . 0
0 λ

 , A1 =


−(λ+ µ) 0

µ
. . . 0

0
. . . . . . 0
0 µ −(λ+ µ)

 , A2 =


0 · · · 0 µ
... 0
...

...
0 · · · 0

 .

We first determine the probabilities p(i, j) by using the matrix-geometric approach. Let
level i denote the set of states {(i, 1), . . . , (i, r)}. By balancing the flow between level i and
level i+ 1 we get

(p(i, 1) + · · ·+ p(i, r))λ = p(i+ 1, 1)µ

or
piA3 = pi+1A2, (29)

where

A3 =


0 · · · 0 λ
... 0 λ
...

...
...

0 · · · 0 λ

 .
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To eliminate pi+1 we substitute equation (29) into (28) yielding

pi−1A0 + pi(A1 + A3) = 0.

Hence
pi = pi−1R,

where
R = −A0(A1 + A3)

−1.

Note that A1 + A3 is invertable, since it is a transient (or leak) generator. Iterating the
above equation yields

pi = p0R
i, i = 0, 1, 2, . . .

Finally the probabilities p(0, 0) and p0 follow from the equilibrium equations for the states
(0, 0), . . . , (0, r) and the normalization equation.

To apply the spectral expansion method we substitute the simple form

p(i, j) = y(j)xi, i = 0, 1, 2, . . . , j = 1, . . . , r,

into the equilibrium equations (26)-(27), yielding

y(j)x(λ+ µ) = y(j)λ+ y(j + 1)xµ, j = 1, . . . , r − 1, (30)

y(r)x(λ+ µ) = y(r)λ+ y(1)x2µ. (31)

Hence
y(j + 1)

y(j)
=
x(λ+ µ)− λ

xµ
= constant ≡ y,

so
y(j) = yj, j = 1, . . . , r.

Substituting this into (30)-(31) gives

x(λ+ µ) = λ+ yxµ,

x(λ+ µ) = λ+
x2µ

yr−1
.

This set of equations is equivalent to

x = yr, (32)

yr(λ+ µ) = λ+ yr+1µ. (33)

It can be shown that equation (33) has exactly r different (possibly complex) roots with
|y| < 1; label these roots y1, . . . , yr. Thus we find r basis solutions of the form

p(i, j) = yjkx
i
k, k = 1, . . . , r,
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where xk = yrk. The next step is to take a linear combination of these basis solutions; so
we set

p(i, j) =
r∑

k=1

cky
j
kx

i
k, i = 0, 1, 2, . . . , j = 1, . . . , r,

and determine the coefficients c1, . . . , ck and p(0, 0) such thate the equilibrium equations
for the states (0, j), 0 ≤ j ≤ r and the normalization equation are satisfied.

The excess probabilities for the waiting time W may be computed in exactly the same
way as for the M/M/1 model. Through conditioning on the state at arrival and using
PASTA and the above expression for the equilibrium probabilities, we obtain (cf. (4))

P (W > t) =
r∑

k=1

ck
yk

1− yk
e−µ(1−yk)t, t ≥ 0.

Remark 5.4 The vector (yk, y
2
k, . . . , y

r
k) is the row eigenvector of the rate matrix R for

eigenvalue xk, k = 1, . . . , r.

5.4 The Er/M/1 model

In this section we consider a single-server queue with exponential service times with mean
1/µ. The arrival process is not Poisson. The interarrival times are Erlang-r distributed
with mean r/λ; i.e., the time between two arrivals is a sum of r independent exponential
phases, each with mean 1/λ. For stability we assume that the occupation rate

ρ =
λ

r
· 1

µ

is less than one. The states of the Markov process describing this system are the pairs (i, j),
where i denotes the number of jobs in the system and j the phase of the arrival process;
i.e., j = r means that already r−1 phases of the interarrival have been completed, so there
is only one phase to go before the next arrival. The transition-rate diagram is depicted in
figure 5.
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Figure 5: Transition-rate diagram for the Er/M/1 model
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Let us denote the state probabilities by p(i, j). The equilibrium equations for the states
(i, j) with i ≥ 1 are formulated below.

p(i, 1)(λ+ µ) = p(i− 1, r)λ+ p(i+ 1, 1)µ, (34)

p(i, j)(λ+ µ) = p(i, j − 1)λ+ p(i+ 1, j)µ, j = 2, . . . , r. (35)

In these equations we now substitute

p(i, j) = y(j)xi, i = 1, 2, . . . , j = 1, . . . , r;

also for i = 0 and j = r (so p(0, r) = y(r)). This leads to

y(j)x(λ+ µ) = y(r)λ+ y(1)x2µ,

y(j)(λ+ µ) = y(j − 1)λ+ y(j)xµ, j = 2, . . . , r.

Hence
y(j)

y(j − 1)
=

λ

λ+ µ− xµ = constant ≡ y,

so
y(j) = yj, j = 1, . . . , r,

where y satisfies

x(λ+ µ) = yr−1λ+ x2µ,

y(λ+ µ) = λ+ yxµ.

This gives that x = yr and

x =

(
λ

λ+ µ− µx

)r
.

The above equation for x has exactly one root in (0, 1), say x1. Let y1 = r√x1. Then we
eventually find

p(i, j) = c1y
j
1x

i
1, i = 1, 2, . . . , j = 1, . . . , r, (36)

and this form is also valid for p(0, r). The coefficient c1 and the boundary probabilities
p(0, 1), . . . , p(0, r− 1) follow from the balance equations for the states (0, 1), . . . , (0, r) and
the normalization equation.

Solution (36) may also be written in matrix-geometric form; it is easily verified that

pi = (p(i, 1), . . . , p(i, r)) = p0R
i, i = 0, 1, 2, . . . ,

where

R =


0 · · · · · · 0
...

...
0 · · · · · · 0
y1 y21 · · · yr1

 .

In this model the excess probabilities of the waiting time are given by (cf. (4))

P (W > t) = x1e
−µ(1−x1)t, t ≥ 0.
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