Random-number generators

It is important to be able to efficiently generate independent random variables from the uniform distribution on $(0, 1)$, since:

- Random variables from all other distributions can be obtained by transforming uniform random variables;
- Simulations require many random numbers.
Most random-number generators are of the form:

Start with \(z_0 \) (seed)
For \(n = 1, 2, \ldots \) generate

\[
 z_n = f(z_{n-1})
\]

and

\[
 u_n = g(z_n)
\]

\(f \) is the *pseudo-random generator*
\(g \) is the *output function*

\(\{u_0, u_1, \ldots \} \) is the sequence of uniform random numbers on the interval \((0, 1)\).
A ‘good’ random-number generator should satisfy the following properties:

- **Uniformity**: The numbers generated appear to be distributed uniformly on $(0, 1)$;

- **Independence**: The numbers generated show no correlation with each other;

- **Replication**: The numbers should be replicable (e.g., for debugging or comparison of different systems).

- **Cycle length**: It should take long before numbers start to repeat;

- **Speed**: The generator should be fast;

- **Memory usage**: The generator should not require a lot of storage.
Linear (or mixed) congruential generators

Most random-number generators in use today are *linear congruential generators*. They produce a sequence of integers between 0 and $m - 1$ according to

$$z_n = (az_{n-1} + c) \mod m, \quad n = 1, 2, \ldots$$

a is the multiplier, c the increment and m the modulus.

To obtain uniform random numbers on $(0, 1)$ we take

$$u_n = z_n / m$$

A good choice of a, c and m is very important.
A linear congruential generator has full period (cycle length is \(m \)) if and only if the following conditions hold:

- The only positive integer that exactly divides both \(m \) and \(c \) is 1;
- If \(q \) is a prime number that divides \(m \), then \(q \) divides \(a - 1 \);
- If 4 divides \(m \), then 4 divides \(a - 1 \).
Multiplicative congruential generators

These generators produce a sequence of integers between 0 and \(m - 1 \) according to

\[
z_n = a z_{n-1} \mod m, \quad n = 1, 2, \ldots
\]

So they are linear congruential generators with \(c = 0 \).

They cannot have full period, but it is possible to obtain period \(m - 1 \) (so each integer 1, ..., \(m - 1 \) is obtained exactly once in each cycle) if \(a \) and \(m \) are chosen carefully. For example, as \(a = 630360016 \) and \(m = 2^{31} - 1 \).
Additive congruential generators

These generators produce integers according to

\[z_n = (z_{n-1} + z_{n-k}) \mod m, \quad n = 1, 2, \ldots \]

where \(k \geq 2 \). Uniform random numbers can again be obtained from

\[u_n = z_n / m \]

These generators can have a long period up to \(m^k \).

Disadvantage:
Consider the case \(k = 2 \) (the Fibonacci generator). If we take three consecutive numbers \(u_{n-2}, u_{n-1} \) and \(u_n \), then it will never happen that

\[u_{n-2} < u_n < u_{n-1} \quad \text{or} \quad u_{n-1} < u_n < u_{n-2} \]

whereas for true uniform variables both of these orderings occurs with probability \(1/6 \).
(Pseudo) Random number generators:

- Linear (or mixed) congruential generators
- Multiplicative congruential generators
- Additive congruential generators
- ...

How random are pseudorandom numbers?
Testing random number generators

Try to test two main properties:

- Uniformity;
- Independence.
Uniformity or goodness-of-fit tests:

Let X_1, \ldots, X_n be n observations. A goodness-of-fit test can be used to test the hypothesis:

H_0: The X_i’s are i.i.d. random variables with distribution function F.

Two goodness-of-fit tests:
- Kolmogorov-Smirnov test
- Chi-Square test
Kolmogorov-Smirnov test

Let \(F_n(x) \) be the empirical distribution function, so

\[
F_n(x) = \frac{\text{number of } X_i \text{'s} \leq x}{n}
\]

Then

\[
D_n = \sup_x |F_n(x) - F(x)|
\]

has the Kolmogorov-Smirnov (K-S) distribution. Now we reject \(H_0 \) if

\[
D_n > d_{n,1-\alpha}
\]

where \(d_{n,1-\alpha} \) is the \(1 - \alpha \) quantile of the K-S distribution.

Here \(\alpha \) is the significance level of the test:
The probability of rejecting \(H_0 \) given that \(H_0 \) is true.
For $n \geq 100$,

$$d_{n,0.95} \approx 1.3581/\sqrt{n}$$

In case of the uniform distribution we have

$$F(x) = x, \quad 0 \leq x \leq 1.$$
Chi-Square test

Divide the range of F into k adjacent intervals

$$(a_0, a_1], (a_1, a_2], \ldots, (a_{k-1}, a_k]$$

Let

$N_j = \text{number of } X_i \text{'s in } [a_{j-1}, a_j)$$

and let p_j be the probability of an outcome in $(a_{j-1}, a_j]$, so

$$p_j = F(a_j) - F(a_{j-1})$$

Then the test statistic is

$$\chi^2 = \sum_{j=1}^{k} \frac{(N_j - np_j)^2}{np_j}$$

If H_0 is true, then np_j is the expected number of the n X_i's that fall in the j-th interval, and so we expect χ^2 to be small.
If H_0 is true, then the distribution of χ^2 converges to a chi-square distribution with $k - 1$ degrees of freedom as $n \to \infty$.

The chi-square distribution with $k - 1$ degrees of freedom is the same as the Gamma distribution with parameters $(k - 1)/2$ and 2.

Hence, we reject H_0 if

$$\chi^2 > \chi_{k-1,1-\alpha}^2$$

where $\chi_{k-1,1-\alpha}^2$ is the $1 - \alpha$ quantile of the chi-square distribution with $k - 1$ degrees of freedom.
Chi-square test for $U(0, 1)$ random variables

We divide $(0, 1)$ into k subintervals of equal length and generate U_1, \ldots, U_n; it is recommended to choose $k \geq 100$ and $n/k \geq 5$. Let N_j be the number of the $n U_i$’s in the j-th subinterval.

Then

$$
\chi^2 = \frac{k}{n} \sum_{j=1}^{k} \left(N_j - \frac{n}{k} \right)^2
$$
Example:

Consider the linear congruential generator

\[z_n = a z_{n-1} \mod m \]

with \(a = 630360016 \), \(m = 2^{31} - 1 \) and seed

\[z_0 = 1973272912 \]

Generating \(n = 2^{15} = 32768 \) random numbers \(U_i \) and dividing \((0, 1)\) in \(k = 2^{12} = 4096 \) subintervals yields

\[\chi^2 = 4141.0 \]

Since

\[\chi_{4095,0.9} \approx 4211.4 \]

we do not reject \(H_0 \) at level \(\alpha = 0.1 \).
Serial test

This is a 2-dimensional version of the chi-square test to test *independence* between successive observations.

We generate U_1, \ldots, U_{2n}; if the U_i’s are really i.i.d. $U(0, 1)$, then the non-overlapping pairs

$$(U_1, U_2), (U_3, U_4), \ldots, (U_{2n-1}, U_{2n})$$

are i.i.d. random vectors uniformly distributed in the square $(0, 1)^2$.

- Divide the square $(0, 1)^2$ into n^2 subsquares;
- Count how many outcomes fall in each subsquare;
- Apply a chi-square test to these data.

This test can be generalized to higher dimensions.
Permutation test

Look at n successive d-tuples of outcomes

$$(U_0, \ldots, U_{d-1}), (U_d, \ldots, U_{2d-1}),$$

$$\ldots, (U_{(n-1)d}, \ldots, U_{nd-1});$$

Among the d-tuples there are $d!$ possible orderings and these orderings are equally likely.

- Determine the frequencies of the different orderings among the n d-tuples;
- Apply a chi-square test to these data.
Runs-up test

Divide the sequence \(U_0, U_1, \ldots \) in blocks, where each block is a subsequence of increasing numbers followed by a number that is smaller than its predecessor.

Example: The realization \(1,3,8,6,2,0,7,9,5 \) can be divided in the blocks \((1,3,8,6), (2,0), (7,9,5)\).

A block consisting of \(j + 1 \) numbers is called a *run-up of length* \(j \). It holds that

\[
P(\text{run-up of length } j) = \frac{1}{j!} - \frac{1}{(j + 1)!}
\]

- Generate \(n \) run-ups;
- Count the number of run-ups of length \(0, 1, 2, \ldots, k - 1 \) and \(\geq k \);
- Apply a chi-square test to these data.
Correlation test

Generate U_0, U_1, \ldots, U_n and compute an estimate for the (serial) correlation

$$
\hat{\rho}_1 = \frac{\sum_{i=1}^{n}(U_i - \bar{U}(n))(U_{i+1} - \bar{U}(n))}{\sum_{i=1}^{n}(U_i - \bar{U}(n))^2}
$$

where $U_{n+1} = U_1$ and $\bar{U}(n)$ the sample mean.

If the U_i's are really i.i.d. $U(0, 1)$, then $\hat{\rho}_1$ should be close to zero. Hence we reject H_0 is $\hat{\rho}_1$ is too large.

If H_0 is true, then for large n,

$$
P(-2/\sqrt{n} \leq \hat{\rho}_1 \leq 2/\sqrt{n}) \approx 0.95
$$

So we reject H_0 at the 5% level if

$$
\hat{\rho}_1 \notin (-2/\sqrt{n}, 2/\sqrt{n})
$$