2 Queueing models and some fundamental relations

Queueing models have been proved to be very useful in many practical applications in areas
such as, e.g., production systems, inventory systems and communication systems. These
applications concern in particular design problems, where we need to answer questions like:
Is the capacity sufficient?, What should be the layout? or How do we have to divide work
among several capacities? In many applications the variability in the arrival and service
processes are essential to the performance of the system. Queueing models help us to
understand and quantify the effect of variability.

In this chapter we describe the basic queueing model and we discuss some important
fundamental relations for this model. These results can be found in every standard text-
book on this topic, see, e.g., [1, 3, 5].

2.1 Queueing models and Kendall’s notation

The basic queueing model is shown in figure 1.

Figure 1: Basic queueing model

Among others, a queueing model is characterized by:

e The arrival process of customers.
Usually we assume that the interarrival times are independent and have a common
distribution. In many practical situations customers arrive according to a Poisson
stream (i.e., exponential interarrival times). Customers may arrive one by one, or
in batches. An example of batch arrivals is the customs office at the border where
travel documents of bus passengers have to be checked.

e The behaviour of customers.
Customers may be patient and willing to wait (for a long time). Or customers may
be impatient and leave after a while. For example, in call centers, customers will
hang up when they have to wait too long before an operator is available, and they
possibly try again after a while.



e The service times.
Usually we assume that the service times are independent and identically distributed,
and that they are independent of the interarrival times. For example, the service
times can be deterministic or exponentially distributed. It can also occur that service
times are dependent of the queue length. For example, the processing rates of the
machines in a production system can be increased once the number of jobs waiting
to be processed becomes too large.

e The service discipline.
Customers can be served one by one or in batches. We have many possibilities for
the order in which they enter service. We mention:
— first come first served, i.e., in order of arrival;
— random order;

— last come first served (e.g., in a computer stack or a shunt buffer in a production
line);

priorities (e.g., rush orders first, shortest processing time first);

processor sharing (in computers that equally divide their processing power over
all jobs in the system).

e The service capacity.
There may be a single server or a group of servers helping the customers.

e The waiting room.
There can be limitations with respect to the number of customers in the system. For
example, in a data communication network, only finitely many cells can be buffered
in a switch. The determination of good buffer sizes is an important issue in the design
of these networks.

Kendall introduced a shorthand notation to characterize a range of these queueing mod-
els. It is a three-part code a/b/c. The first letter specifies the interarrival time distribution
and the second one the service time distribution. For example, for a general distribution
the letter G is used, M for the exponential distribution (M stands for Memoryless) and
D for deterministic times. The third and last letter specifies the number of servers. Some
examples are M /M /1, M/M/c, M/G/1, G/M/1 and M/D/1. The notation can be ex-
tended with an extra letter to cover other queueing models. For example, a system with
exponential interarrival and service times, one server and having waiting room only for N
customers (including the one in service) is abbreviated by the four letter code M/M/1/N.

In the basic model, customers arrive one by one and they are always allowed to enter
the system, there is always room, there are no priority rules and customers are served in
order of arrival. It will be explicitly indicated (e.g., by additional letters) when one of these
assumptions does not hold.



2.2 Occupation rate

In a single-server system G/G/1 with arrival rate A and mean service time F(B) the

amount of work arriving per unit time equals AE(B). The server can handle 1 unit work

per unit time. To avoid that the queue eventually grows to infinity, we have to require that

AE(B) < 1. Without going into details, we note that the mean queue length also explodes

when AE(B) = 1, except in the D/D/1 system, i.e., the system with no randomness at all.
It is common to use the notation

p = AE(B).

If p < 1, then p is called the occupation rate or server utilization, because it is the fraction
of time the server is working.

In a multi-server system G/G/c we have to require that AE(B) < ¢. Here the occupa-
tion rate per server is p = AE(B)/c.

2.3 Performance measures

Relevant performance measures in the analysis of queueing models are:

e The distribution of the waiting time and the sojourn time of a customer. The sojourn
time is the waiting time plus the service time.

e The distribution of the number of customers in the system (including or excluding
the one or those in service).

In particular, we are interested in mean performance measures, such as the mean waiting
time and the mean sojourn time.

2.4 Little’s law

Little’s law gives a very important relation between F/(L), the mean number of customers
in the system, E(S), the mean sojourn time and A, the average number of customers
entering the system per unit time. Little’s law states that

E(L) = \E(S). (1)

Here it is assumed that the capacity of the system is sufficient to deal with the customers
(i.e., the number of customers in the system does not grow to infinity).

Intuitively, this result can be understood as follows. Suppose that all customers pay 1
dollar per unit time while in the system. This money can be earned in two ways. The first
possibility is to let pay all customers “continuously” in time. Then the average reward
earned by the system equals E(L) dollar per unit time. The second possibility is to let
customers pay 1 dollar per unit time for their residence in the system when they leave. In
equilibrium, the average number of customers leaving the system per unit time is equal



to the average number of customers entering the system. So the system earns an average
reward of AE(S) dollar per unit time. Obviously, the system earns the same in both cases.
For a rigorous proof, see [2, 4].

To demonstrate the use of Little’s law we consider the basic queueing model in figure
1 with one server. For this model we can derive relations between several performance
measures by applying Little’s law to suitably defined (sub)systems. Application of Little’s
law to the system consisting of queue plus server yields relation (1). Applying Little’s law
to the queue (excluding the server) yields a relation between the queue length L? and the
waiting time W, namely

E(LY) = AE(W).

Finally, when we apply Little’s law to the server only, we obtain (cf. section 2.2)
p=AE(B),

where p is the mean number of customers at the server (which is the same as the fraction
of time the server is working) and E(B) the mean service time.

2.5 PASTA property

For queueing systems with Poisson arrivals, so for M/ /- systems, the very special property
holds that arriving customers find on average the same situation in the queueing system
as an outside observer looking at the system at an arbitrary point in time. More precisely,
the fraction of customers finding on arrival the system in some state A is exactly the same
as the fraction of time the system is in state A. This property is only true for Poisson
arrivals.

In general this property is not true. For instance, in a D/D/1 system which is empty
at time 0, and with arrivals at 1,3,5, ... and service times 1, every arriving customer finds
an empty system, whereas the fraction of time the system is empty is 1/2.

This property of Poisson arrivals is called PASTA property, which is the acronym for
Poisson Arrivals See Time Averages. Intuitively, this property can be explained by the fact
that Poisson arrivals occur completely random in time. A rigorous proof of the PASTA
property can be found in [6, 7].

In the following chapters we will show that in many queueing models it is possible to
determine mean performance measures, such as F(S) and E(L), directly (i.e., not from
the distribution of these measures) by using the PASTA property and Little’s law. This
powerful approach is called the mean value approach.
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