1991

J.F. Groote

A short proof of the decidability of bisimulation for normed BPA-processes

Computer Science/Department of Software Technology

Report CS-R9151 December

CWI, nationaal instituut voor onderzoek op het gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a non-profit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands organization for scientific research (NWO).

A Short Proof of the Decidability of Bisimulation for Normed BPA-Processes

Jan Friso Groote

Department of Software Technology, CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
email: jfg@cwi.nl

Abstract

The decidability of bisimulation for normed BPA processes was first proven in [1] and subsequently, using other proof techniques, in [2] and [3]. We provide here a short and straightforward proof.

Key Words & Phrases: Basic Process Algebra, Bisimulation, Context-Free Processes, Decidibility.

1985 Mathematics Subject Classification: 68Q45, 68Q50, 68Q55.

1987 CR Categories: D.3.1, F.4.3.

Note: The author is supported by the European Communities under RACE project no.

1046 (SPECS) and ESPRIT Basic Research Action 3006 (CONCUR).

BPA (Basic Process Algebra) process expressions or BPA processes [1] are given by the abstract syntax

$$p ::= a \mid X \mid p_1 + p_2 \mid p_1 \cdot p_2$$

Here a ranges over a set Act of atomic actions, and X over a set Var of variables. In BPA the symbol + is interpreted as non-deterministic choice while $p_1 \cdot p_2$ represents sequential composition of p_1 and p_2 (we often omit the '·'). For technical convenience, we also introduce the process ϵ , with the convention that $\epsilon \cdot q = q$.

We say that a process expression is guarded iff every variable occurrence in p occurs in a subexpression aq of p. Recursive processes are defined by guarded recursive specifications:

$$\Delta = \{X_i = p_i | 1 \le i \le k\}$$

Report CS-R9151 ISSN 0169-118X CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

where the X_i are distinct variables, and the p_i are guarded BPA process expressions with free variables in $Var(\Delta) = \{X_1, \ldots, X_k\}$. The variable X_1 is called the root of Δ . We use letters α, β, γ and ζ to range over possibly empty sequences of variables, i.e. $\alpha, \beta, \gamma, \zeta \in Var(\Delta)^*$. The function *length* gives the number of variables in a sequence.

The operational semantics of a BPA process expression, given a guarded recursive specification Δ , is a transition relation \longrightarrow_{Δ} containing the transitions provable by the following rules:

$$\frac{p \xrightarrow{a} p'}{p + q \xrightarrow{a} p'}$$

$$\frac{q \xrightarrow{a} q'}{p + q \xrightarrow{a} q'}$$

$$\frac{p \xrightarrow{a} p'}{pq \xrightarrow{a} p'q}$$

$$a \xrightarrow{a} \epsilon \quad a \in Act$$

$$\frac{p \xrightarrow{a} p'}{X \xrightarrow{a} p'}$$

$$X = p \in \Delta$$

We omit the subscript Δ if it is clear from the context.

Generally, two processes are considered equivalent if they are bisimilar [5]:

Definition 1. A relation R on processes is called a *strong bisimulation* relation iff for all $(p,q) \in R$ it holds that

- If $p \xrightarrow{a} p'$, then there is a q' such that $q \xrightarrow{a} q'$ and p'Rq'.
- If $q \xrightarrow{a} q'$, then there is a p' such that $p \xrightarrow{a} p'$ and p'Rq'.

Two processes p and q are strongly bisimilar, notation $p \mapsto q$ iff there is some bisimulation relation R such that pRq.

Lemma 2. Strong bisimulation is a congruence relation w.r.t. + and \cdot .

In this paper we restrict our attention to normed BPA process expressions.

Definition 3. The *norm* of a process p is defined by (σ represents a sequence of actions):

$$|p| = \min(\{length(\sigma)|p \xrightarrow{\sigma} \epsilon\} \cup \{\infty\}).$$

Let Δ be a guarded recursive specification. The *norm* of Δ is $\max(\{|X| \mid X \in Var(\Delta)\})$. Δ is *normed* iff its norm is finite. A BPA process is called *normed*, if it has been generated via a normed guarded recursive specification. Note that bisimilar processes have the same norm.

Lemma 4. Let p, p' and q be normed BPA processes. If $p \cdot q \Leftrightarrow p' \cdot q$ then $p \Leftrightarrow p'$, and if $q \cdot p \Leftrightarrow q \cdot p'$ then $p \Leftrightarrow p'$.

Proof. For the first fact, note that every step that can be done by p in $p \cdot q$ must be mimicked by p' in $p' \cdot q$. For the second one, note that there is some smallest trace σ such that $q \cdot p \xrightarrow{\sigma} p$. The only way for $q \cdot p'$ to mimic this is by letting q perform the trace σ , i.e. $q \cdot p' \xrightarrow{\sigma} p'$. The results must be bisimilar and hence, $p \mapsto p'$.

In [1] it is shown that any guarded recursive specification Δ can be effectively presented in the following normal form

$$\Delta' = \{ X_i = \sum_{i=1}^{n_i} a_{ij} \alpha_{ij} | 1 \le i \le m \}$$

where α_{ij} is a variable sequence containing at most two variables, such that the root of Δ' is bisimulation equivalent to that of Δ . Moreover, when Δ is normed, so is Δ' . By analogy with context-free grammars Δ' is said to be in restricted GNF (Greibach Normal Form). It is worth noting that Δ' can be constructed in such a way that its size is polynomial in Δ . For a recursive specification Δ in restricted GNF and a sequence α it holds that if $\alpha \xrightarrow{a} p$, then p is again a sequence of variables and $length(p) \leq length(\alpha) + 1$.

In the sequel we assume that Δ is a guarded recursive specification in restricted GNF.

Definition 5. A function

$$f: Var(\Delta) \to Var(\Delta)^+$$

is called a $Var(\Delta)$ -assignment. Here $Var(\Delta)^+$ is the set of all non-empty sequences of variables from $Var(\Delta)$. The function f is extended to sequences in the expected way $(n \ge 0)$:

$$f(X_1 \cdots X_n) = f(X_1) \cdots f(X_n).$$

We say that f is norm-preserving iff |X| = |f(X)| and f is idempotent iff f(f(X)) = f(X). Moreover, we say that f is transfer-preserving iff for all $X \in Var(\Delta)$ and $\alpha, \beta \in Var(\Delta)^*$:

- $X \xrightarrow{a} \alpha \Rightarrow \exists \beta \ f(X) \xrightarrow{a} \beta \text{ and } f(\alpha) = f(\beta),$
- $f(X) \xrightarrow{a} \beta \implies \exists \alpha \ X \xrightarrow{a} \alpha \text{ and } f(\alpha) = f(\beta).$

Lemma 6. Suppose f is an idempotent, transfer-preserving $Var(\Delta)$ -assignment. Then for all sequences of variables α and β :

$$f(\alpha) = f(\beta) \Rightarrow \alpha \Leftrightarrow \beta.$$

Proof. It is sufficient to show that

$$R = \{ \langle \alpha, \beta \rangle \in Var(\Delta)^* \times Var(\Delta)^* \mid f(\alpha) = f(\beta) \}$$

is a bisimulation relation. This is trivial when $\alpha = \epsilon$ or $\beta = \epsilon$. So, consider non-empty sequences α and β such that $f(\alpha) = f(\beta)$ and suppose $\alpha \xrightarrow{a} \alpha'$. First we show that for appropriate γ , $f(\alpha) \xrightarrow{a} \gamma$ and $f(\alpha') = f(\gamma)$.

If $\alpha = X$, then, as f is transfer-preserving, $f(X) \xrightarrow{a} \gamma$ and $f(\alpha') = f(\gamma)$. If $\alpha = X_1 \alpha_1$ then $f(\alpha) = \gamma_1 \gamma_2$ such that $f(X_1) = \gamma_1$ and $f(\alpha_1) = \gamma_2$. As $\alpha \xrightarrow{a} \alpha'$ it follows that $X_1 \xrightarrow{a} \alpha'_1$ and $\alpha' = \alpha'_1 \alpha_1$. Hence, as f is transfer-preserving, $\gamma_1 \xrightarrow{a} \gamma'_1$ and $f(\alpha'_1) = f(\gamma'_1)$. So we can conclude that $f(\alpha) \xrightarrow{a} \gamma'_1 \gamma_2$ and $f(\alpha') = f(\alpha'_1 \alpha_1) = f(\alpha'_1) f(f(\alpha_1)) = f(\gamma'_1) f(\gamma_2) = f(\gamma'_1 \gamma_2)$.

Now we show that if $f(\alpha) \xrightarrow{a} \gamma$, then $\beta \xrightarrow{a} \beta'$ and $f(\gamma) = f(\beta')$. Assume $f(\alpha) \xrightarrow{a} \gamma$. If $\beta = Y$ then $f(Y) = f(\alpha)$. As $f(\alpha) \xrightarrow{a} \gamma$ and f is transfer-preserving, $Y \xrightarrow{a} \beta'$ and $f(\beta') = f(\gamma)$. If $\beta = Y_1 \beta_1$, $f(Y_1) = \gamma_1$ and $f(\beta_1) = \gamma_2$ then $f(\alpha) = \gamma_1 \gamma_2$. Because $f(\alpha) \xrightarrow{a} \gamma$ it follows that $\gamma_1 \xrightarrow{a} \gamma'_1$ and $\gamma = \gamma'_1 \gamma_2$. As f is transfer-preserving, $Y_1 \xrightarrow{a} \beta'_1$ and $f(\beta'_1) = f(\gamma'_1)$. Hence, $\beta \xrightarrow{a} \beta'_1 \beta_1$ and $f(\beta'_1 \beta_1) = f(\gamma'_1) f(f(\beta_1)) = f(\gamma'_1) f(\gamma_2) = f(\gamma'_1 \gamma_2) = f(\gamma)$.

From the previous two paragraphs it follows that if $\alpha \xrightarrow{a} \alpha'$ then $\beta \xrightarrow{a} \beta'$ and $f(\alpha') = f(\beta')$. The case where β can perform the first step is symmetric. So R is indeed a bisimulation relation.

Now we show that if $\alpha \hookrightarrow \beta$ for normed α and β , then there exists a transfer-preserving $Var(\Delta)$ -assignment f such that $f(\alpha) = f(\beta)$. In order to do so, we assume a total ordering < on $Var(\Delta)$. This ordering is extended to a total ordering on sequences of variables as follows:

$$\alpha < \beta \ \text{ iff } \left\{ \begin{array}{l} length(\alpha) < length(\beta) \text{ or } \\ \alpha \text{ is lexicographically smaller than } \beta \text{ and } length(\alpha) = length(\beta). \end{array} \right.$$

We also use \leq , \geq and > with their obvious meanings.

Definition 7. The $Var(\Delta)$ -assignment f_{\Longrightarrow} is defined by:

$$f_{\boldsymbol{\longleftrightarrow}}(X) = \max(\{\alpha | X {\boldsymbol{\longleftrightarrow}} \alpha\}).$$

Lemma 8. If Δ is normed then:

- 1. $f_{\longleftrightarrow}(\alpha) = \max(\{\gamma | \alpha \leftrightarrow \gamma\}).$
- 2. If $\alpha \hookrightarrow \beta$ then $f_{\longleftrightarrow}(\alpha) = f_{\longleftrightarrow}(\beta)$.
- 3. f_{\longleftrightarrow} is transfer-preserving.

4. f_{\leftrightarrow} is idempotent.

Proof.

- 1. Let $\alpha = Z_1 \cdots Z_k$ and define $\beta = \max(\{\gamma | \alpha \hookrightarrow \gamma\})$. Obviously, as $f_{\hookrightarrow}(\alpha) \hookrightarrow \beta$, $f_{\hookrightarrow}(\alpha) \leq \beta$. Assume $\beta > f_{\hookrightarrow}(\alpha)$. By contradiction, we show that $\beta \leq f_{\hookrightarrow}(\alpha)$ and hence that $f_{\hookrightarrow}(\alpha) = \beta$. Let $f_{\hookrightarrow}(\alpha) = X_1 \cdots X_n$ and $\beta = Y_1 \cdots Y_m$. Note that $m \geq n$.
 - Suppose that $X_1 \cdots X_n = Y_1 \cdots Y_n$. Then m > n. As $|Y_{n+1} \cdots Y_m| > 0$, this means that $|f_{\longleftrightarrow}(\alpha)| < |\beta|$ and hence $f_{\longleftrightarrow}(\alpha)$ is not bisimilar to β . Contradiction.
 - So it must be the case that there is a $1 \le i \le n$ such that $X_i \ne Y_i$. Take such i minimal, i.e. $X_1 \cdots X_{i-1} = Y_1 \cdots Y_{i-1}$. By lemma 4, it follows that

$$X_i \cdots X_n \hookrightarrow Y_i \cdots Y_m.$$
 (1)

Now assume that $|X_i| \leq |Y_i|$. There exists some shortest σ such that $X_i \cdots X_n \xrightarrow{\sigma} X_{i+1} \cdots X_n$. We can conclude that $Y_i \cdots Y_m \xrightarrow{\sigma} \zeta \cdot Y_{i+1} \cdots Y_m$ for some possibly empty sequence of variables ζ , where $X_{i+1} \cdots X_n \Leftrightarrow \zeta \cdot Y_{i+1} \cdots Y_m$. Substitution in (1) and application of lemma 4 gives that $X_i \zeta \Leftrightarrow Y_i$. If ζ is not empty, β is not maximal, as replacing $X_i \zeta$ for Y_i in β yields a 'larger' sequence. If ζ is empty then $X_i \Leftrightarrow Y_i$. If $X_i > Y_i$ then β is not maximal; replace Y_i by X_i . If $X_i < Y_i$, then there is a j with $f_{\Longleftrightarrow}(Z_j) = X_l \cdots X_{l'}$ such that $l \leq i \leq l'$. $f_{\Longleftrightarrow}(Z_j)$ is not maximal, as X_i can be replaced by Y_i .

The case where $|Y_i| < |X_i|$ goes in the same way, but is slightly simpler.

- 2. Suppose $\alpha \hookrightarrow \beta$. Then, by 1, $f_{\longleftrightarrow}(\alpha) = \max(\{\gamma | \alpha \hookrightarrow \gamma\}) \hookrightarrow \max(\{\gamma | \beta \hookrightarrow \gamma\}) = f_{\longleftrightarrow}(\beta)$.
- 3. Suppose $X \in Var(\Delta)$ and $\beta = f_{\longleftrightarrow}(X)$. As $f_{\longleftrightarrow}(X) \leftrightarrow \beta$, we have the following. If $X \xrightarrow{a} \alpha'$ then $\exists \beta'$ such that $\beta \xrightarrow{a} \beta'$ and $\alpha' \leftrightarrow \beta'$. By 2 it follows that $f_{\longleftrightarrow}(\alpha') = f_{\longleftrightarrow}(\beta')$. If $\beta \xrightarrow{a} \beta'$ then $\exists \alpha'$ such that $X \xrightarrow{a} \alpha'$ and $\alpha' \leftrightarrow \beta'$. By 2, $f_{\longleftrightarrow}(\alpha') = f_{\longleftrightarrow}(\beta')$.
- 4. As $f_{\hookleftarrow}(X) \hookrightarrow X$, $f_{\hookleftarrow}(f_{\hookleftarrow}(X)) = \max(\{\alpha \mid f_{\hookleftarrow}(X) \hookrightarrow \alpha\}) = \max(\{\alpha \mid X \hookrightarrow \alpha\}) = f_{\hookleftarrow}(X)$.

Corollary 9. If Δ is normed then $\alpha \hookrightarrow \beta$ iff there exists an idempotent and transfer-preserving $Var(\Delta)$ -assignment f such that $f(\alpha) = f(\beta)$.

Proof.
$$\Leftarrow$$
) Lemma 6. \Rightarrow) By lemma 8 f_{\leftrightarrow} suffices.

Lemma 10. Let Δ be normed. Suppose f is an idempotent and transfer-preserving $Var(\Delta)$ -assignment. Then f is norm-preserving.

Proof. Since f is idempotent f(f(X)) = f(X). As f is idempotent and transfer-preserving, $f(X) \hookrightarrow X$. So, |f(X)| = |X|.

Theorem 11. Bisimulation is decidable for normed BPA processes.

Proof. By corollary 9 we must check this for idempotent and transfer-preserving $Var(\Delta)$ -assignments. By lemma 10 such $Var(\Delta)$ -assignments are norm-preserving. There are only finitely many of these because each variable has a non-zero and finite norm. For any sequence of variables α and β , it is straightforward to calculate whether $f(\alpha) = f(\beta)$. It can also easily and effectively be checked whether such an f is idempotent and transfer-preserving. So, the existence of a norm- and transfer-preserving $Var(\Delta)$ -assignment with $f(\alpha) = f(\beta)$ is decidable. By corollary 9 it follows that it is decidable whether $\alpha \Leftrightarrow \beta$.

Remark 12. An original motivation for the work as presented here was to determine the complexity of deciding bisimulation for normed BPA processes. The result in this article leads to a nondeterministic exponential algorithm. Recently, Huynh and Tian have shown that deciding bisimulation for normed BPA processes is in Σ_2^p , and hence in PSPACE [4]. It is an open problem whether a more efficient algorithm exists.

Remark 13. The proof in this paper resembles the proof given in [2]. The main technical difference is in the concept of a transfer-preserving $Var(\Delta)$ -assignment, versus an auto-bisimulable relation in [2], and in the presentation. For an easy comparison we indicate the relation between the two most important concepts. The proof in [2] depends on the notions of an auto-bisimulable relation and a fundamental relation. A fundamental relation is modulo the difference in representation a norm-preserving and idempotent $Var(\Delta)$ -assignment. An auto-bisimulable relation is a wider notion than transfer-preserving, but they coincide for fundamental relations. The main argument given in [2] is that the reflexive, transitive closure of auto-bisimulable and fundamental relations coincides with strong bisimulation equivalence, which is in a sense exactly what corollary 9 says.

Acknowledgements. I thank Didier Caucal, Dung T. Huynh, Jan Willem Klop, Alexandru Mateescu, Alban Ponse, Colin Stirling and Frits Vaandrager for their helpful comments.

REFERENCES 7

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for processes generating context-free languages. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors, *Proceedings PARLE conference*, Eindhoven, *Vol. II (Parallel Languages)*, volume 259 of *Lecture Notes in Computer Science*, pages 94–113. Springer-Verlag, 1987.

- [2] D. Caucal. Graphes canoniques de graphes algébriques. *Theoretical Informatics and Applications*, 24(4):339–352, 1990.
- [3] H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimilarity for context-free processes. In *Proceedings* 6th Annual Symposium on Logic in Computer Science, Amsterdam, The Netherlands, pages 376–386. IEEE Computer Society Press, 1991.
- [4] D.T. Huynh and L. Tian. Deciding bisimilarity of normed context-free processes is in Σ_2^p . Technical Report UTDCS-1-92, University of Texas at Dallas, 1992.
- [5] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer-Verlag, 1981.

•