1991

J.F. Groote

A short proof of the decidability of bisimulation
for normed BPA-processes

Computer Science/Department of Software Technology Report CS-R9151 December

CWI vaiionaalinstituut voor onderzoek op et gebied van wiskunde en informatica

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11, 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Short Proof of the Decidability of Bisimulation
for Normed BPA-Processes

Jan Friso Groote
Department of Software Technology, CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

email: jfg@cwi.nl

Abstract

The decidability of bisimulation for normed BPA processes was first proven in [1] and
subsequently, using other proof techniques, in [2] and [3]. We provide here a short and
straightforward proof.

Key Words & Phrases: Basic Process Algebra, Bisimulation, Context-Free Processes,
Decidibility.

1985 Mathematics Subject Classification: 68Q45, 68Q50, 68Q55.

1987 CR Categories: D.3.1, F.4.3.

Note: The author is supported by the European Communities under RACE project no.
1046 (SPECS) and ESPRIT Basic Research Action 3006 (CONCUR).

BPA (Basic Process Algebra) process expressions or BPA processes [1] are given by the
abstract syntax

pu=al|X|pi+p2|pi-p2

Here a ranges over a set Act of atomic actions, and X over a set Var of variables. In
BPA the symbol + is interpreted as non-deterministic choice while p; - p, represents
sequential composition of p; and p, (we often omit the ‘-’). For technical convenience,
we also introduce the process ¢, with the convention that €- ¢ = q.

We say that a process expression is guarded iff every variable occurrence in p oc-
curs in a subexpression aq of p. Recursive processes are defined by guarded recursive
specifications:

Report CS-R9151

ISSN 0169-118X

Cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

where the X; are distinct variables, and the p; are guarded BPA process expressions

with free variables in Var(A) = {X3,..., Xx}. The variable X is called the root of A.

We use letters o, 3,y and (to range over possibly empty sequences of variables, i.e.

a,fB,7,¢ € Var(A)*. The function length gives the number of variables in a sequence.

The operational semantics of a BPA process expression, given a guarded recursive

specification A, is a transition relation — A containing the transitions provable by the
followitig rules:

p—p' g—q
p+q—p p+g—¢q

a . g

—% a——e a € Act

pPq—p4q

p—p'

X = A
XL»p’ PE

We omit the subscript A if it is clear from the context.
Generally, two processes are considered equivalent if they are bisimilar [5]:

Definition 1. A relation R on processes is called a strong bisimulation relation iff for
all (p,q) € R it holds that

o If p—=»p', then there is a ¢’ such that ¢—¢’ and p'Rq'.
o If g—=»¢', then there is a p’ such that p——p' and p'Rq'.

Two processes p and g are strongly bisimilar, notation peq iff there is some bisimulation
rélation R such that pRg.

Lemma 2. Strong bisimulation is a congruence relation w.r.t. + and -.
In this paper we restrict our attention to normed BPA process expressions.

Definition 3. The norm of a process p is defined by (o represents a sequence of
actions):

Ip| = min({length(o)|p—=>¢€} U {o0}).

Let A be a guarded recursive specification. The morm of A is max({|X| | X €
Var(&)}). A is normed iff its norm is finite. A BPA process is called normed, if it
lias been generated via a normed guarded recursive specification. Note that bisimilar
processes have the same norm.

Lemma 4. Let p,p' and q be normed BPA processes. If p- q=p' - ¢ then p=p', and if
q-peq-p' then pep'.

Proof. For the first fact, note that every step that can be done by p in p - ¢ must be
mimicked by p’ in p’' - q. For the second one, note that there is some smallest trace o
such that g - p—=»p. The only way for g - p' to mimic this is by letting g perform the
trace o, i.e. ¢ - p'——p'. The results must be bisimilar and hence, pe=p'. a

In [1] it is shown that any guarded recursive specification A can be effectively presented
in the following normal form

A, = {X, = Zaijaijll S 7 S m}

j=1

where «;; is a variable sequence containing at most two variables, such that the root
of A’ is bisimulation equivalent to that of A. Moreover, when A is normed, so is A’.
By analogy with context-free grammars A’ is said to be in restricted GNF' {Greibach
Normal Form). It is worth noting that A’ can be constructed in such a way that its size
is polynomial in A. For a recursive specification A in restricted GNF and a sequence
a it holds that if a——p, then p is again a sequence of variables and length(p) <
length(a) + 1.

In the sequel we assume that A is a guarded recursive specification in restricted GNF.

Definition 5. A function
f: Var(A) — Var(A)*

is called a Var(A)-assignment. Here Var(A)" is the set of all non-empty sequences of
variables from Var(A). The function f is extended to sequences in the expected way
(n > 0):

f(Xl"’Xn)zf(Xl)'”f(Xn)'

We say that f is norm-preserving iff | X| = |f(X)| and f is idempotent iff f(f(X)) =
f(X). Moreover, we say that f is transfer-preserving iff for all X € Var(A) and
a, B € Var(A)*:

e X-%a = 36 f(X)-8 and f(a) = f(B),
e f(X)%8 = 3Fa X—aand f(a)= f(6).

Lemma 6. Suppose f is an idempotent, transfer-preserving Var(A)-assignment. Then
for all sequences of variables a and (3:

fla)=f(B) = a=p.

Proof. It is sufficient to show that

R = {{a,B) € Var(A)* x Var(A)"| f(a) = f(8)}

is a bisimulation relation. This is trivial when o = € or 3 = €. So, consider non-empty
sequences o and [such that f(a) = f(8) and suppose a——q/. First we show that for
appropriate 7, f(a)—v and f(a') = (7).

If @ = X, then, as f is transfer-preserving, f(X)—~ and f(a') = f(v). f a = X104
then f(a) = 7172 such that f(X;) = 71 and f(a1) = 7. As a—2s¢a/ it follows that
X1—>a} and o/ = oja;. Hence, as f is transfer-preserving, y1—, and f(a}) =
f(m)- So we can conclude that f(a)—vi7 and f(o') = f(aje1) = f(a}) f(far)) =
fn) f(n) = f(n72)-

Now we show that if f(a)—=s, then 3—4" and f(v) = f(#'). Assume f(a)——~.
If =Y then f(Y) = f(a). As f(a)—=~ and f is transfer-preserving, Y -3’ and
FB) = f(y). £ B =Y10, f(Y1) =7 and f(B1) = 7. then f(a) = v17,. Because
f(a)->> it follows that y;—~; and v = v}7s. As f is transfer-preserving, Y; -3}
and f(8)) = f(+}). Hence, B-8,6: and f(Bi6:) = F(0) F(F(Br) = £(}) flnm) =
fnre) = f(7).

From the previous two paragraphs it follows that if a—a’ then S—=3' and f(o')
f(B"). The case where 3 can perform the first step is symmetric. So R is indeed
bisimulation relation.

O |

Now we show that if = for normed « and 8, then there exists a transfer-preserving
Var(A)-assignment f such that f(a) = f(8). In order to do so, we assume a total
ordering < on Var(A). This ordering is extended to a total ordering on sequences of
variables as follows:

length(a) < length(B) or
a is lexicographically smaller than 8 and length(a) = length(B).

ak (@ iff {
We also use <,> and > with their obvious meanings.
Definition 7. The Var(A)-assignment f_, is defined by:
feu(X) = maz({a| X =a}).
Because {a|X <a} is a non-empty, finite set, f_, is well-defined.
Lemma 8. If A is normed then:
1. fo(a) = max({y|la=n}).
2. ffae=f then f_ (o) = f,(B).

3. fes is transfer-preserving.

4. f, is idempotent.
Proof.

1. Let o = Z;---Z; and define § = max({y|ae=~}). Obviously, as f_,(a)=f,
fo(a) £ 5. Assume § > f_,(a). By contradiction, we show that 8 < f_,(a)
and hence that f_,(a) = 5. Let f, (o) = X;--- X, and B = Y;---Y,,. Note
that m > n.

e Suppose that X;--- X, = Y;---Y,. Then m > n. As |Y,i1--- Y| > 0,
this means that |f_ (a)| < |f| and hence f_, (a) is not bisimilar to g.
Contradiction.

e So it must be the case that there is a 1 < 7 < n such that X; # Y;. Take
such ¢ minimal, i.e. X;--- X;_1 =Y;---Y;_;. By lemma 4, it follows that

Xi+ o Xy Y. (1)

Now assume that |X;| < |Y;|. There exists some shortest o such that
X Xp—"X;y1--+ X,. We can conclude that Y;---Y,,——=(- Yip1 -+ Yo,
for some possibly empty sequence of variables (, where X;;; -+ X, e(-
Yis1-++ Y. Substitution in (1) and application of lemma 4 gives that
Xi(eY;. If (is not empty, [is not maximal, as replacing X;(for Y;
in G yields a ‘larger’ sequence. If { is empty then X;=V;. If X; > Y; then
B is not maximal; replace Y; by X;. If X; < Y;, then there is a j with
fe(Z) =X+ Xpsuch that I <i<!'. f_,(Z;)is not maximal, as X; can
be replaced by Y;.

The case where |Y;| < | X;| goes in the same way, but is slightly simpler.

2. Supg)ose ae=f. Then, by 1, f_,(a) = max({y|aev})e max({y|f=v}) =
[(8).

3. Suppose X € Var(A) and 8 = f,(X). As f_,(X)=0, we have the following.
If X' then 30’ such that 8—3" and o’<=('. By 2 it follows that f_, (o) =
fe(B). If B—50 then Jo’ such that X—-a' and o’=f'. By 2, f_(a) =
Fo ()

4. As fo(X)eX, fo(fo(X)) = max({a | fo (X)=a}) = max({a | Xea}) =
fe (X).

a

Corollary 9. If A is normed then a<[3 iff there exists an idempotent and transfer-
preserving Var(A)-assignment f such that f(a) = f(5).

Proof. <) Lemma 6. =) By lemma 8 f_, suffices. o

Lemma 10. Let A be normed. Suppose f is an idempotent and transfer-preserving
Var(A)-assignment. Then f is norm-preserving.

Proof. Since f is idempotent f(f(X)) = f(X). As f is idempotent and transfer-
preserving, f(X)=X. So, |f(X)| = |X]|. O

Theorem 11. Bisimulation is decidable for normed BPA processes.

Proof. By corollary 9 we must check this for idempotent and transfer-preserving
Var(A)-assignments. By lemma 10 such Var(A)-assignments are norm-preserving.
There are only finitely many of these because each variable has a non-zero and finite
norm. For any sequence of variables a and §, it is straightforward to calculate whether
f(a) = f(B). It can also easily and effectively be checked whether such an f is idem-
potent and transfer-preserving. So, the existence of a norm- and transfer-preserving
Var(A)-assignment with f(a) = f(8) is decidable. By corollary 9 it follows that it is
decidable whether a=f. m]

Remark 12. An original motivation for the work as presented here was to determine
the complexity of deciding bisimulation for normed BPA processes. The result in this
article leads to a nondeterministic exponential algorithm. Recently, Huynh and Tian
have shown that deciding bisimulation for normed BPA processes is in X5, and hence
in PSPACE [4]. It is an open problem whether a more efficient algorithm exists.

Remark 13. The proof in this paper resembles the proof given in [2]. The main
technical difference is in the concept of a transfer-preserving Var(A)-assignment, versus
an auto-bisimulable relation in [2], and in the presentation. For an easy comparison
we indicate the relation between the two most important concepts. The proof in [2]
depends on the notions of an auto-bisimulable relation and a fundamental relation. A
fundamental relation is modulo the difference in representation a norm-preserving and
idempotent Var(A)-assignment. An auto-bisimulable relation is a wider notion than
transfer-preserving, but they coincide for fundamental relations. The main argument
given in [2] is that the reflexive, transitive closure of auto-bisimulable and fundamental
relations coincides with strong bisimulation equivalence, which is in a sense exactly
what corollary 9 says.

Acknowledgements. I thank Didier Caucal, Dung T. Huynh, Jan Willem Klop,
Alexandru Mateescu, Alban Ponse, Colin Stirling and Frits Vaandrager for their helpful
comments.

REFERENCES 7

References

[1]

[2]

[3]

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equiv-
alence for processes generating context-free languages. In J.W. de Bakker, A.J.
Nijman, and P.C. Treleaven, editors, Proceedings PARLE conference, Eindhoven,
Vol. II (Parallel Languages), volume 259 of Lecture Notes in Computer Science,
pages 94-113. Springer-Verlag, 1987.

D. Caucal. Graphes canoniques de graphes algébriques. Theoretical Informatics
and Applications, 24(4):339-352, 1990.

H. Hiittel and C. Stirling. Actions speak louder than words: Proving bisimilarity for
context-free processes. In Proceedings 6" Annual Symposium on Logic in Computer
Science, Amsterdam, The Netherlands, pages 376-386. IEEE Computer Society
Press, 1991.

D.T. Huynh and L. Tian. Deciding bisimilarity of normed context-free processes is
in ¥5. Technical Report UTDCS-1-92, University of Texas at Dallas, 1992.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5** GI Conference, volume 104 of Lecture Notes in Computer Science, pages
167-183. Springer-Verlag, 1981.

