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Abstract

The decidability of bisimulation for normed BPA processes was first proven in [1] and
subsequently, using other proof techniques, in [2] and [3]. We provide here a short and
straightforward proof.
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BPA (Basic Process Algebra) process expressions or BPA processes [1] are given by the
abstract syntax

pu=al|X|pi+p2|pi-p2

Here a ranges over a set Act of atomic actions, and X over a set Var of variables. In
BPA the symbol + is interpreted as non-deterministic choice while p; - p, represents
sequential composition of p; and p, (we often omit the ‘-’). For technical convenience,
we also introduce the process ¢, with the convention that €- ¢ = q.

We say that a process expression is guarded iff every variable occurrence in p oc-
curs in a subexpression aq of p. Recursive processes are defined by guarded recursive
specifications:
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where the X; are distinct variables, and the p; are guarded BPA process expressions

with free variables in Var(A) = {X3,..., Xx}. The variable X is called the root of A.

We use letters o, 3,y and ( to range over possibly empty sequences of variables, i.e.

a,fB,7,¢ € Var(A)*. The function length gives the number of variables in a sequence.

The operational semantics of a BPA process expression, given a guarded recursive

specification A, is a transition relation — A containing the transitions provable by the
followitig rules:

p—p' g—q
p+q—p p+g—¢q

a . g

—% a——e a € Act

pPq—p4q

p—p'

X = A
XL»p’ PE

We omit the subscript A if it is clear from the context.
Generally, two processes are considered equivalent if they are bisimilar [5]:

Definition 1. A relation R on processes is called a strong bisimulation relation iff for
all (p,q) € R it holds that

o If p—=»p', then there is a ¢’ such that ¢—¢’ and p'Rq'.
o If g—=»¢', then there is a p’ such that p——p' and p'Rq'.

Two processes p and g are strongly bisimilar, notation peq iff there is some bisimulation
rélation R such that pRg.

Lemma 2. Strong bisimulation is a congruence relation w.r.t. + and -.
In this paper we restrict our attention to normed BPA process expressions.

Definition 3. The norm of a process p is defined by (o represents a sequence of
actions):

Ip| = min({length(o)|p—=>¢€} U {o0}).

Let A be a guarded recursive specification. The morm of A is max({|X| | X €
Var(&)}). A is normed iff its norm is finite. A BPA process is called normed, if it
lias been generated via a normed guarded recursive specification. Note that bisimilar
processes have the same norm.



Lemma 4. Let p,p' and q be normed BPA processes. If p- q=p' - ¢ then p=p', and if
q-peq-p' then pep'.

Proof. For the first fact, note that every step that can be done by p in p - ¢ must be
mimicked by p’ in p’' - q. For the second one, note that there is some smallest trace o
such that g - p—=»p. The only way for g - p' to mimic this is by letting g perform the
trace o, i.e. ¢ - p'——p'. The results must be bisimilar and hence, pe=p'. a

In [1] it is shown that any guarded recursive specification A can be effectively presented
in the following normal form

A, = {X, = Zaijaijll S 7 S m}

j=1

where «;; is a variable sequence containing at most two variables, such that the root
of A’ is bisimulation equivalent to that of A. Moreover, when A is normed, so is A’.
By analogy with context-free grammars A’ is said to be in restricted GNF' {Greibach
Normal Form). It is worth noting that A’ can be constructed in such a way that its size
is polynomial in A. For a recursive specification A in restricted GNF and a sequence
a it holds that if a——p, then p is again a sequence of variables and length(p) <
length(a) + 1.

In the sequel we assume that A is a guarded recursive specification in restricted GNF.

Definition 5. A function
f: Var(A) — Var(A)*

is called a Var(A)-assignment. Here Var(A)" is the set of all non-empty sequences of
variables from Var(A). The function f is extended to sequences in the expected way
(n > 0):

f(Xl"’Xn)zf(Xl)'”f(Xn)'

We say that f is norm-preserving iff | X| = |f(X)| and f is idempotent iff f(f(X)) =
f(X). Moreover, we say that f is transfer-preserving iff for all X € Var(A) and
a, B € Var(A)*:

e X-%a = 36 f(X)-8 and f(a) = f(B),
e f(X)%8 = 3Fa X—aand f(a)= f(6).

Lemma 6. Suppose f is an idempotent, transfer-preserving Var(A)-assignment. Then
for all sequences of variables a and (3:

fla)=f(B) = a=p.



Proof. It is sufficient to show that

R = {{a,B) € Var(A)* x Var(A)"| f(a) = f(8)}

is a bisimulation relation. This is trivial when o = € or 3 = €. So, consider non-empty
sequences o and [ such that f(a) = f(8) and suppose a——q/. First we show that for
appropriate 7, f(a)—v and f(a') = (7).

If @ = X, then, as f is transfer-preserving, f(X)—~ and f(a') = f(v). f a = X104
then f(a) = 7172 such that f(X;) = 71 and f(a1) = 7. As a—2s¢a/ it follows that
X1—>a} and o/ = oja;. Hence, as f is transfer-preserving, y1—, and f(a}) =
f(m)- So we can conclude that f(a)—vi7 and f(o') = f(aje1) = f(a}) f(far)) =
fn) f(n) = f(n72)-

Now we show that if f(a)—=s, then 3—4" and f(v) = f(#'). Assume f(a)——~.
If =Y then f(Y) = f(a). As f(a)—=~ and f is transfer-preserving, Y -3’ and
FB) = f(y). £ B =Y10, f(Y1) =7 and f(B1) = 7. then f(a) = v17,. Because
f(a)->> it follows that y;—~; and v = v}7s. As f is transfer-preserving, Y; -3}
and f(8)) = f(+}). Hence, B-8,6: and f(Bi6:) = F(0) F(F(Br) = £(}) flnm) =
fnre) = f(7).

From the previous two paragraphs it follows that if a—a’ then S—=3' and f(o')
f(B"). The case where 3 can perform the first step is symmetric. So R is indeed
bisimulation relation.

O |

Now we show that if = for normed « and 8, then there exists a transfer-preserving
Var(A)-assignment f such that f(a) = f(8). In order to do so, we assume a total
ordering < on Var(A). This ordering is extended to a total ordering on sequences of
variables as follows:

length(a) < length(B) or
a is lexicographically smaller than 8 and length(a) = length(B).

ak (@ iff {
We also use <,> and > with their obvious meanings.
Definition 7. The Var(A)-assignment f_, is defined by:
feu(X) = maz({a| X =a}).
Because {a|X <a} is a non-empty, finite set, f_, is well-defined.
Lemma 8. If A is normed then:
1. fo(a) = max({y|la=n}).
2. ffae=f then f_ (o) = f,(B).

3. fes is transfer-preserving.



4. f, is idempotent.
Proof.

1. Let o = Z;---Z; and define § = max({y|ae=~}). Obviously, as f_,(a)=f,
fo(a) £ 5. Assume § > f_,(a). By contradiction, we show that 8 < f_,(a)
and hence that f_,(a) = 5. Let f, (o) = X;--- X, and B = Y;---Y,,. Note
that m > n.

e Suppose that X;--- X, = Y;---Y,. Then m > n. As |Y,i1--- Y| > 0,
this means that |f_ (a)| < |f| and hence f_, (a) is not bisimilar to g.
Contradiction.

e So it must be the case that there is a 1 < 7 < n such that X; # Y;. Take
such ¢ minimal, i.e. X;--- X;_1 =Y;---Y;_;. By lemma 4, it follows that

Xi+ o Xy Y. (1)

Now assume that |X;| < |Y;|. There exists some shortest o such that
X Xp—"X;y1--+ X,. We can conclude that Y;---Y,,——=( - Yip1 -+ Yo,
for some possibly empty sequence of variables (, where X;;; -+ X, e( -
Yis1-++ Y. Substitution in (1) and application of lemma 4 gives that
Xi(eY;. If ( is not empty, [ is not maximal, as replacing X;( for Y;
in G yields a ‘larger’ sequence. If { is empty then X;=V;. If X; > Y; then
B is not maximal; replace Y; by X;. If X; < Y;, then there is a j with
fe(Z) =X+ Xpsuch that I <i<!'. f_,(Z;)is not maximal, as X; can
be replaced by Y;.

The case where |Y;| < | X;| goes in the same way, but is slightly simpler.

2. Supg)ose ae=f. Then, by 1, f_,(a) = max({y|aev})e max({y|f=v}) =
[ (8).

3. Suppose X € Var(A) and 8 = f,(X). As f_,(X)=0, we have the following.
If X' then 30’ such that 8—3" and o’<=('. By 2 it follows that f_, (o) =
fe(B). If B—50 then Jo’ such that X—-a' and o’=f'. By 2, f_(a) =
Fo ()

4. As fo(X)eX, fo(fo(X)) = max({a | fo (X)=a}) = max({a | Xea}) =
fe (X).

a

Corollary 9. If A is normed then a<[3 iff there exists an idempotent and transfer-
preserving Var(A)-assignment f such that f(a) = f(5).

Proof. <) Lemma 6. =) By lemma 8 f_, suffices. o



Lemma 10. Let A be normed. Suppose f is an idempotent and transfer-preserving
Var(A)-assignment. Then f is norm-preserving.

Proof. Since f is idempotent f(f(X)) = f(X). As f is idempotent and transfer-
preserving, f(X)=X. So, |f(X)| = |X]|. O

Theorem 11. Bisimulation is decidable for normed BPA processes.

Proof. By corollary 9 we must check this for idempotent and transfer-preserving
Var(A)-assignments. By lemma 10 such Var(A)-assignments are norm-preserving.
There are only finitely many of these because each variable has a non-zero and finite
norm. For any sequence of variables a and §, it is straightforward to calculate whether
f(a) = f(B). It can also easily and effectively be checked whether such an f is idem-
potent and transfer-preserving. So, the existence of a norm- and transfer-preserving
Var(A)-assignment with f(a) = f(8) is decidable. By corollary 9 it follows that it is
decidable whether a=f. m]

Remark 12. An original motivation for the work as presented here was to determine
the complexity of deciding bisimulation for normed BPA processes. The result in this
article leads to a nondeterministic exponential algorithm. Recently, Huynh and Tian
have shown that deciding bisimulation for normed BPA processes is in X5, and hence
in PSPACE [4]. It is an open problem whether a more efficient algorithm exists.

Remark 13. The proof in this paper resembles the proof given in [2]. The main
technical difference is in the concept of a transfer-preserving Var(A)-assignment, versus
an auto-bisimulable relation in [2], and in the presentation. For an easy comparison
we indicate the relation between the two most important concepts. The proof in [2]
depends on the notions of an auto-bisimulable relation and a fundamental relation. A
fundamental relation is modulo the difference in representation a norm-preserving and
idempotent Var(A)-assignment. An auto-bisimulable relation is a wider notion than
transfer-preserving, but they coincide for fundamental relations. The main argument
given in [2] is that the reflexive, transitive closure of auto-bisimulable and fundamental
relations coincides with strong bisimulation equivalence, which is in a sense exactly
what corollary 9 says.
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