
Technische Universiteit Eindhoven University of Technology

1 Introduction

1.1 Course structure and timing

IT Infrastructures & Security Goals Threats & Countermeasures

IT infrastructures are faced with threats to its key security goals. This course aims to give an
overview and general understanding of security goals, threats and countermeasures. After the
course you should be able to (1) recognize and describe security requirements of scenarios (2)
identify security technologies that can help alleviate security issues (3) combine these technologies
in a basic security design.

Week Session Date Topic

1 1A 06-02-2013 Introduction
1B 08-02-2013 Cryptography (1)

Lab 1 08-02-2013 Web of Trust creation
2 2A 20-02-2013 Cryptography (2)

2B 22-02-2013 Network security Basics
Lab 2 22-02-2013 HTTP Basics, Sniffing and Tampering

3 3A 27-02-2013 Malware, Web security - SQL, XSS
3B 01-03-2013 Hashes, Certificates, etc.

Lab 3 01-03-2013 SQL and XSS
4 4A 06-03-2013 Access Control

4B 08-03-2013 Digital Rights Management
Lab 4 08-03-2013 Access Control and session information stealing

5 5A 13-03-2013 Authentication (1)
5B 15-03-2013 Authentication (2)

Lab 5 15-03-2013 Authentication Flaws, Password cracking
6 6A 20-03-2013 Security Protocols

6B 22-03-2013 Side channel attack, security protocol exercises
Lab 6 22-03-2013 Session Fixation/Stealing - Phishing

7 7A 27-03-2013 Privacy and Anonymity
7B 03-04-2013 Discussion Exercises and Exam preparation.

(Full lecture - no lab session this week).

3 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

1.2 The What-When-Why and How of Security

1.2.1 The What (and When) of Security

“Is your system secure?” What does this question actually mean; does it mean that nobody but
you can use it; can throw it out the window; can keep you from using it...?

Security attributes capture goals that one may want to achieve to call a system ‘secure’. The most
commonly used and widely accepted security attributes are Confidentiality, i.e. ‘my information
stays secret’, Integrity, i.e. ‘my information stays correct’, and Availability, i.e. ‘I can get at my in-
formation’. Of course these concepts can also refer to resources or system aspects other than
‘information’.

To get Security...
prevent “disallowed” usage ?

... and enable “allowed” usage ?

Difference “Dependability” and “Security” ?
Other options than prevention

“The only truly secure system is one that is
powered off, cast in a block of concrete and
sealed in a lead-lined room with armed guards”

Dependability vs. Security
Dependability Problem ?

program x
only works half of the time
crashes the computer
may cause the computer to explode
no longer works with the firewall installed
can stop the firewall from working
posts all your emails on a public website
tracks all your online activities
changes the data used by program y

Security Problem ?

The security attributes of the system may be at risk from several types of threats. Besides the usual
problem such as program errors and system failures, security also needs to address malicious
entities which are specifically trying to break the system. This leads to the security means, i.e. the
security tools applied to achieve the security attributes in face of these risks; we will come back
to this in the ‘How of Security’ section (Section 1.2.3) below.

Dependability
vs.

Security (2)

Basic Concepts and Taxonomy of Dependable and Secure Computing
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

The `What’ of security - Security Attributes
Confidentiality

Integrity
Availability

Privacy
Authenticity

Non-repudiation
Accountability

The `What’ of security - Security Attributes
C-I-A

Privacy
Authenticity

Non-repudiation
Accountability

Privacy Online

Peter Steiner 1993 Nik Scott 2008

In addition to Confidentiality, Integrity and Availability (‘C-I-A’) other security attributes are
sometimes formulated. Closely related but not usually called a security attribute is Privacy, i.e. ‘is
information about me not misused’. Note the difference between Confidentiality and Privacy:
where confidentiality requires data that you possess to remain secret, privacy deals with data
about you that may be in the hands of others. Where ‘who gets the data’ is a key question in
confidentiality, the purpose for which data is used is a key ingredient for privacy.

4 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Privacy

EU directives (e.g. 95/46/EC) to protect privacy.

College Bescherming Persoonsgegevens (CBP)

What is privacy?

Try to protect: Privacy Enhancing Technologies (PETs)

• Users “must be able to determine for themselves when, how,
to what extent and for what purpose information about them
is communicated to others” (Definition PRIME, European
project on privacy & ID management.)

Alice

The `What’ of security - Security Attributes
C-I-A

Privacy
Authenticity

Non-repudiation
Accountability

The `What’ of security - Security
Attributes

C-I-A
Privacy

Authenticity
Non-repudiation

Accountability

EU Data Protection Directive
Personal data usage requirements:

Notice of data being collected
Purpose for data use
Consent for disclosure
Informed who is collecting their data
Kept secure
Right to access & correct data
Accountability of data collectors

uthen
Non

n
a
b

Other examples of security attributes are: Authenticity, i.e. ‘is this information authentic’, Non-
repudiation, i.e. ‘is this information undeniable’ and Accountability. Authenticity is different from
integrity in that, it does not focus on alteration of data but on the correctness of the data; is the orig-
inal source of the information ‘correct’ (what ever that may mean in the setting where the notion
is used). A signature on a contract would be an example of a way to achieve non-repudiation; you
cannot later deny agreeing to the conditions in the contract. The relation between accountability
and non-repudidation is similar to that between integrity and authenticity; non-repudiation can
be an important part of achieving accountability but is by itself not yet sufficient.

Other Security Attributes
Authenticity

users or data are genuine
Prescription is real and issued by a genuine Md.

Non-repudiation
Cannot be denied (action/agreement/...)
Dr. cannot claim not issuing prescription

To achieve (means): (Digital) signatures
Accountability

Ability to hold users accountable for their actions
Dr. can be identified, found and is liable for wrong
prescriptions

The `What’ of security - Security Attributes
C-I-A

Privacy
Authenticity

Non-repudiation
Accountability

Security Policies & Models
Policy: Specifies “allowed” / “disallowed”

Context; applies to ..., approved/imposed by ...
Usage; required enforcement, dealing with breaches

Different notions of `security policy’:
from general intention statement

“Data shall only be available to those with a `need-to-know’”

to formal, detailed specification
“drwxr-xr-x”, access control list, XACML policy, etc.

Security Model
(Formal) Framework to express and interpret policies.

E.g. relations on Users - Objects - Permissions - Groups.

The `When’ of security - Security policies

The security policy describes when what security attribute needs to be achieved. Note that the term
security policy is used differently in different settings. It may be anything from a high level textual
description meant to be understood and applied by human beings, e.g. “all personal identifiable
information must only be read when needed to provide a service” to low level computer readable
information e.g. “drwxr-xr-x”1. Translating high level policies into a systems design along with
low level policies is an important step of creating a secure system.

The exact meaning of a security policies can be given within a security model; a (formal) frame-
work to express and interpret policies. For example the unix file permission given above can be
interpreted as a relation between Users, Groups, Objects and Permissions; An object has an owner
and group (an additional part of the security policy) and the owner of the object (a directory) has
read,write and execute permission, members of the group as well as other users have read and
execute permission.

1.2.2 The Why of Security

Achieving reliability of a system is already a difficult task. To achieve security one does not only
have to deal with unintentional errors but also account for intentional attacks on the system. Every

1A unix style file permission setting

5 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

day seems to bring new security incidents where attackers are able to exploit security weaknesses.
Although this may give an skewed perspective; a system remaining secure yet another day will
not make the news, it does show the importance of considering who may wish to attack the system
and why; we need an attacker model. This attacker model captures the capabilities and intentions
of an attacker (see also Section ?? on requirement engineering below) similar to the security model
describes the meaning of a security policy, i.e. the intentions of the designers/users of the system.

Attackers & Attacks

(WHAT) Break Security goals (Attributes)
(WHY) Reach Attacker goals
(WHO) IBM Attacker classification

I: Clever outsiders
II: Knowledgeable insiders
III: Funded Organisations

(WHO’) CPA - CCA - etc.
Formalization attack context
Attacker goals and capabilities

Some common security issues
Security as an after thought

Needs to be addressed from the start

Forgetting security depends on the whole system
Focusing where the risk isn't (...more below)

Single point of failure
Breach of a security feature causes complete
breakdown of system

Security by obscurity
Obscurity may help but it is dangerous to have the
security design depend on it (Kerckhoff’s principle)

Attacker models can be general; such as IBMs classification of attackers into three categories
(Clever outsiders, Knowledgeable insiders and Funded Organisations) or formal such as those
used in analysis of cryptographic algorihtms (e.g. Chosen-Plaintext-Attack (CPA) where the at-
tacker is able to get encryptions of plain text she has chosen.) Any security analysis will need both
the security goals (attributes/policy) and an attacker model. Sometimes these are left implicit but
they remain key ingredients; the question ‘is this system secure?’ has no meaning without them.
Not properly considering them is a common cause of security problems. Several other common
causes of security problem are often related to this.

Some common security issues (2)

Lack of Security policies

Lack of Preventative management
Keep systems up to date (e.g. patching)
Practice failure situations

Lack of Use of security features
E.g. Windows XP included firewall but not active (pre SP2)
Only need to check single checkbox

Relying on users for security
expertise, awareness, priorities

AliceBob

A program is only as strong as its design

The WMF problem provides a prime example of a software security flaw. At its
heart, the WMF problem is caused by a software feature being used in
an unintended way. WMF files, designed in the late 1980s, allow image
files to contain code that can be executed as the image decodes. Microsoft put
this "feature" in on purpose. The problem is, nobody put on their black hat and
thought through what an attacker might be able to do with such an inherently
dangerous feature. Malicious hackers use WMF information to install rootkits,
spyware, and other malicious code on their victims' machines. Some security
experts estimate that at least a million computers have been compromised this
way.

Source: Gary McGraw at itarchitect.com

Even though Microsoft has spent hundreds of millions of dollars on software
security, company representatives still expressed great surprise when the
Windows Metafile (WMF) vulnerability surfaced. There's a simple reason for
this. Microsoft's approach, commendable in many ways, involves an
overemphasis on code-level bugs and is thus subject to a major blind spot:
overlooking architectural flaws such as the WMF problem.

A chain is no stronger than its weakest link. This is also the case for the security of a system.
Consider for example the following aspect of a systems and some potential issues.

Design There is no hope of having a secure system if the system design does not address security
goals or worse has inherent features/goals with imply security problems. As examples con-
sider the Windows Meta File (WMF) where arbitrary code execution, a clear security risk, is
a design feature.

As another example one can consider the internet; initially the internet linked a group of
trusted systems and now very important security goals were not consideration in its design,
e.g. any computer can claim to have an IP, no authentication of DNS, etc. (See also lecture
on network security). No protection of content. Of course the are currently security mecha-
nisms (IPsec, HTTPS, etc.) that try to remedy this but ‘add on security’ is always problematic
- security needs to be considered from the start.

6 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Software quality A perfect design does not help if the implementation is flawed. Often security
issues are caused by software bugs with buffer overflow vulnerabilities being one of the
major issues. In a buffer overflow attacks input from an untrusted source is written into a
buffer without the bounds of the buffer being checked. This causes the untrusted data to
be written to places it is not supposed to go; it may overwrite a return address on the stack,
causing a jump to an attacker selected location at the end of the current routine. See e.g. [7]
for details on buffer overflows, and an analysis of tools to prevent them.

The problem of software bugs is not solved easily; e.g. recently an unsolved buffer overflows
vulnerabilities was reported in Windows 7 and in January 2011 Microsoft ships fixes for 22
vulnerabilities. Note that software and systems evolves; it is not the case that each round of
patching brings us closer to a final secure and bug free system.

Programming flaws can lead to security holes

Buffer overloads: the big security hole
Last month, Microsoft reissued its buffer-overflow vulnerability announcement for
Simple Network Management Protocol (SNMP), ... buffer-overflow vulnerabilities in
ISAPI ... buffer-overflow vulnerability in Oracle's supposedly unbreakable Oracle 8i
and Oracle 9i servers. ...

Source: ZDNet News

Another zero-day vulnerability reported in Windows 7
...This issue is caused by a buffer overflow error ... which could be exploited by
malicious users to crash an affected system or potentially execute arbitrary code
with kernel privileges.

Critical flaws in Windows, Internet Explorer
As part of this month’s Patch Tuesday schedule, Microsoft plans to ship a
dozen bulletins with fixes for 22 vulnerabilities, some serious enough to allow
hackers complete access to a vulnerable Windows machine. (Jan 2011)

Basic idea buffer overflow
call routine CheckPin

routine CheckPin
{ char pin[4];

 pin <= userInput;
User enters: 1234<AddressY>
 ...

return;
}

Put return address on stack:
<addressX> (return address)

Local variables on stack:
? ? ? ? (four empty bytes)
<addressX> (return address)

User input copied to stack
1 2 3 4 (user entry)
<addressY> (return address)

Remove local vars, return to:
<addressY>

Security Tool Selection Choose your crypto well, especially if you are a mafia boss. “...wrote
notes to his henchmen using a modified form of the Caesar Cipher, ... a code that ’will keep
your kid sister out’.” Clearly here the selected security tool was grossly insufficient to reach
the security goal. This is an extreme example but often inappropriate security tools are used
of tools are used well past their ‘best before/replace by’ date such as the hash function MD5
(see also the lecture on hash functions) which has been known to be vulnerable for a long
time but is only slowly being phased out. Using ‘home-made’ crypto solutions instead of
tried and proven standard algorithms would also fit in this category. (e.g. leave design of
crypto to the experts; obscurity of a design is not a good replacement their experience and
expertise.)

Choose your crypto well...
IT: Mafia Boss Using Crook Crypto Captured
Posted by Zonk on Tuesday April 18, @11:13AM
from the never-heard-of-pgp-and-email dept.

boggis writes "Discovery is running a story on Bernardo
Provenzano, the recently arrested 'boss of bosses' of the
Sicilian Mafia. He apparently wrote notes to his henchmen
using a modified form of the Caesar Cipher, which was
easily cracked by the police and resulted in further arrests
of collaborators. Discovery's cryptography expert describes
it as a code that 'will keep your kid sister out'."

Source: Slashdot.org / Discovery channel

Memorystick, computer & diskettes

Het is de zoveelste keer dat vertrouwelijke informatie op straat is
terechtgekomen. ... landmachtkapitein een memorystick met geheime
militaire informatie in een huurauto had laten liggen. Op het
geheugenkaartje stonden onder meer instructies voor militairen in
Afghanistan. ... een memorystick was kwijtgeraakt met daarop
vertrouwelijke informatie van de Militaire Inlichtingen- en
Veiligheidsdienst (MIVD).
... officier van justitie ... computer op straat, zonder de inhoud te wissen...
belandde het apparaat bij misdaadverslaggever Peter R. de Vries ...
medewerker van de veiligheidsdienst AIVD eind vorig jaar diskettes in
een leaseauto liggen met daarop vertrouwelijke informatie over Pim
Fortuyn.

Source: Elsevier website

Store your secrete data securely

(Dutch examples of loss of unencrypted data carriers with confidential information.)

yy

System usage Even a perfectly designed and implemented system (should one ever by created) is
of no use if it is not used correctly. USB data sticks that offer encryption of their content are
readily available and company policy may state that such sticks should be used. However,
if the user does not enable this feature this is all for naught.

7 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Users have different priorities; e.g. ease of use; and many not use security features or will
even try to work around them if they interfere with what they are trying to do.

Of course these are only examples and there are many more aspects of a system where a weak
link in the security chain may occur. Key points are that one needs to consider the system as a
whole and consider security from the start.

1.2.3 The How of Security

We have already seen some security tools (means) above and during the course we will try to add
key tools to this toolbox for the security engineer. Crytography is an important part of this toolbox.
However recall that security tools by them selfs do not make the system secure. A common claim
‘the data is secure because it is encrypted’ is by itself meaningless and may even indicate that the
security goals and attacker model have not been sufficiently considered. For instance encryption
offers no protection against inside attackers who have access to the key. A good security design is
needed which addressed to know what security tools need to be employed where and when. We
need to do Security Engineering. For the tools we will treat in the remainder of the course always
try to consider how they fit in a bigger design.

The How of Security
Techniques to address specific threats

Cryptography
Identity Management, Access control
Security Protocols, Firewalls, Virus scanners
Physical security, Tamper resistant devices
Intrusion detection, auditing

Identify risk & threats, combine defenses
into complete security architecture:

Security Engineering

Security trade-offs
No absolute security

There will always be vulnerabilities in the system
design / implementation / usage / etc.

May not be desirable; allow for the unforeseen
no access to `secure area’ ...

unless only exit during fire?

Need to make trade-offs
Conflicting requirements

easy to use – secure
Conflicting security requirements

availability – confidentiality
Conflicting goals of stakeholders

more usage information – privacy user

...truly secure system
is powered off...

1.2.3.1 Trade-offs

Recall this quote we saw earlier:

“The only truly secure system is one that is powered off, cast in a block of concrete and sealed
in a lead-lined room with armed guards”

E. Spafford

Such a system may be secure but not very useful. (Actually it may not be secure at all - Which
security attribute is clearly not satisfied? - without the security goals we cannot answer this ques-
tion...) There is often a clear trade-off between security and usability (why do I need to remember
that password...), performance (e.g. using encryption adds computation time) and costs (e.g. re-
placing pin cards and readers by smartcard enabled versions) but also between different security
attributes e.g. confidentiality and availability. Which trade-offs are worth while; e.g. how much
security do we gain for the performance we give up?

8 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Examples Security Trade-offs
Security - Performance:
Increase key length in a public key crypto system

Increases protection against brute-force attack
- En/Decryption require more computation

Security – Usability
Have a user enter their password for every access

Password does not have to be stored in memory
User away from machine

- Inconvenient for user
- Maybe less secure in the end;

eavesdropping,
enter password in wrong place,
legit user may try to circumvent

Examples Security Trade-offs (cont)
Security – Cost

Higher development time to achieve better security
Use of extra hardware, e.g. smartcard in credit/debit
card

Integrity – Privacy:
Gathering more information (e.g. logging)

may help prevent or detect misuse
decreases the privacy of the users

Access to a building:
Open building – privacy but low security
Check at entrance: Medium security but some privacy lost
Track users in the building: High security but no privacy

Etc..., etc...

1.2.3.2 Measuring and Selling security

Why does security often not get the attention it needs? For one; if it’s good you don’t see it. Would
you pay e50 more for say a television if it was more secure. (Does your answer depend on ‘how
much’ more secure?).

How secure is it?
Quantifying dependability:

Define tests, test coverage
If covers `common cases’ reasonable test dependability
not really suitable for security

Measuring security:
Attackers typically using unexpected behaviour
Is 1 bug better than 5 bugs ?
1 exploitable error better that 5 ?

Which goal (attribute) is more important
How to reflect trade-offs in score

“As much security as possible ?”
...truly secure system
is powered off...

Measuring security?

Security of system ~ Cost of breaking
Cost - Effort, Money, Expertise, ...
Violate security goal / Reach attacker goal
Hard to measure in general

It is also hard to quantify security. You can say that a ‘product is 2x faster’ and have every con-
sumer have some notion of why and how much better the product, even though even this state-
ment is usually much more complex that it seems. However, what does ‘this product is 2x more
secure’ mean? There are many discussions on which product is more secure e.g. comparisons be-
tween windows and linux, firefox and windows explorer, mac and pc, etc. Claims are supported
by quoting the number of bugs/vulnerabilities reported, the number security incidents, etc. But
how well do any of these really reflect the ‘security’ of a system. Thinking back to the earlier
discussion about what is ‘security of a system’ one can see that no single number could really
adequately capture this. Still, what quantification is possible? If we try to focus our attention on a
single aspect of security/single application area one may be able to give some numbers that make
sense (just remember that, the more general the statement the more less objective a score is likely
to be).

For cryptographic primitives one can look at the (computational) cost of breaking a system. This is
often expressed by the entropy that it offers in a given setting e.g. ‘this crypto system offers 80-bits
of security’ reflects that the amount of computation needed to break it is similar to brute-forcing
an 80bits key, i.e. trying 280 different possibilities. This is generalized to a measure for security
of systems by considering the cost (computational or otherwise) of breaking the system to be its
security. (e.g. it would take 2 years and a budget of 10 MEuro to break this system.)

For web applications several security metrics have been defined by checking for common security
issues and assigning a risk to each of them. E.g. the CCWAPSS Common criteria for web ap-

9 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

plication security scoring [3] computes a score based on a list of eleven criteria which have to be
checked (rating the web service on a scale of 1 to 3 for each item) and assigned a risk level based
on difficulty and impact of an attack.

CCWAPSS: Security Scoring

8.3/10

Criteria Checklist

(source: ccwapss 1.1 whitepaper)

Security Requirements
Security Requirement Engineering Methodology

structured approach to finding security requirements
integration into system design

Integral part requirements elicitation process
E.g. SecureUML

Consider `misuse’ cases (in addition to use cases)

KOAS, NFR, i*Tropos
Goal oriented (security goals as explicitly functionality)

Security Problem Frames
Problem patterns based (related to security goals)

1.2.3.3 Security Requirement Engineering

As already mentioned several times, and as will be repeated often again, to really evaluate the
security of a system you have to consider it as a whole, know the security goals and the potential
threats against these goals. To gather these we need to perform Security Requirement Engineering.
Throughout the design, implementation, deployment and use of a system we should consider
the requirements that the users will have of the system and how attackers will try to exploit the
system. Based on this we can come up with and/or evaluate a security design which combines
several security solutions to achieve the best possible trade-offs.

i*/Tropos concepts
Actor

Entity with intent: role, position, agent (human/software)

Goal (Soft goal)
Strategic interest of an actor

Task
course of action to satisfy a goal

Resource
Physical or informational entity (without intent/goal)

Social dependency (between two actors)
depends to reach goal, execute task, deliver resource
Agreement between two actors

Development Process

Identify stakeholders and their goals

For each actor & goal:
adopt it (this actor will achieve it; elaborate to tasks)
delegate it to an existing or new actor
decompose it into new subgoals

Finish when all goals have been adopted.

Here we shortly cover one example security requirement approach (See also e.g. [4]). Other ap-
proaches may work just as well, what is important is that the security requirements are considered
throughout in a structured and consistent way.

Identify actors and goals. The first step in gathering the requirements is determining the stake-
holders and their interests. The stakeholders are those parties with a legitimate interest in the
system that we are designing. Their interest and goals thus have to be considered (though not
necessarily completely reached - we may need to make trade-offs between the different goals of
the participants).

The stakeholders and their interests become the initial actors and goals in the requirements gath-
ering process. If an agent has the right capabilities, it may adopt a goal, i.e. take responsibility to
achieve it. If an agent does not adopt the goal it may be delegated to other agents (either existing
or new) or be split into new sub goals. Agents do not work in isolation; agents and their goals

10 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

may depend on/interact with each other. These dependencies should be identified and could
lead to new goals and/or agents. They also lead to potential vulnerabilities, e.g. when agents’
goals conflict.

So far the process matches a typical functional requirement engineering approach. To also deal
with security requirements we also need to consider attackers and possible attacks on the system.

Attacker Analysis
Any actors can be a potential attacker

Assumed guilty until proven innocent

Attacker inherits the
intention, capabilities, relations

 of legitimate actor

External attackers
Not necessarily linked to system actor

Requirements Elicitation

[Liu et al. 2003] Security and Privacy Requirements Analysis within a Social Setting.

Identify attackers, vulnerabilities and attacks Outsiders may try to attack our system and they
need to be considered along with their goals, however, also the risk of attacks by insiders need
to be accounted for. Each agent in the system could potentially become an attacker, using its
capabilities and place in the system to reach their goals at the expense of the goals of other agents.
Both type of attackers are modeled as agents in the system but with malicious intent as their goal.

Based on vulnerabilities and the malicious intent of attacker agents we identify potential attacks
and assign countermeasures to protect against such attacks. The countermeasures themselves
may lead to new actors/goals and/or open the possibility for new attacks which need to be con-
sidered. Refinement of the system continues until all goals have been assigned, dependencies
taking into account, and vulnerabilities addressed.

1.3 Conclusions and where to go from here

The goal after this lecture/chapter is that you will never look at the word ‘secure’ in the same way
again: Whenever you encounter ‘secure’ always think - what set of security requirements (which
security attributes for which resources) are really meant by ‘secure’ (what are the security policy
and model) and what type of attacker is considered (what is the attacker model).

This chapter provides a general introduction in the topic computer security and security engi-
neering. The notions introduced here will return in more detail in the chapters that follow. For
more general information on security see the Security Engineering [2] book by Andersson which
provides a nice overview of different topics in a very accessible way.

1.3.1 Literature

Suggested reading (check the course page [1] for the most up to date list of suggested reading
materials):

• Security Engineering Introduction [2, Ch 1].

• A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs [4].

• CCWASPSS white paper [3].

• A metric framework to drive application security improvement [6].

11 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

1.4 Exercises

1. Find a security related news article and analyze it (collect some background information
when needed).

• What is the security issue in this article ? Is it related to availability, confidentiality,
integrity, etc.

• For a security incident; what was the failure, why did it occur, how could it have been
prevented, how should it be solved

• For a solution/technology; what problem is solved, how can it be used, will it work

• For an opinion/analysis/...; do you agree, what are possible other/counter arguments

• For a more general article; what is the issue you have identified, did the article address
this issue? How well was the issue described, does the article get the key points correct,
Did it miss any issues.

• Is the article biased/one-sided? Does it consider the issue from the perspective of dif-
ferent stakeholders?

• Do you agree with the conclusion of the article?

2. An online music store allows its members to listen to music with embedded ads for free
and to download music without ads for a fee. Members can also recommend songs to other
members and get a free ringtone if at least five people listen to a song based on this recom-
mendation. Do the first steps in a basic ‘security requirements engineering’ for this scenario:
identify actors, their interests and interdependencies. Also find attackers and their goals.
(As we discuss security tools in later lectures the design can be extended with potential
countermeasures.)

12 Slides and notes Security course 2013 / Version 1.0

