
Technische Universiteit Eindhoven University of Technology

2 Cryptography

Cryptography is one of the main building blocks available to the security engineer. In this section
we describe the basics of cryptography, the design and building of ciphers, and cryptanalysis, the
analysis and breaking of ciphers, together referred to as cryptology.

2

Contents
 Cryptography goals
 Encryption principles
 Encryption quality
 Public key cryptography

Next week:
 Example algorithms

 DES, AES, AES
 Encrypting larger messages
 `Provably secure’ crypto

Cryptology:

Cryptography
The art of making

Cryptanalysis
The art of breaking

3

Security Goals and Cryptography

 Confidentiality
 Authenticity
 Data integrity
 Non-repudiation
 Privacy
 Availability

Encrypting data aims to protect its confidentiality. There are also cryptographic techniques such
as digital signatures which allow checking integrity. Authenticity and providing non-repudiation
can also be achieved using encryption algorithms. Several privacy enhancing techniques, e.g. Di-
rect Anonymous Attestation, use techniques similar to asymmetric cryptography, and indirectly,
through confidentiality, cryptography can contribute to privacy. However, privacy is typically not
a direct goal of cryptography; your data is under control of other entities which have control over
the data. Privacy requirements restrict what they may do with the data, not the ability to get to
the data. See also the lecture on Privacy and Anonymity (Chapter ??).
Clearly encryption has a negative impact on availability. Decryption aims to maintain availability
in the presence of encryption.

4

Greetings to all at Oxford. Many thanks for your
letter and for the summer examination package
all Entry forms and Fess Forms should be ready
for final dispatch to the Syndicate by Friday
20th or at the very latest, I’m told, by the 21st.
Admin has improved here, though there’s room
for improvement still; just give us all two or three
more years and we’ll really show you! Please
don’t let these wretched 16+ proposals destroy
your basic A and O pattern. Certainly this
sort of change, If implemented immediately
would bring chaos.

Example: What’s the message

5

Welcome back to Oxford. Thanks again, this
letter explains the winter examination method
and its related forms. Early submission does
guarantee full and early feedback but does not
influence the grading of the quality of the work
done. A full grade report will be available once
the deadline for submissions has passed. In it
the evaluation is explained. The evaluation is
final as the criteria for the work are now known.

Another Example:
What’s the message

The text above contains a hidden message - try to discover it. It may seem to be well hidden;
at least it is not directly obvious. However, once the method is known it will no longer work (it
relies on obscurity of the encryption method); once you know how to find the message in the first
example the second will be trivial. The final example belowwill likely also be quite easy to break.

13 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

6

A final greeting to our Oxford graduates. Though with a
slight delay, we hope this letter finds you well. The new
variation in the forms attached shows how our alumni
will continue to play a key role in our school and will
not be forgotten. Instead we hope that you continue to
work with us, and any contribution that you can bring,
either directly or indirectly, will be appreciated.

Final Example:
What’s the message

7

Algorithms + keys

Cipher (aka cryptosystem)
“Public” algorithm + Secret keys (Kerckhoffs’ principle)

encrypt decrypt
“attack” “sdwr$350” “gfd6#Q”

2.1 Symmetric Cryptography

Kerckhoff’s principle tells us that the security of an encryption technique should not rely on se-
crecy of the algorithm used. Instead, keeping the key used in the encryption secret should be
sufficient.
In the basic setup of a symmetric key cipher system there is an encryption and decryption algorithm
and a secret key that is used by both. If the same key is used in the encryption and decryption
then the original plain text should be recovered. Both the cipher text, i.e. the result of encrypting
the plain text and decryption of the cipher text with an incorrect key should make no sense to an
attacker.
The only difference between the legitimate user and the attacker is that the legitimate user knows
the key. To ensure that the attacker cannot simply guess the key should be chosen randomly.
In many symmetric key algorithms the key can be any bitstring of a given length and selecting
a random string of this length is sufficient to generate a good key. However, for some ciphers,
especially asymmetric ones, the keys have some structure and generating a good random key is
more complex; a cipher should then also come with a probabilistic key generation algorithm.
We can now formalize “makes no sense” as having no correlation to the plain text at all. In this
case, the security is unconditional; no matter the computational resources of an attacker, the at-
tacker cannot learn anything new about the plain text from the cipher text (or in other words - our
attacker model assumes no limits on the computational resources the attacker has available.)

Definition 1 (Unconditionally Secure) We say a (symmetric) cipher with encryption Enc is uncondi-
tionally or information theoretically secure if encryption with a random key gives a cipher text that is not
correlated to the plain text.
Formally, consider random variable k (the randomly selected key) we require that for any cipher text c and
potential plain texts p1, p2:

P(c = Enck(p1)) = P(c = Enck(p2))

i.e. if one does not know the key each plain text is equally likely to have been the one that was encrypted.

An alternative, equivalent, definition is that for any distribution over plain texts (the attacker’s
a-priori estimate of how likely a given plain text is) the attacker learns nothing new by obtaining
the cipher text; the conditional probability of plain texts given an encryption with a random key
is the same as in the original distribution over plain text.
To summarize; the term ‘unconditionally secure’ cipher refers to the security goal ‘confidential-
ity of the plain text’ with security policy ‘those who do not know the randomly generated key
may learn anything about the plain text’ and the attacker is one with unlimited computational
resources, knows (Kerckhoff’s principle) the cipher including the probability distribution of the

14 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

keys (i.e. knows the key generation algorithm) but does not know the actual key (outcomes of the
random choices in the key generation algorithm).

8

When is message `safe’?

 Suggestion 1: `cannot know the message’.
 Kill the king with a @#$%~!.

 Suggestion 2: `cannot know even a single bit’.
 99% chance “Kill the king”, 1% “Drink coffee”...

 ... lets find a definition...
 For ciphertext each plaintext equally likely

 Can this be done?

9

Yes(*)!: One time pad

 Vernam’s one time pad is information
theoretically secure

Note: random key equally long as message

plaintext bits

key bits

ciphertext bits

Why?

Bitwise
xor

Unconditional security imposes a very strong requirement on the cipher. Is it actually possible
to create a cipher which achieves this? Assuming the number of possible plain texts is finite (see
also Exercises) this is indeed possible and achieved by a surprisingly simple system; the one-time
pad.
Though simple and easy to understand this system is rather impractical in use. It uses a bitwise
exclusive or (XOR,⊕) with a keywhich is as long as the plain text andwhich can only be used for a
single plain text (see item (c) of Exercise 6). (Decryption is done by repeating this same operation.)
For communication this means that we first need to safely share a key which is equally long as
the message that we want to send. But if we have a secure way of sending a key then why not
use this for the message directly? Thus the use is limited to cases we can share a key in a way we
cannot share the message itself - e.g. meet to share a key in advance, and later use this to enable
communication over in insecure channel or share keys over a channel onwhich eavesdropping can
be detected (as in quantum key distribution - see the course ‘Physical aspects of digital security’
(2IC35) for more on security meets quantum theory).
Similarly if we use the one time pad for securely storing (rather than sending) some datawewould
need to securely store a key of equal length. Here the only remaining benefit is that an attacker
would have to obtain both the key and encrypted data, whichwe could try tomake difficult e.g. by
storing them in different places. (This is a form of secret sharing, see Section ?? for more on this.)

So the one time pad is secure1 but needs impractically long keys. Could we not think of a more
efficient system which achieves the same level of security? Unfortunately such a system cannot
exist (see Exercises). Thus people have been trying to create practical encryption systems which
are ‘good enough’.

SubstitutionCiphers TheCaesar cipher, which as its name suggestswas already used in Roman
times, is a simple substitution cipher. Given a plain text we simply shift each letter by a fixed
number of places (e.g. A becomes D, B becomes E etc.) to obtain the cipher text. To decrypt we
shift back by the same number of places.

plain text letters H E L L O . . .
key letter (repeats) C C C C C . . .
cipher text letters K H O O R . . .

Figure 2.1: Caesar cipher with key = C (+3)

It is clear that this cipher does not offer much security; there are only 26 possible key values (of
which one is not really useful; consider which and why) so we can only hope for log2 26 (i.e. less

1What did that mean again in this setting ...

15 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

than 5) bits of security at best. However, this cipher can be broken even more easily. The patterns
in the text remain unaltered (e.g. in figure 2.1 the double L becomes doubleO) allowing knowledge
of text patterns to be used to easily find the key. E.g. by looking at the frequency of the letters one
can conclude which letter is most likely encryption of the letter E which also directly gives the key
used.
The Caesar cipher uses a very linear operation to encode letters; a simple rotation in which each
letter moves by the same amount. If instead as substitution we would use an arbitrary permu-
tation of the letters, where e.g. A could be encoded as E but B as Z etc., the number of possible
keys grows to 26!which corresponds to 88 bits. Yet breaking such a cipher can still be done, even
by hand, by looking at patterns in the text rather than trying all possible keys (there is actually a
type of puzzle based on this idea; in a filled in crossword each letter is replaced by a number and
the goal is to find the corresponding mapping between numbers and letters.)

12

Some History: the Caesar cipher
 Monoalphabetic substitution
 Replace letter by letter 3 places further

 Example:

 Letter frequency undisturbed
 Nr of keys: 26 (25)

Plaintext A B C D E F G H …
Ciphertext D E F G H I J K …

A=1, B=2, C=3, …
Encrypt: C = P+3
Decrypt: P = C-3

“attackatdawn” “dwwdfndwgdzq”

14

Vigenere cipher
 Polyalphabetic substitution
 Key is keyword
 Encrypt: Add keyword (letter by letter)
Modulo 26 with A=0, B=1, etc.

 Decrypt: Subtract keyword
 Example

wearediscoveredsaveyourself
deceptivedeceptivedeceptive
ZICVTWQNGRZGVTWAVZHCQYGLMGJ+

Thus substitution of a single letter at a time is insufficient. What if we increase the block size,
i.e. always encrypt a number of letters at the same time. If we apply this principle to the Caesar
cipher and thus use a word instead of a letter as the key we obtain the Vigenere cipher. (The
Caesar cipher is a Vigenere cipher with a blocksize 1).

plain text letters H E L L O . . .
key word (repeats) B Y E B Y . . .
cipher text letters J D Q N N . . .

Figure 2.2: Vigenere cipher with key=BYE

With a block size of n letters the size of the key space becomes 26n . However, again an attacker
can mount a more effective attack than just trying all possible keys; first the attacker guesses the
length of the key n. This guess can be verified e.g. by checking that the frequencies of each n-th
letter show the same pattern as the frequencies normally occurring in a text or simply by the fact
that the next step succeeds. Finding the key then an easy exercise of attacking a Ceasar cipher n
times.
So simply increasing the block size does not by itself solve the problem. The high amount of
linearity in the encoding allows recognition of patterns. As with single letters we could try us-
ing substitutions that are arbitrary permutation of words of length n, yielding 26n

! possible keys
(which for n = 2 already corresponds to more that 5,000 bits). But how would one store such a
key? Typically a substitution would be stored as a table which, for a single letter would already
be 26 by 26 in size, and for words of size n would give an 26n by 26n table, which quickly be-
comes unrealistic. A second problem that remains is patterns which are bigger that the block size
(e.g. repeating words) may still allow analysis of the text.

16 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

15

Cryptanalysis – plaintext structure

 (English) Text
Distribution of characters known
Distribution of bi-graphs also known:

 Data
Format known

E: 12%
T: 9 %

A,I,N,O,R: 8%

<account>87539</account
>

<amount>1234</amount>

TH: 3.2%
HE: 3.1 %
ER: 2.1%

16

Transposition cipher
 Change order of letters in the message

M e m a t r h t g p r y

e t e f e t e o a a t

“mematrhtgpryetefeteoaat”

“meet me after the toga party”

Transposition Ciphers Instead of changing the letters in a text we could also try to hide the text
meaning by changing the order of the letters, i.e. transposing the text; applying a permutation to
the text. This in itself, however, is easy to detect: the frequency of letters does not change so it
may be easy to recognize. Also, if a fixed permutation is used there is no key so once the method
is known the security is lost and if a random permutation is used we have the problem of how to
effectively store what permutation we are using.
Still by mixing substitutions (confusion) with permutations (diffusion) one can try to simulate an
encryption which is a large random permutation of all plain text. Confusion is done by mixing
with a key and non-linear s-boxes which are tables describing substitutions. The confusion is
done on relatively small sub-blocks so the s-boxes remain sufficiently small. The diffusion is then
used to mix and combine the different sub-blocks. This process is then repeated several times
to ensure the end result is as close as possible to completely random (or at least: each output
bit depends on each input bit and in a non-linear manner). This is the basic idea of modern
substitution-permutation ciphers. Below we will see two examples of this in some more detail;
the Data Encryption Standard and its successor, the Advanced Encryption Standard. First we will
address the basics of asymmetric or public key cryptography.

17

Modern Block Cipher
 Principle: Combine

 Confusion (substitution)
 Diffusion (transposition)

 Design: Iterate a round
function

 Two common types:
 Feistel network (e.g. DES)
 Substitution-permutation

network (e.g. AES)

decryptencrypt

n bit plaintext block

n bit ciphertext block

More on this next week – Now first: asymmetric (public key) cryptography
18

Many symmetric keys needed

Alice

Bob Carol Zeke

To send to Alice, everyone
needs a different key

To receive, Alice needs all
these keys

...

2.2 Public Key Cryptography

Suppose that Alice wants to be able to securely communicate with a lot of different people with-
out any of them being able to eavesdrop on communications with the others. She could use the
symmetric cryptography techniqueswe discussed above to achieve this. However, Alice will need
to share a different key with each of these people and will have to store all of these keys securely.2

2You are of course thinking: what do we mean by this here?

17 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

A solution to this problem is the use of asymmetric cryptography. An asymmetric system uses
different keys to encrypt and decrypt data. Using such a system Alice could have a public key
that she could share with everyone and that other can use to encrypt messages meant for Alice
so only she can decrypt it with her private key. (Hence asymmetric cryptography is also referred
to as public key cryptography.) If Alice wants to send a message herself, e.g. to Bob, she uses his
public key to encrypt it.

19

Asymmetric (public) key

Alice

Bob Carol Zeke

To send to Alice, everyone
uses her public key

To receive, Alice needs a
single private key

20

Asymmetric keys

Encrypt with
Public Key

Decrypt with
Private Key

One can compare a public key system to a padlock; anyone who has the padlock (public key)
can lock it (encrypt a message) but only the one with the (private) key can unlock (decrypt) it. A
symmetric system on the other hand is like a lockbox where you need the (same) key both to put
things in and take things out.
So how does this help; Alice still needs a different (public) key of everyone she wants to send
messages to in addition to her private key? The advantage is that while in a symmetric system
she has to keep all keys confidential with the public key system this is only needed for her own
private key. (In both systems we will need to protect the integrity of all keys.)
For the public key approach above to work we need to satisfy the following:

• It should not be possible to derive information about encrypted messages or the secret key
from the public key.

• Alice needs to be sure the ‘public key of Bob’ really belongs to Bob.

The need for the first property is quite obvious but less obvious is how we can achieve this; not
only do we have to keep information secret but we have to keep it secret from somebody who
has ‘half of the answer’ (the public key). The second requirement is related to key management;
though Alice will not need to keep the public key of Bob secret, she does need to make sure it is
correct and not the key of say Mallory.

21

Authenticity - Symmetric Authenticity - ASymmetric

Digital signature: reverse role encryption – decryption
Alice can Sign, All can check: is a message from Alice

18 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

The discussion so far focusses on achieving confidentiality of messages. Lets, for a moment, con-
sider the other security attributes that we may want to achieve. Suppose we wish to achieve
authenticity (and with it integrity) rather than confidentiality. With a symmetric key system Al-
ice knows that if she decrypts a message and it makes sense, then it must have been created by
Bob (or by herself); no one else has the key so no one can make cipher texts that decrypt to mean-
ingful plain texts. With public key cryptography we can also achieve authenticity but we have
to ‘turn’ the public key cryptography schema around; Alice signs a message with her private key
and everybody is able to check this digital signature using her public key. Often this ‘turning’ can
be achieve by simply using decryption for signing and encryption for checking a signature.
Note that we could also use digital signatures to protect the integrity of public keys. For example,
if Alice signs ‘Bobs key is 2ef8d83441e...’ and stores this she can then tell if someone has tampered
with the stored keys as the signature will no longer be correct. Changing both the stored key and
the signature is not an option for an attacker as only Alice can make valid signatures. This is an
example of a certificate which we will treat in more detail in a later lecture (see Chapter ??). Here
we first give some idea of the mathematics that make public key schemas possible by looking at
the Diffie Hellman key exchange protocol.

Obtain public key
 Authenticity

Public keys
 Tampering

Private keys
 Confidentiality

Don’t know where
 Check key status

Establish shared key
 Confidentiality

Many keys
 Confidentiality
 Tampering

Bilateral

Key
Asymmetric Symmetric

Distribution

Storage

Revocation

Diffie Hellman key exchange (1976)

Basis: Discrete log is hard

pab i mod

i

a, b,

pax mod

prkey x mod

r

r

random x random y

pa y mod

prkey y mod

public:
prime p
gen. a (for large numbers – e.g. 1024 bits)

Diffie-Hellman Key Exchange Consider the following setup: Alice and Bob want to create a
shared key, e.g. to be able to use a symmetric cipher, but are worried that someone may overhear
their communication. Diffie-HellmanKeyExchange could be used to solve this. In this system two
public parameters are set: a large prime number p and a generator a < p. (For the multiplicative
group modulo p. Recall: a is a generator means that any element of the group (1,. . . ,p− 1) can be
expressed as a power of a) Alice and Bob both generate a random number, x and y respectively,
raise a to the power of this random number and send this to the other. The number r they receive
they again raise to the power of their random number and the result is the shared secret key. Alice
and Bob share the same key as Alice uses r x

b mod p = (ay mod p)x mod p = ayx mod p and Bob
uses r y

a mod p = (ax mod p)y mod p = axy mod p.
An eavesdropper could obtain ra and rb, however to make the key e.g. from ra one would need
y. The attacker could try to obtain y from rb because rb = ay mod p in which only y is unknown.
However, this is an instance of solving a discrete logarithm problem in a finite group for which no
efficient algorithms are known. Thus if we use a large prime number p an eavesdropper is highly
unlikely to obtain the shared secret key.
Note that the attacker model is very important for the security of this scheme. For example, the
scheme is not secure against a man in the middle attack. In the man in the middle attacker model
the attacker is able to not only listen to messages but actually intercept and change them. If Eve
can alter messages sent by Alice and Bob she could replace ax and ay by ax ′ and ay′ after which
both Alice and Bob share keys with Eve while thinking they share a key with each other.

19 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

26

DH - Soundness and Security

 Alice key equals

 Bobs key equals

 Eavesdropper sees

 Vulnerable to man-in-
the-middle attack

 pappapr xyxyx modmodmodmod

 pappapr xyyxy modmodmodmod

pax mod

pa y mod

A E B
xa 'xa
'ya ya

28

binary

Encrypting Larger messages
 Seen methods to encrypt block
 Split into blocks (padding to fill last block)
 Treat blocks separately?

“attack at dawn”

97 116 116 97 99 107 32 97 116 32 ….

ascii

01100011 01101011 00100000 01100001
32 bits block

Block representation of text

2.3 Block modes: Encrypting more than one block

Block ciphers take a fixed size (64 bits, 128 and 256 bits are common sizes) block to encrypt. Asym-
metric cryptography typically takes an element of a group of size n, thus encoding at most log2(n)
bits (e.g. 256, 512, 1.024 and 2.048 are common sizes for n in bits). Thus thoughdifferent algorithms
and settings for these algorithms lead to different size blocks that we can encode, to encode large
messages, we will need to split the message into multiple blocks.

32

Encrypting larger messages

 Operation modes
Electronic codebook (ECB)

Cipher Block Chaining (CBC)
Cipher Feedback (CFB)
Output Feedback (OFB)

29

ECB mode

 Same plaintext block maps to same ciphertext
block
 Reordering, replacing possible

 No error propagation
 Bit changes only
 Bit deletions/omissions are a problem

encrypt

block

block

encrypt

block

block

Wecandivide ourmessage up into blocks of the correct size and simply treat each block separately.
This approach, called Electronic Code Book (ECB)mode, has several drawbacks. For example; the
same block will encrypt to the same cipher text every time, thus patterns in the original text will
still be visible in the encrypted version of the text. (This is the same problem as for the Caesar
cipher but now with respect to whole blocks instead of letters).

30

Example: Mickey Mouse

 Original picture
31

Example: Mickey Mouse

 Encrypted in ECB mode

20 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

The effect is evident when encrypting an image with a symmetric cipher in ECBmode. If we sim-
ply treat the encrypted data as an image it is garbled but the original image can still be recognized.
A clear case of ‘Micky Mouse encryption’ one could say.

33

CBC mode

 Same plaintext block maps to different
ciphertext block
 Reordering, replacing not possible

 Depending on previous block

 Limited error propagation
 Affects only current and next block

encrypt

block

block

IV

encrypt

block

block

35

Example: Mickey Mouse

 Encrypted in CBC mode

Instead of treating blocks separately, one could combine a block to be encryptedwith the previous
blocks (and/or their encryption) in some way. Then the encryption of the block becomes depen-
dent on the previous block(s) and any structure in the plain text is hidden. One way to do this is
by using Cipher Block Chaining (CBC) mode. In this mode the first XORs the previous encrypted
block with the plain text before encrypting it. For the first block, where no previous encrypted
block is available, an ‘initialization vector’ is used. With CBC the data that is encrypted is basically
random, ensuring no structure remains that could be recognized in the cipher text blocks. If we
encrypt the same picture as before with CBC mode no disconcernable pattern remains.

36

CFB mode

 Self-synchronizing

encrypt

IV

Plaintext stream Ciphertext stream

Stream Generator

37

Stream Ciphers and OFB mode

encrypt

IV

Plaintext stream Ciphertext stream

Pseudo Random Key stream

Two othermodes are Cipher Feedback (CFB) andOutput Feedback (OFB)mode. Output feedback
mode turns a block cipher into a stream cipher. In a stream cipher a pseudo random stream of key
bits is generated from the shared symmetric key and this key stream is XORed with the plain text
to obtain the cipher text. Note the similaritywith the one-time pad; if the key stream is ‘sufficiently
random’ then so is the cipher text. Also, like with the one-time pad, the same key(stream) should
not be reused. With OFB mode, an initialization vector is encrypted to give the first block of key
bits which then also replaces the initialization vector and is re-encrypted to form the next block
of key bits, etc. (Using a different initialization vector enables one to generate multiple streams
from the same key in OFBmode.) CFB mode is a slight variation of CBCwhich uses the structure
resembling a stream cipher. In CBC an initialization vector is encrypted to get the first block of
randombits and the resulting cipher text is then re-encrypted, thus re-seeding the pseudo random
number stream, but here with data which also depends on the plain text.

21 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

2.4 Example Algorithms

To get a better idea of the inner workings of algorithms we now look at some common algorithms
in somewhat more detail.

2.4.1 Data Encryption Standard (DES)

43

DES
 Data Encryption Standard

 published by NIST as FIPS PUB 46 in 1977
 Based on Lucifer by IBM
 NSA changed the design

 Fear of weaknesses

 Used extensively by banks
 E.g. ATM

 With whitening in Win2K encrypted FS

 Becoming less common (move towards AES)
44

DES properties
 Block size 64 bit
 Key size 64 bit

 56 bit real key data
 Remaining 8 bits are parity bits

 16 rounds Feistel network

 Complement property:
 E (k,xc) = E(kc,x)c

The Data Encryption Standard (DES) was adopted by the USNational Bureau of Standards (NBS),
now named National Institute of Standards and Technology (NIST), in 1976. The key used by
DES is effectively 56 bits long. (It specifies 64 bit keys but 8 of these are parity bits.) DES uses a
16 rounds Feistel network structure. In this structure a round consists of splitting input into two
parts, applying a function F to the right hand side and XOR-ing the result with the left hand side.
This gives the new left hand side. The new right hand side is the old left hand side. A simple
key schedule determines which of the 56 bits of the key form the 48 bits of the round key for each
round. The input (Ri) is extended (by repeating some bits) to 48 bits and the result XOR-ed with
the round key. The eight different DES S-boxes, each taking 6-bits of input and producing 4 bits
of output are then applied yielding 32 bits of output. The final step in computing F is permuting
these 32 bits.

42

One Feistel round
Li Ri

Li+1 Ri+1

Round
Function

Fi

45

Ki

One Feistel round

Li Ri

Li+1 Ri+1

48
 b

it
“r

ou
nd

 k
ey

”
(s

el
ec

te
d

fro
m

 th
e

56
 k

ey
 b

its
)

P

S
S
S
S
S
S
S
S

F

E

Exclusive OR
P Permutation
E Expansion

64 bit block split into 2x32 bits

One of the advantages of the Feistel network structure is that the Decryption is very similar to
the Encrypion: undoing a single round is exactly the same just with left and right parts swapped.
(Check this for yourself; apply a round with key Ki and input Ri+1, L i+1 to see it gives as output
Ri , L i .) Note that, in particular, the function F does not have to be invertible. The DES S-boxes
for one are clearly not invertible as they have less bits of output than input.
Fear that the influence of NSA on the design introduced specific weaknesses that they could ex-
ploit was later countered by the relatively good resistance of the cipher to ‘differential cryptanal-
ysis’, a techniques published in the late 1980s but apparently already known to the NSA and the
IBM designers at the time DES was made.

22 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

46

DES Round function (F)

expansion

32

48

6 to 4
S-box

Round key Ki
48

6 to 4
S-box

6 to 4
S-box

6 to 4
S-box

6 to 4
S-box

6 to 4
S-box

6 to 4
S-box

6 to 4
S-box

32

permutation

47

Key-schedule

Ci-1 (28 bit) Di-1 (28 bit)

Ci (28 bit) Di (28 bit)

shift by 1 or 2
(depends on i)

P
C

2

Ki
48
bits

Permuted
choice

A main issue with DES is its limited key size. While, when initially published it was considered
that a machine that would break the cipher in a reasonable amount of time would be unrealisti-
cally expensive, already in 1977 a theoretical 20M dollar machine which could break keys in a day
was described [?]. In 1998 the Electronic Frontier Foundation (EFF) actually built Deep Crack for
less than $250,000 which can crack a key in a few days [?]. Currently ‘brute-force’ techniques for
cryptanalysis not only benefit from individually fastermachines but also frommassive parallelism
such as distributed computing and the use of graphic cards.

48

DES: discussion

 Extensively studied
No severe weaknesses found

 However, 56 bit key too short
3DES
AES as new standard

49

3DES

DES
encrypt

DES
encrypt

DES
decrypt

K1

K3

K2 =
(if K1=K2)

DES
encrypt

K3

Why
useful?

(ANSI X9.17, ISO 8732 standard)

In short DES cannot be considered secure3 anymore. As a solution to the short key triple DES
was introduced. As the name suggests triple DES uses three DES operations with a set of three
56 bit keys; two DES encryptions with a DES decryption in between. By choosing the first two
keys equal the decryption cancels out the first encryption and the end result is the same as doing
a single DES encryption with the third key. In this waywe get backward compatibility with single
DES; triple DES encryption hardware can also be used to do DES encryptions.
By choosing all three keys different we get an encryption scheme with a 168 bit key. It is also
possible to take the first key and second key different but the third key the same as the first key.
This gives an encryption scheme with a 112 bit key. Of course the key length along does not tell
use howmuch security a cipher really offers. Estimates of security offered against the best known
attacks are 112 bits for the first and 80 bits for the second scheme. (The detailed cryptanalysis of
this method are beyond the scope of this course.)

3(remember to consider “what does secure mean in this context...”)

23 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

2.4.2 Advanced Encryption Standard (AES)

A new standard was introduced in 2001: the Advanced Encryption Standard (AES) based on the
Rijndael cipher. This cipherwas chosen from amongst several competing encryption schemes (the
‘AES candidates’). AES uses a 128, 192 or 256 bit key to encrypt 128bit blocks. Here we will focus
on the 128 bits version of the algorithm.
The input to AES is ordered into a 4 x 4 matrix of bytes and bytes are seen as elements of finite
field GF(28). The following four basic operations are used in AES:

AddRoundKey which XORs the state with the round key. The round key is also represented by
a 4x4 byte matrix and XOR-ed with the state. The round key is derived from the main key
according to a key schedule that we will not treat here.

SubBytes which applies and S-box substitution on each byte of the state. The S-box that is used
is given below (in hexadecimal format) Note that the unlike the DES S-box the AES S-box
is invertible. Also, the AES S-box can be expressed as combination of several functions,
allowing it to be computed rather than stored.

| 0 1 2 3 4 5 6 7 8 9 a b c d e f
---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

ShiftRows which rotates each row a number of steps. Row n is rotated n − 1 places to the left,
i.e. the first row is not changed, the second row is rotated 1 place to the left etc. As an effect,
any column after the shift depends on every column before the shift.

MixColumn which combines the four bytes in each column to a new column bymultiplyingwith
the following matrix:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

Within GF(28) addition andmultiplicationwork as follows: Addition is XOR.Multiplication
by 2 is a shift 1-bit to the left. If the most significant bit is 1 this results in a result larger than
8 bits so the modulus operation in GF(28) is applied which corresponds to doing an XOR
with 1B (hexadecimal). (Note that the result fits in 8 bits again.) Mixcolumns can be inverted
by multiplying with a different matrix.

The basic function are combined into ten rounds as follows: In the first round a single AddRound-
Key is performed. Rounds two to nine perform the sequence SubBytes, ShiftRows, MixColumns,
AddRoundKey and the final round leaves out MixColums, thus performing SubBytes, ShiftRows,
AddRoundKey.
Each AES operation is invertable. Decryption simply inverts each encryption step in turn.

24 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

2.4.3 RSA

50

RSA

 By Rivest, Shamir and Adleman in 1978
 First “public” public key system
 Most popular
 Patent expired September 2000
 Large keys (1024 bits or more)

51

RSA preliminaries

 Euler Totient Function φ
 φ(n) = # { i | i < n, i relatively prime with n }
 φ(p * q) = (p - 1) (q - 1) for p, q prime
 aφ(n) mod n = 1
 If a,n relatively prime
For n=p*q also without a,n relatively prime

 Inverse modulo n `easy’ to find.

In 1978 Rivest, Shamir and Adleman were the first to published a public key system. Their RSA
system works as follows:

52

RSA Key generation

 Pick two large primes p,q and set n = p * q
p =/= q

 Pick e,d such that
ed = 1 mod φ(n)
 i.e. ed = 1 mod (p-1)(q-1)

 Destroy p,q
 Public key: (e, n)
 Private key: (d, n)

56

RSA Key generation Example

 Choose p,q: p=7 and q=17
 Gives n=119 and φ(n) = 6 * 16 = 96

 Pick e relatively prime with 96, e.g. e=5
 Compute d with ed = 1 mod 96.

 Result: d=77
 Verify: 77 * 5 = 385 = 4*96 + 1

 Public key: (5,96) Private key (77,96)

Setup and key generation: Randomly choose two large primes p, q and compute modulus n = p ∗q.
Pick and e and d such that ed = 1 mod φ(n). (knowing p and q one can compute d for a given
e e.g. by using the extended Euclidean algorithm). The public key is (e, n) and the private key
(d, n). I.e. e and modulus n are made public and keep d is kept secret.
Encryption A plain text can be any number less than n. To encrypt a plain text P raise it to the
power e (modulo n), c = Pe mod n.
Decryption To decrypt a cipher text C raise it to the power d (modulo n), P = Cd mod n.

53

RSA Encryption, Decryption
 Encrypt P: C = Pe mod n
 Decrypt C: P = Cd mod n

 Why it works:

Public key: (e, n)
Private key: (d, n)

Cd mod n = (Pe mod n)d mod n
= Ped mod n

[ed = 1 mod φ(n)] = P x Pφ(n)*k mod n
[Pφ(n) mod n = 1] = P

57

RSA Encrypt/Decrypt Example

 Public key: (5,96)
 Encrypting P=19:

 195 = 2476099 = 20807 * 119 + 66
 Ciphertext is 66

 Private key (77,96)
 Decrypting 66

 6677 = 19 mod 96

The way of choosing e and d guarantees that aed
= a mod n for any a (see Exercise ??). Thus

25 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

decryption works because Cd
= Ped mod n = P mod n. The public information (e and n) is not

sufficient to find d, p, q or φ(n) and this is essential as knowing any of these would allow (finding
d and) decrypting messages.

60

RSA: choices & requirements

 e = 3, e = 7 or e = 65537 (= 216 +1)
 Salt append random bits (e.g. 64) to plaintext
Otherwise attacks exist to find private key and
 encryption small m less than n; easily recovered

 All users must pick distinct modulus n
 Any e,d with ed = 1 mod φ(n) allows factoring n
 Easy to compute any d’ from e’

61

RSA: choices & requirements (2)

 d roughly the same size as n
Otherwise it can be found efficiently from e and n

 factoring n must be hard
p,q sufficiently big
p,q roughly the same size
still p-q sufficiently large

The large prime numbers p and q are randomly chosen; an attacker should not be able to guess
them. They should be sufficiently large as should their difference (|p − q|) to ensure factoring is
n is actually difficult. All users should have their own, distinct modulus n. The public key e is
typically chosen to be convenient value such as 3, 7 or 216

+1 as this allows for efficient encryption
(and as we will give away this value anyway there is no need for it to be random). The privacy
key d on the other hand should be big (close is size to n) to prevent it being guessed or derived
efficiently from e and n.

58

RSA: Setup and Security

 Given p,q, it is easy to find e,d such that

 Without p,q
computing φ(n) is hard
 finding d given e as hard as finding p,q
 finding private key as hard as factoring

 11mod1mod1 qpned

59

RSA Special properties
 E(m*m’)=E(m)*E(m’) mod n
Add redundancy to sign messages

 Blinding with a random r

Hide message from signer
 Application: Anonymous money

 RSA can be used to sign or encrypt
signing = decrypting
use separate key pairs

nrmnmrmrE ddee modmod)()(

As we are working modulo n there are up to n possible values. Thus if we work in block as with
symmetric ciphers, the maximum block size with RSA is log2(n). There are several ways to repre-
sent blocks as numbers in 0, . . . , n. Typically some form of padding is used, for example by form-
ing the most significant bits from random salt creating a randomized encryption. The padding
ensures that the numbers are not too small which would give several problems: if plain text P
is a small number then Pe may be smaller than n (recall that e may be a small) and thus we are
doing normal integer arithmetic where taking an eth-root is easy, instead of modular calculations
where such an operation is hard.
Note that for RSA encrypting and decrypting are the same except for the use of a different key and,
as de = ed = 1 mod φ(n) we can reverse the role of the encryption and decryption key; i.e. thus
first decrypting a message and then encrypting it also results in the same message. With this we
can also use RSA to perform signing; by decrypting the message we want to sign we generate a
signature than anyone can check with the public key and that only the holder of the secret key can
create. (We typically sign hashes of message rather than messages themselves, see Chapter ??.)
The structure of RSA encryption and decryption also gives several other properties, for example

26 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

that the encryption of the product of two messages is the product of the encryptions (modulo n),
E(m ∗ m′, (e, n)) = E(m, (e, n)) ∗ E(m′, (e, n))modn. Combined with the observation above this
allows one to create blind signatures, i.e. to have Alice sign Bob’s message without Alice learning
the message: Bob generates a randommask r , encrypt this mask with Alice’s public key (e, n) and
multiplies the message (modulo n) with the encrypted mask. The result, m ∗ re, is given to Alice
to sign (decrypt). This text does not reveal anything about m to Alice and by signing it she creates
the signature of m masked (i.e. multiplied) with r .

D(m ∗ re, (d, n)) = (m ∗ re)d mod n = md
∗ r mod n

Bob can now remove the mask by dividing by r .

2.5 Computational Security
RSA requires a significant amount of computation to encrypt and especially decrypt. Also, the
mathematical structure used for RSA implies that keys have to be big to prevent attackers from
e.g. factoring themodulus n. So how large a key is needed andhowdoes the performance compare
to e.g. a block cipher?

62

RSA vs DES performance

 RSA ~ 1000 slower in hardware
 RSA ~ 100 time slower in software
 Gets worse with longer keys

 How long a key is needed?
Estimate effort needed by attacker

63

Hypotheses

 56 bit DES key was strong enough in 1982
 Breaking it requires 500,000 Mips Years

 1 Mips Year = 20 hours on 450Mhz Pentium II

 Computing per $ doubles every 18 months
 Variant of Moore’s law
 Every 10 years, 100x computing power per $

 Budget of organisations doubles every 10 years
 Algorithmic improvement

 Computation required halves every 18 months

Public key systems are typically significantly slower than asymmetric systems and often require
larger keys for the same level of security. When considering how large a key should be one should
not only consider the capabilities of an attacker now. If the encrypted data is to stay secret for three
decades then we need to plan ahead and consider the computational power of an attacker may
have in 30 years.

64

Overview
Year DES RSA DSA EC Mips

years

1982 56 417 102 … 5x105

2002 72 1028 127 139 2x1010

2012 80 1464 141 165 4x1012

2022 87 1995 154 193 8x1014

Definitions of security

 Information theoretical (aka unconditional)
 Possible in public key setting ?
 Public key known: Anyone can encrypt.
 Try all possible private keys

 (Recall why is this not possible for one time pad...)

 Computational
Breaking cipher is mathematically hard problem

So if we use a large key is an algorithm such as RSA secure? What does this exactly mean;
when is RSA broken. In the symmetric setting we can achieve ‘unconditional security’ (or: in-
formation theoretically security) with the one-time pad. Even an attacker with unlimited com-
putational power could not break this cipher because there was no way of validating whether a

27 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

guessed/found key is correct. For RSAunconditional security is clearly not achievable; an attacker
with unlimited computational power could theoretically factor modulus n for any size key which
is enough to compute the private key from the public key. In the public key setting in general
the attacker can always encrypt its ownmessages and thus check whether these decrypt correctly,
allowing elimination of incorrect keys. Thus we cannot expect any unconditionally secure cipher
in this setting.
Luckily no attacker has unlimited resources. In the argumentation abovewe argued that breaking
the systemwould require solving a problem thatwould be too hard. Thuswe aim for computational
security: breaking the cipher should not be computationally feasible for the attacker. But what
exactly is hard and how canwe be sure that the attacker cannot think up away to break the system
without solving this hard problem? To answer the first part of this question we recall some basic
complexity theory.

What is a hard problem (1)

 Algorithm for short or long instances
Running time depends on length of instance
E.g.: Sorting 10 numbers takes less time than

sorting 10.000 numbers

 For some problems minimum number of
steps for any algorithm known
Sorting n numbers takes at least n log n steps
Very hard to prove

68

What is a hard problem (2)
 `Hard’ problem: requires at least an

exponential number of steps to solve
 I.e. nr of steps more than any polynomial.
 in size of problem (= security parameter)

 No hard problems in NP known

 Known solutions take exponential time:
 Factoring a product of two primes
 Computing the discrete logarithm

Definition 2 Consider a problem which can have instances of different sizes. We say such a problem is
in complexity class P (polynomial time) if there exists a (deterministic) algorithm which solves the problem
and the time it takes grows at most polynomial in the size of the problem.
We say a problem is in complexity class N P if there exists a non-deterministic algorithm which solves the
problem in polynomial time. (Equivalently we could say that there exists an algorithm that can check a
given solution to the problem in at most polynomial time.)

69

P vs NP
 P
Solving takes polynomial time

 NP
Solution can be checked in polynomial time

 But finding solution may take exponential time

 NP contains P

 It is unknown whether P = NP
70

Trapdoor function: F

F F(x)x

F-1

F(x)x F-1

F(x)x

Example:
Multiply 2 primes
Factoring hard
...unless 1 known

We say that a problem is ‘hard’ when it is not in P . Having a hard problem, however, is not
enough to construct a public key cryptography system; we need a problem that is hard for an
attacker but easy for the holder of the private key. We need a trapdoor function, i.e. a function that
is:
• easy to compute in one direction (to be able to encrypt)
• hard to compute the inverse without the secret (an attacker should not be able to decrypt)
• easy to compute the inverse with the secret (the secret key holder should be able to decrypt)

28 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

A first natural question to ask is: do such functions actually exist? The perhaps surprising answer
is that this is not known. A fundamental unanswered question of complexity theory is whether
P is equal to N P . As computing the inverse of a trapdoor function must be in N P ; a non-
deterministic algorithm could first ‘guess’ the secret and then perform the same computations
as the key holder. Yet it cannot be in P as it must be a hard problem. Thus if one finds such a
trapdoor function one has also shown that P 6= N P .
Still, though no-one has proven the existence of trapdoor functions, many candidates exist which
have been studied extensively and for which no efficient algorithm to compute the inverse are
known. One example is the factoring the product of two primes; creating the product from the
primes is easy while factoring a (large) number is difficult. However, if you know one of the two
primes finding the other is easy again.

Showing Computational security? We’ve just seen that there are no provably hard trapdoor
functions. As such it would be impossible to prove that any asymmetric crypto system is actually
computationally secure. For example, the security of RSA depends on the fact that factoring of
two primes is hard. Thus its security inherently relies on an unproven fact. However, this problem
has been studied so extensively that we can be reasonably certain it is at least hard enough that
an attacker will not manage to solve it in general (if they did they could win a Nobel prize instead
of decrypting our data...) So perhaps we can safely assume that this problem is hard. But even
then is that enough to make our crypto system secure? Clearly we have to make the right choices
(large keys, etc.) but we also need to know there is no way around our system without breaking
the ‘hard’ problem. This is where provable security comes in: we prove that breaking the cipher
implies solving some assumedly hard problem.
First we need to be more precise on what ‘breaking’ the cipher means; what information does
the attacker get and what does she need to learn to consider the cipher broken? To answer these
question we need to specify the exact setup, knowledge of the attacker and their goal. To do this
in an easy to understand way we express security properties in the form of a game between us
as keyholder (also called challenger) and the attacker (opponent). In the game for property IND-
CPAwe give the opponent the encryption of one out of of two texts and the opponent has to guess
which one it is.

72

Security Game 1 (IND-CPA)
Indistinguishable under chosen-plaintext attack

1. Opponent picks two plain texts
2. We randomly pick one, encrypt it & give cipher

text to opponent
3. Opponent guesses which text was encrypted

Opponent advantage: | P(correct guess) - 1/2 |

Good cipher: opponent advantage small
79

Security Game 2 (IND-CCA2)

 Opponent has Enc, Dec oracle
 Opponent picks two plain texts
Can use Enc/Dec as wanted before choosing

 We randomly pick one and encrypt it
 Opponent gets cipher text (challenge)
 Decryption oracle not for challenge
 Opponent guesses which text encrypted

Of course the opponent could simply randomly guess, giving a probability of 1/2 of being correct.
But perhaps the attacker can do better by examining the cipher text we give in the second step.
Howmuch better the attacker can de we call the attacker advantage: |P(correctguess)−1/2|. (Note
that being able to guess wrong most of the time also implies it is also possible to guess correctly
most of the time, hence the use of the absolute value here.)
We say the attacker ‘wins the game’ if there is a distinct attacker advantage. The attacker ad-
vantage will depend on the security parameter which captures the ‘problem size’, for example the
length of the key used. As the problem grows it is no longer realistic for an attacker to e.g. try
decrypting with all possible keys. Formally we can thus put that a cipher is IND-CPA secure if

29 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

the attacker advantage is negligibly small (goes to zero faster than 1/p for any polynomial p) for
any polynomial-time attacker. Paraphrasing; the advantage of attacker with a realistic amount of
resources will go down exponentially as the key size grows.
The setup of the IND-CPA gamematches a situation where the attacker has a single cipher text to
examine and captures the worst case scenario for this case. If the attacker can tell that any plain
text is more likely that any other for this cipher text, this game will give her an advantage and
thus allow her to win the game. Thus IND-CPA security gives us that the attacker will not be able
to learn anything from a single cipher text. But what if the attacker has even more information,
for example several cipher texts or even several plain-cipher text pairs? In this case she might
be able to break the cipher using this extra information even when she cannot win the IND-CPA
security game. To state that a cipher is suitable for such situations we need a stronger notion
of security expressed by an easier to win (by the opponent/attacker) security game. There are
several different security games to describe security of ciphers in different usage scenarios. The
indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2) security game is one
such game where the attacker has access to an encryption and decryption oracle, i.e. can encrypt
any plain text and decrypt all cipher texts except, of course, the challenge itself. From the games
it is clear that IND-CCA2 security implies IND-CPA security. (Any winning strategy for the IND-
CPA game can also be used in the IND-CCA2 setting.)

Security Proofs As mentioned above, being able to factor large numbers implies the ability to
break RSA. But is the reverse also true; is breaking RSA (i.e. winning the security game) really as
hard as factoring large numbers (or another difficult problem4)?
A security proof of an asymmetric cryptography system shows that breaking the system (i.e. win-
ning the security game) implies breaking some problem that is assumed to be hard. A cipher for
which such a proof exists is then referred to as being ‘provably secure’. Although such a proof is
a very useful validation of the encryption one has to be careful in the interpretation of the term
‘provably secure’: it shows that breaking the cipher in a specific setting is at least as hard as some
problem which is assumed to be hard in general. This by itself does not guarantee that our specific
instance of the problem is not breakable (perhaps the problem was not really hard or we chose
our parameters poorly (e.g. keys too small) leading to a specific instance of the problem that is
easy to solve).

73

Example: ElGamal
 Multiplicative Group Zq = {1…q-1}

• Multiply, divide, exponentiation easy, log hard
 Key creation: sample x from Zq,

• x is the private key, gx is the public key
 Encryption: sample y from Zq (salt)

• enc(m,gx) = (c,k) = (m*gxy, gy)
 Decryption:

• dec((c,k), x) = c / kx dec(enc(m,gx),x)
= dec((m*gxy, gy),x)
= m*gxy / gyx

= m
76

Security Assumption
(the `hard’ problem)
 Decisional Diffie Hellman (DDH):

“no effective attacker can distinguish between
(gx, gy,gz) and (gx, gy,gxy)”

 Exists ε such that, for any attacker, any q:
Random x,y,z in Zq;
guess1 = Attacker(g^x, g^y, g^z);
guess2 = Attacker(g^x, g^y, g^xy)
| P(guess1) - P(guess2) | < ε(q)

As an example of a security proof we show that the algorithm ElGamal satisfies security prop-
erty IND-CPA, assuming that the Decisional Diffie Hellman (DDH) assumption holds. Note that
if we can take a discrete log then DDH does not hold; DDH is a stronger assumption than the
assumption that discrete log is hard.

4If one is able to take the e-th root then one can brake RSA. It is not known whether this is equivalent with factoring n.

30 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

75

`Cheater’ Game for ElGamal

 Opponent picks two plain texts
 We randomly pick one and encrypt it.
 Opponent gets gz for random z
 Opponent guesses which text encrypted.

 Opponent advantage:
| P(correct guess) - 1/2 |

 Information opponent independent of choice
 no opponent advantage possible

74

Game stepping (reduction)
Security

Assumption
problem X

is hard

tiny chance
to solve

=> … =>

Intermediate
Game i

advantage
is tiny

Security
Notion

“cryptosystem
S is secure”=> … =>

Tasks:
1. Show security of basic game
2. Show correctness of implications (games steppings)

`Cheater’
Game

no
advantage

To show security of ElGamal we show that there is no way to tell the difference between the
IND-CPA game and a game in which we cheat so the attacker can never win; telling the difference
between the twogames is the same as solving theDDHproblem. As such any attacker that canwin
the security game breaksDDH. In the gamewherewe cheatwe basically give back a randomvalue
(gz) instead of an encrypted message - as such no information about which message is encrypted
is available at all and the attacker can impossibly win. With a small transformationwe can replace
the random gz by (message times random m ∗ gz) which is just as random as gz itself (similar to
a one-time pad). The only remaining difference with the security game is whether we use gz or
gxy . The DDH assumption exactly states we cannot tell those two situations apart. Thus whether
we cheat or not has no significant influence on the attackers advantage; i.e. the attacker has no
significant advantage.

77

Transformation

 Use property of * to conclude

Random x,y,z in Zq
guess-game1 = Attacker(g^x,g^y,m * g^z);
guess-game2 = Attacker(g^x,g^y,m * g^xy)
| P(guess-game1) - P(guess-game2) | < ε(q)

 If can tell difference m * a and m * b then can tell
difference a, b

78

Difference Cheat - Security Game

 In real game attacker gets
 Public key: gx

 From the cipher text: gy and m * gxy

 In the basic game the opponent
 Public key: gx

 From the cipher text: gy and m * gz

 If the attacker can distinguish then also between
(g^x,g^y,g^z) and (g^x,g^y,g^xy)

 Play security game with this input.
 For first will be basic game, for second security game

So we have proven that ElGamal satisfied is ‘secure’ (or more precise: satisfies IND-CPA). Again a
word of caution though. Not all ‘assumedly hard’ problems are created equal; for example DDH
is (assumed to be) a stronger assumption (so gives a weaker security property) than the discrete
log assumption. Yet other problems may have been less extensively studied and the fact that no
efficient way to solve the problem have been found is not a sufficiently strong indication that they
are actually hard. Even if the problem is theoretically hard you have to choose an instance that is
also hard in practice; see e.g. the discussion on key choices for RSA above as an example factoring
can become easy if you do not choose your primes carefully. Finally security proofs are difficult
to make, requiring subtle probabilistic reasoning, and many mistakes have been discovered in
published proofs.

31 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

2.6 Conclusions and where to go from here

The goal after this lecture/chapter is that you will have a good idea of the basics of cryptography;
know how symmetric and public key ciphers can be used and are able to give examples of these
ciphers. It should also be clear what ‘cipher X is secure’ means in any given context and you
should be able to check whether this is the case for a given setting and scheme.
This chapter provides an introduction to cryptography. We will look at digital signatures in more
details yet in the lecture on hashing and certificates. The handbook of applied cryptography [5]
(see e.g. Chapters 7 and 8) gives more technical and detailed descriptions of the algorithms, se-
curity notions and types of attacks. If you wish to learn more about cryptography there are also
several Master courses on this subject.

2.6.1 Literature

Suggested reading (check the course page [1] for the most up to date list of suggested reading
materials):

• Security Engineering Introduction [2, Ch 5].

• Handbook of applied cryptography [5, Ch 7,8]

2.7 Exercises

The exercises marked with (*) indicate questions that are more challenging and/or technically
involved than what you can expect on the exam. The other questions include old exam questions
as well as some practise questions.

1. For the online music store scenario in Exercise 2 of the previous chapter. consider potential
weaknesses and attacks that could be addressed. Indicate howyouwould apply the counter-
measures and what trade-offs this imposes and what effect do they have on both the attacks
as well as on the goals of the legitimate actors in the system, and what new goals/actors do
you need to introduce.

2. Decipher the following (English) text:

Ftq Husqzqdq oubtqd ue zaf hqdk eqogdq.

3. Suppose that amongst six people each pair wants to be able communicate securely without
the others being able to eavesdrop.

(a) How many different keys will they need in total if they use a symmetric encryption
algorithm and how many if they use an asymmetric encryption algorithm?

(b) How many keys does a person have to store secretly in both cases?

4. Four methods to encrypt multi-block messages are ‘Electronic Code Book’, ‘Cipher Block
Chaining’, ‘Output Feedback’, ‘ en ‘Cipher Feedback’.
[(See Figures Above)]

(a) Give the corresponding decryption schemas.
(b) CBC has limited error propagation. Explain why this is so and give the error propaga-

tion for the other schemas.
(c) Compare the methods on the aspects secrecy, integrity and performance.

32 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

(d) Two users notice that the under the same conditions the same message always has the
same encryption and decide to randomize the encryption by prefixing message with a
randomly chosen block, i.e. by encrypting R,B1,B2,...,Bn rather than B1,...,Bn.
i. Why would you want to randomize the encryption?
ii. For which of the methods above would this work?
iii. Could you use the IV factor (for the methods that use one) instead? (Explain)

5. Entropy described the amount of randomness in an unknown event/piece of data; a higher
entropy indicates that more information is needed to be able to predict the outcome.

(a) What has a higher entropy?
i. The roll of a fair dice or an unfair dice.
ii. A coin toss or a roll of a dice.
iii. The state of the union address of 2008 or a pincode

(b) The (Shannon) entropy (in bits) can be calculatedwith -6p(x)·log2 p(x)where x ranges
over all possible outcomes and p(x) is the probability of outcome x . Check your in-
tuition in the previous part by calculating the entropies. (Choosing any appropriate
probability distribution for the ‘unfair dice’.)

(c) (*) Show that a function cannot increase entropy (Ent(f (X)) ≤ Ent(X).
(d) (*) Show that for a domain of size 2n the maximum entropy for any random variable

on that domain is n (which is achieved only by taking the uniform distribution).

6. The one-time pad makes a message undistinguishable frommessages of equal length. With
letters (instead of bits) you can apply the one time pad by adding the key to the message
modulo 26.

(a) This looks a lot like the Vigenere cipher. Why does the analysis method to attack that
cipher not work here?

The encryption is secure no matter the amount of computational power the attacker
has available; even trying all possible keys will not help the attacker:

(b) Find two keys such that ciphertext ‘AFIGHT’ decodes to ‘YESYES’ and ‘NONONO’.

The one-time pad is not very convenient in use; the key is as long as the message and
can only be used once.

(c) What happens if the key of a one-time pad is reused?
(d) Would it be possible tomake anunconditionally secure cipherwith a shorter or reusable

key? (Remember question 3)?

7. The El-Gamal crypto algorithm is a variant of the Diffie-Hellman cryptosystem. Given a
large random primenumber p and a generator g, Alice chooses her private sleutel x ran-
domly such that 1 ≤ x ≤ p − 2. Alice’s public key is (p, g, gx).
To encode a message m for Alice, Bob selects a random r and sends (gr ,mhr) to Alice, where
h = gx is obtained from the public key of Alice.

(a) How can Alice decode message (c,d) ?
(b) Why can only Alice decode this message?
(c) Why does Bob need to create and use a random r ?
(d) Does Alice have to know that Bob’s number r is really random?
(e) How many bits of information can Bobs message contain.
(f) What can Bob do if he wants to send a larger message?

33 Slides and notes Security course 2013 / Version 1.0

