
Technische Universiteit Eindhoven University of Technology

4 Certificates and Trust

4.1 Introduction

As mentioned before, asymmetric cryptography can be used to digitally sign messages; Alice
can use her private key to create a signature that everyone can validate using her public key.
The sign-validate structure is very similar to decrypt-encrypt and for some public key systems
(e.g. RSA) signing can actually be implemented as decryption. For large messages decryption
the entire message requires significant effort and we do not need to recover the message from
the signature (it may even be better if we cannot). We only need to validate that the signature is
actually a signature for this message. Thus it would be sufficient, and more efficient, to make a
‘secure’ digest of the message and sign (decrypt) that instead. This is where hash functions come
in. Below we first discuss hash functions and related notions before moving to their use in digital
signatures and certificates which in turn are used in Trust Management.

4.2 Hash functions

3

Error correction - Hash - MAC

CRC check or MD5 checksum
Common for e.g. ftp sites
Does this add security?

28997d14055f15db063eb92e1c8a7ebb gimp-2.8.0.tar.bz2

134396e4399b7e753ffca7ba366c418f gimp-2.8.0-RC1.tar.bz2

Excerpt; short `description’ of document
Fixed size output for any size input

4

Error correction - Hash - MAC

28997d14055f15db063eb92e1c8a7ebb gimp-2.8.0.tar.bz2

134396e4399b7e753ffca7ba366c418f gimp-2.8.0-RC1.tar.bz2

Excerpt; short `description’ of document
Fixed size output for any size input
Goals

Integrity: message not altered
Authentication: message from X
Proof of possession without revealing content now
Non-repudiation

Hash functions are used to create ‘secure’ fixed size digests of messages; for any length input they
create a fixed size hash value. The digest is secure in that it is clearly a digest of the message but
does not reveal information about the message. Thus with the message we can check that the
hash belong to that message but without the message we learn nothing from the hash.

Error correction codes, such as a Cyclic Redundancy Check (CRC), are also digests of a message.
These allow checking for changes and finding the correct original value after changes. However,
the CRC reveals information about the (structure of the) message to which it belongs. One of
the goals of the hash is to be one-way; the hash value of a message should not reveal information
about that message. A good hash functions is thus a ‘random function’; every different input
gives a completely different (random) output. Message authentication codes (MACs) in turn aim
to authenticate a message; thus not only detect changes but also validate the source of the original
message. A keyed-hash where the hash value can only be computed using a key is one way to
create MACs.

51 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

5

Properties of Hash functions

Pre-image resistant

1-Way `random function’

m with H(m) = h

Collision resistant

m

m’

H(m)
=

H(m’)

Practical

Efficiently computable
m H(m)

m H(m)

Hard to find:

Second pre-image
resistant

m

m’

H(m)
=

H(m’)

m’ with H(m’) = H(m)m, m’ with H(m) = H(m’)

6

Applications of Hash functions

Message Digest
Check have correct message

Password storage
No reverse; how verified?
Password recovery?

Message Signing
Signing large message is slow
Sign hash of message instead

Several applications include password storage and, as already mentioned message signing. The
problem with passwords is not that they are too long but that you would like to be able to store
them securely on a system that needs to check them. If, instead of the password, we store the hash
of the password it is difficult to recover the original password. Still, we can check if an entered
password is correct by hashing the entered value and comparing it with the stored hash value of
the correct password. As the hash is collision resistant entering a wrong password will not lead to
the same hash. Collision resistance also ensures that when we sign a hash it can only be used for
the correct message. (Note that collision resistance means it should be hard to find collisions, that
collisions exist is a given; think about why.) Sometimes it is sufficient the has is only second pre-
image resistant; for a specific message there is no way of finding a second message with the same
hash. If a single collision has been found, but it is between two messages we are not interested in
anyways, collision resistance is broken but we may not care. We only have a real problem when
the hash of a message that we would sign is the same as the hash of one we would not sign.

7

An Example: MD5

message padding: 10..00 length

Message padded so total
size is multiple of 512 bits

512 bits

HMD5
IV
128 128

512 bits

HMD5
CVi

128 128

CVi+1

512 bits

HMD5
128 128

output
Y

Compression
Function

64 bits

8

Compression functionHMD5

RF(F)

RF(G)

RF(H)

RF(I)

CV(in)

CV(out)
128

128

P1

Y (block)

P2

P3

P4

512

X

PermutationsPermutationsPermutationsPermutations Round
Function
(next slide)

As an example of how a hash function may operate we have a short look at the well known MD5
hash function. It used to be widely used but this is not advisable any more; MD5 has been broken
both in theory and in practice. Yet it still serves well as an example of a typical hash function
construction. The function has towork on arbitrary size inputs. To achieve a compression function
(HDM5) is iteratively applied to (512 bit) blocks of input. The compression function takes two
inputs; the current intermediate hash value ‘CV’ (initially equal to initialization vector IV) and
the block of input. The input is extended to a multiple of 512 bits by appending the length of
the input preceded by padding as needed. The HDM5 uses rounds of permutations, shifting
and addition (XOR) and non-linear functions to mix the input with main structure of MD5; this
confusion-diffusion strategy it shares with block ciphers such as DES. Small changes in the input
have an avalanche effect which causes the output to be completely different.

Hashes often share some constructions with (symmetric) ciphers; they both try to create a ‘ran-
dom output’ but hash function have the advantage that they do not have to be reversible at all.
Though obviously dependent on the actual algorithms used, hashing a message typically takes

52 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

less effort than symmetrically encrypting the same message which in turn takes less effort than
asymmetrically encrypting the message.

9

RF(F)
For k=1 to 16 do

A B C D

A B C D

X[k]

T[k]

S[k]

F
Permuted
Text Block

Array of
Constants
Array of
Constants

Chaining
Value (CV)
Chaining
Value (CV)

Modular addition

11

Message Authentication Codes
Unable to predict for unseen message
Keyed; validation requires same key
Authenticity and Integrity
Example:

Keyed-Hash; uses (symmetric) key
Hmac; masked key pre-pended before hash.

MAC

Key

Message
(any length)

Generation
&

Validation

4.3 MACs and Digital signatures

MACs were already discussed shortly above. The can be seen as a combination of hashing and
symmetric cryptography; a MAC ensures the authenticity of a message as it is linked to the mes-
sage and only someone with the key can create the MAC. It takes the same key to regenerate and
thus check the validity of the MAC. Digital Signature are the public key version of MACs; it com-
bines hashing and asymmetric cryptography. A private key is used to authenticate the message
by hashing it and signing(decrypting) it and every one can validate the signature by encrypting
the signature with the public key to recover what the hash of the message should be.

12

Digital Signatures
`Public key version of a MAC’
Signing with a private key

Decryption of Hash of Message
Verification with public key

Decrypt
(=Sign)

Digital
Signature

Private Key
Message
(any length)

Encrypt

Public Key

Hash

Message
(any length)

Hash
?
=

Generation Validation 13

Digital signatures with RSA

Signing Message M:
Compute hash h := H(M)
Signature s := RSA_D(kA, h)

Private key
Alice: kA

Public key
Alice: KA

Checking Signature:
Compute hash h := H(M)
Check: RSA_E(KA, s) == h

Uses fact: RSA_E(KA, RSA_D(kA, x)) = x

Digital signatures can be done with RSA by using decryption with the public key (of the hash of
the message). Recall that encryption and decryption in RSA are the same operation; raising to the
power of the key. The order in which they are performed does not matter.

A main problem with validating digital signatures is getting the right public key. (Recall the first
lab session.) If Eve can convince Alice that her public key is actually the public key of Bob then
she can sign messages that Alice will believe come from Bob. To use digital signature we have
to ensure we have the correct public key. In other words, the level of trust you can place in the
signature on a message is only as high as your trust in correctness of the public key. Below we
will see different techniques to ensure Alice can trust information that she gets, including public
keys.

53 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

14

Key distribution

Alice Bob

Private key

Public key

Signature

15

(Wo)man-in-the-middle attack

Alice Bob

Eve

Private key

Public key

Signature

4.4 Certificates and Trust management

16

Certificate Bob’s public key is 1234
Bob is a Baker
...

Statement (e.g. Identity, Attribute) signed by principal
whom believes it to be true at time of signing

and/or: assumes responsibility, liability, …

Example: X.509 - Statement links a key to attributes

Note: Revocation; Validity period – revocation certificate

EXP DATE: 29-2-2013

Certificate Authority CA

18

validate,
certify

Root CA

Intermediate CA Intermediate CA Intermediate CA

validate,
certify

Intermediate CA Intermediate CA

pub key -
attributes

validate,
certify

pub key -
attributes

pub key -
attributes

Validates attribute
Identity, role, e-mail address,
Web address, etc.
Links them to pub key

E.g. Verisign
Verification method?

(Demo Certificates and CA in browser)

If Alice trusts Bob (and has his public key) than Alice can also trust statements that Bob signs.
The level of trust in the signed statement by Bob, i.e. his certificate, can depend on how sure we
are that we have Bobs key, how strong the signature scheme is, the level of trust in Bob and the
statement that Bob is making. For example, Bob may be an expert on baking so we will trust a
bread recipe but not a medical prescription.

When Alice is not sure that the public key p is really the public key of Bob, she cannot trust
statements signed with p. When Alice and Bob meet in person they can share a public key (or at
least a hash of that key-we used this method in the first lab session). If Alice and Bob can only
communicate over an insecure channel (e.g. the internet) then they have to consider the man-in-
the-middle attack given above where Eve substitutes her key for that of Bob. However, if Alice
trusts Charlie who already knows the key of Bob then Charlie could issue a certificate stating ‘the
public key of Bob is 1234’. As the statement is signed by Charlie, Eve can no longer change the
key without Alice noticing.

In the example above Alice grants Charlie the role of Certificate Authority (CA); she trusts that
Charlie is an authority on the key of Bob. Howdoes she knowCharlie is an authority? There could
be another authority Daisy that says so. How does she knowDaisy is an authority on authorities?
This chain can be continued for a while but will need to end as some point at a root CA Rob that
Alice already trusts without the need for other authorities vouching for Rob.

In HTTPS this approach is used to check certificates which authenticate the website you are con-
necting to. E.g. an (intermediate) Certificate Authority Terena CA checks the identity of the tue and
its key and signs the statement the public key for www.tue.nl is 9d 79 10 57 e9 38 db 1a a2 94 bd
aa 6f e4 b4 82 31 0e cd c7 41 13 dc f6 f4 f8 fc ed 9d ab ce 14 0a ea e9 86 60 68 ab 2e 6d 2e 2b 10 b1 c1 26

54 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

18 93 6e 85 8c cb 09 9a 26 4f 77 be d0 54 92 f4 8e b4 b0 93 20 13 6c c2 4e 79 c4 20 85 9c a8 ff 34 23 9c
d7 c0 09 ca 67 0b b2 b7 55 b2 dd 88 e9 20 bd 19 e9 d0 1f c8 a3 11 a6 02 ba 3d fc 81 a5 48 15 84 6a 28
9a a0 e0 0a 7a 61 4c 1e c9 40 60 1c dd 26 a5 b9 3a e8 50 50 b5 f6 07 43 d0 55 b8 ed b3 f5 48 ea 8a a1 1a
6f 78 9f 65 ff 93 22 3d f7 1c fe dd eb 62 ab 73 02 66 b8 3b 76 59 60 90 1f 8f 49 3e 89 c2 2a e4 45 e0 9f
fc 38 ad 4d 1e 27 7f a7 a2 5c 32 d1 01 51 17 a2 94 3b af 2d 90 09 33 ed 64 61 9a ec 6a fe d3 96 b9 c4 9f
f1 83 8d e2 82 5b 5a 3d bc 4a 9b 73 49 7f c6 10 6b b1 93 85 b3 c5 6f ab 16 db 4d 5b ca 5a fe 55 d6 dc 4b.
However, as I do not know Terena and its keys, I need to find out whether I can trust this key and
trust Terena CA to issue such statements. For this the Terena has a certificate from another CA,
UTN, that validates Terena’s key and states that Terena is trusted to issue certificates for websites.
This chain of certificates finally ends at a root CA; a well known root of trust that I know and have
the public key of (typically built into my browser and/or operating system).

Transitive and full trust
Dec12/Jan 13: Turktrust fake certificate discovery

Fake intermediate CA certificates (issued august 11)

Aug11: Hack DigiNotar confirmed
Dutch Certificate Authority
First hack already in June 2011
Many rogue SSL certificates
(Diginotar bankrupt in September 2011)

March11: Comodo partner incidient
9 fake certificates issued (e.g. live/google/yahoo/skype/mozilla)
quickly discovered and disseminated.

CA can Issue any certificate.

19 20

Web of Trust
Recall First Lab session

Validate key directly
New keys signed by known keys

No centralized CAs
Each user signs keys they trust
User can choose degree of trust in other keys

For communication
For signing other keys

Compare S/MIME – CA signed certificates

A potential problem with this approach is that trust is full and fully transitive; the root and inter-
mediate CAs are trusted to only certify fully trustworthy intermediate CAs and correctly verify the
identities of allwebsites they issues certificates for. However, if one step in the chain fails thewhole
system can break down. Several incidents show that this can indeed happen. Hacking into the
systems of the CA is one way to obtain fake certificates. For example the recent Turktrust incident
(e.ghttp://technet.microsoft.com/en-us/security/advisory/2798897, http://
www.theregister.co.uk/2013/01/04/turkish_fake_google_site_certificate/) the
Comodo incident (http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html)
and the well known Diginotar incident (also 2011). Use of outdated cryptography (such as the
MD5 hash) also creates a risk; it has been demonstrated that a fake CA certificate can be created by
usingMD5hash collisions (http://www.win.tue.nl/hashclash/rogue-ca/with video at
e.g.http://dewy.fem.tu-ilmenau.de/CCC/25C3/video_h264_720x576/25c3-3023-en-making_
the_theoretical_possible.mp4).

An alternative to the hierarchical trust model with a ‘super’ trusted entity at the top decides who
is trusted forwhat is to use the ‘grass roots’, bottomup,model ofweb of trust (again: recall the first
lab session). In this model there are no centralized sources of trust; instead everybody establishes
trust locally and tries to expend this through overlapping trust networks. For example; in the lab
session youmay have checked the public keys of your neighbours yourself so you trust them. The
neighbours of your neighbours will have gotten a certificate from your neighbours which you can
check with the keys you know and trust. If you trust the checks that your neighbours did then
you can now also trust the keys of your neighbours neighbours. Of course, if you know that your
neighbour is a bit careless and may sign keys without checking them thoroughly, you may decide
not to trust the keys until you have more certificates that confirm this key. You can thus trust that
the statement came from your neighbour (because the key is trusted to be correct) but still not
trust the statement itself.

55 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

21

Rule based trust management
Generalizes tree of CAs

Policy rules Alice:
A.r B

A.r B.r

A.r A.cert.r

A.r B.r /\ C.r

Meaning:
Alice trusts Bob in role r

(Bob is certified for r)
Alice trust Bob certifying r

(Bob is a CA for r)
Alice trusts anyone in A.cert to certify r

(Everybody in A.cert is CA for r)
Alice trusts if both Bob and Charlie trust.

Can also use multiple different roles `r’.

Certificate, Rule Based Trust
Policy: GMS.Dr may read Patient record

Rules to establish Doctors
GMS.Dr GMS.Department.Dr
GMS.Department Radiology
Radiology.Dr Alice

Alice may read the patient record

Trusted, Certified facts & Delegation

Green
Medical
Service

22

Adding the purpose for which we trust parties can be done with certificate based trust manage-
ment languages such as RT [?]. For example, a hospital ‘GMS’ can state that it trusts its depart-
ments to issue doctor credentials. Combined with a certificate by GMS that Radiology is a de-
partment and from Radiology that Alice is a doctor this gives that GMS trusts Alice in the role of
doctor (and thuswill e.g. allow her to read patient records, see also Chapter ?? onAccess Control).

Reputation systems try to quantify a level of trust in a party by using past experience. This can
include our own experience but also the experience of other that interacted with that party. Their
feedback on the behaviour of the party in those interaction helps establish the reputation of the
party. (The reputation of the party providing the feedback may influence the degree in which we
consider this feedback.)

24

Reputation, Behaviour Based Trust

Policy Dr with good reputation may treat

Reputation based on Past Performance
Feedback after interaction updates reputation
E-bay, Eigentrust, pagerank, centrality measures

Estimate risk based on Reputation

Good reputation valuable
Incentive for good behaviour

Fast
and

Quite
Good

TR
U

ST
100%

Fast
and

Quite
Good

Feedback &
Recommendations

Certificates

User’s Requirements
determine how to mix

Other sources…

Combined Trust Scores

25

Finally, one does not need to rely on only one source of trust information, scores provided by dif-
ferent systems can be combined andmixed (certified and good reputation, only accept certificates
from reputable entities, only take into account feedback from certified doctors when computing
reputations, etc.)

4.5 Conclusions and where to go from here

This chapter provides some basics of Trust Management. It discusses certificates, how they can
be created and used to build trust from chains of certificates. Trust scores can be relayed to the
user (e.g. through a lock indicating a correctly authenticated connection in a browser, an ‘average
feedback’ score on a retailers website, etc.) or used in some automated way (e.g. as part of access
control as touched upon in examples, for installing software/updates/..., etc.)

56 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

4.5.1 Literature

Suggested reading (check the course page [2] for the most up to date list of suggested reading
materials):

• Security Engineering Introduction [3, Sec 5.6] on hash functions.

• Handbook of applied cryptography [8, Ch 9], Section 1 through 3 on hash functions.

• MD5 considered harmful today. Creating a rogue CA certificate. http://www.win.tue.
nl/hashclash/rogue-ca/

• RT:ARole-basedTrust-management Framework [?] (www.stanford.edu/~jcm/papers/
rt_discex03.pdf)

4.6 Exercises

1. A FTP site publishes the hash of a file along with the file itself. Explain why this hardly has
any security benefits. Given this, why is this done?

2. Suppose a hash function is used for Digital Signatures. Which properties of a hash are
needed and which are not?

3. Argue why RSA signing is correct and complete; we can always create and check a correct
signature and only Alice can sign her messages.

4. See the video on creating a fake credential authority on http://www.win.tue.nl/hashclash/
rogue-ca/ Suppose you have created a fake intermediate-CA certificate.

(a) How could you use this certificate to steal someoneŠs login data?

(b) What can 1) de (root) CA 2) the Browser maker 3) Microsoft 4) An honest user, etc. do
to

• prevent new fake certificates from being issued?

• solve the problem of existing fake certificates?

(Do you already see risks that these countermeasures are circumvented?)

(c) (*) For El-gamal a reduction proof showing that breaking the it is as hard as solving a
‘hard’ problem. Why does such a proof not exists for MD5, SHA-1, etc.? Would it be
possible to create a hashing schema for which such proves are possible?

57 Slides and notes Security course 2013 / Version 1.0

