
Technische Universiteit Eindhoven University of Technology

5 Access Control and Digital Rights Management

5.1 Introduction

2

Controlling access to resources
Who is trusted to do what with a resource

Subject, Action, Object

I’m Bob
Bob May

Park

3

Recall Security Policies
Specify “allowed” / “disallowed”

Context; applies to ..., approved/imposed by ...
Usage; required enforcement, dealing with breaches

Different notions of `security policy’:
from general intention statement

“Data shall only be available to those with a `need-to-know’”
to formal, detailed specification

“drwxr-xr-x”, access control list, XACML policy, etc.

Security Model
Framework to express & interpret policies.
E.g. relations on Users - Objects - Permissions - Groups.
Example Multi level security

Asmentioned in the introduction a security policy specifies the ‘what and when of security; what
are the security attributes that should be achieved and when/for what resources. A high level
policymay be ‘the lecturermaintains a gradelist that the students can read and a paper submission
program that student can run’. Such a policy may be translated into system level access control
policies which specify who (suject) is trusted with to do what (action) with which resource. E.g.
the lecturer has read and write and the student read permission on the resource ‘gradelist’.

Recall that the meaning of a security policy is given by interpretation in a mathematical model,
the security model. A basic interpretation for access control policies can be a relation on subjects-
resources and rights.

4

Access Control Matrix
Policy:
Students may read grade list and read and run submitPaper
Teacher may read and write grade list and submitPaper

So we are done ?

User GradeList SubmitPaper
Jerry rw rw
Joris r rx
Tim r rx

5

Controlling access to resources
Enforcement, Implementation

Maintenance, Consistency
Captures intended policy (how to check?)
Dynamicity; rights not constant

Specification, Policies
Authority on the resource; Who decides?

Decentralized systems, delegation.
Conditions, Obligation, Purpose

Privacy
Anonymity, attribute based AC

Abasic format inwhich one can give an access control policy is the access controlmatrix. The rows
are the subjects, the columns the resources and a field, e.g. (Jerry, Gradelist) is filledwith the rights
that the subject (Jerry) has on the resource (Gradelist); in this case read andwrite permission. The
interpretation of an access control matrix is straight forward; a matrix is a way of representing a
relation on subjects-resources and rights.

Eventhough the ACmatrix gives us away to specify rights we also need to implement the enforce-
ment of the rights; ensure the rights subjects actually get the rights and only the rights specified

58 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

in the AC matrix. A single huge matrix for the entire system (or even network) may not be the
best option to achieve this.

We also need tomaintain the AC policy; recall that it implements the high level policy ‘the lecturer
maintains a gradelist that the students can read and a paper submission program that student can
run’. If the students in the class change we need to update the matrix. If Joris leaves the class we
may need to revoke his rights but how do we know that Joris had the read right (only) because he
was a student in the class? For that matter, are we sure the AC matrix is a good implementation
of the highlevel policy to begin with?

Finally, to use his read right Joris will have to identify himself to the system. This should not be
needed; Joris should only have to prove that he is a student not reveal who he is.

User GradeList
Jerry rw
Joris r
Tim r

6

Access Control Lists
(Enforcement & Maintenance)

User GradeList SubmitPaper
Jerry rw rw
Joris r rx
Tim r rx

User SubmitPaper
Jerry rw
Joris rx
Tim rx

7

Role base access control

Role (Similar to `group’)
Teacher
Student

Assign access rights to Roles and Roles to users
Added indirection makes for easier maintenance

Role GradeList
Teacher rw
Student r

Role Users
Teacher Jerry
Student Joris, Tim

(Maintenance, Consistency)

Access control lists are a way to deal with the problems that a single centralized access control
matrix would give. An AC list is basically a column from an access control list, stating all the
rights that different subjects have on a single resource. As such it has a natural place to store it;
together with the resource. Ofcourse a problem is if rights changes (e.g. a student is added or
removed from the class) all relevant AC lists have to found and updated. I.e. this gives a viable
implementation, however the maintainability only gets worse.

Role based access control (RBAC) tries to improve maintainability through an adding level of
indirection. Instead of assigning rights to subjects (Jerry, Joris, etc.) they are assigned to roles
(teacher, student) and the subjects are assigned to roles. If Joris leaves the class all we now have
to change is the role-subject table. If the high level policy changes and students are no longer
allowed to submit papers only this entry in the role-resource table needs to be changed.

8

Role dependency (Role Hierarchies)

Staff

Prof Lecturer

Scientific Financial

...

Legal

...

Staff may Enter Building
Staff rights also granted to Professors

9

Decentralized AC

Different authorities at different locations
UT admin does not control TU/e resources

Different Hierarchies for different locations
In NL PhD student is subrole of Employee
in US PhD student is subrole of Student

Access control for distributed resources?
TU/e student list, US student discount.

(Specification & Authority)

Roles can provide a huge improvement in maintainability, however, especially in large organiza-
tions, the number of roles can quickly grow to unmanageable proportions. Role hierarchies help
bring structure to the roles. A university can define different categories of staff, each with their
own rights and responsibilities. By using a role hierarchy we only have to specify shared rights
once; e.g. we may assign the right to supervise students to professors and the right to enter build-
ings to staff. The professors will inherit the rights from staff so will also be allowed to enter the
building.

59 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Distributed access control So far we have considered a single authority; all access rights, roles
assignments etc. are specified (and enforced) by a single entity. When considering multiple au-
thorities we need to consider the communication between entites and issues such as trust and
delegation.

10

Sharing resources
Multiple policy from different authorities

Alice may Read Bob mag Lezen

Standardization
<Subject>X</Subject>
<Action>Y</Action>

Ontology
R.Read is an action
B.Lezen is an action
R.Read = B.Lezen

Talking the same language

Trust Management
Delegation of (access) decisions

Alice may do
what Beryl says

Authority Rose Authority Beryl

Alice may NOT
read (anymore)

Negative information
revocation, conflict resolution,
monotonicity

11

Delegation
Define your roles based on roles of other users:

Jerry.StudentsInMyClass =
EducationOffice.RegisteredStudents[2IS05]

Trust Management Issue:
trust education office to define registered student role
Education office in turn may trust registration office

EducationOffice.RegisteredStudents[2IS05] =
RegistrationOffice.Student and
StudyWeb.subscribed[2IS05]

Trust and delegation play key roles in distributed AC. If I trust another authority I can rely on the
statements this authority makes, for example on the identity or roles of users. The trust language
we saw in the previous chapter is an example of this; I can define my roles (e.g. ‘StudentInMy-
Class’) in terms of the roles of others (e.g. the education office student registry on OASE). Here a
decission is delegated. Delegation of rights is also possible (see Logic in access control example
below).

Typically monotonicity is desired in distributed AC systems; additional credentials only increase
rights, not decrease them. This is important for safety; an attacker Malory will not be able to in-
crease her rights by preventing (negative) certificates from reaching the decission point. It also
prevents conflicts in policies; where one policy allows and another denies an action. With mono-
tonic system adding policies will only add rights, never remove them.

Negative information, however, can be practically useful e.g. to enable revocation of rights. AC
system such as XACML (discussed below) allow for ‘negative’ information, e.g. allowing a policy
of the form ‘students may NOT enter the building’. If another policy says that ‘employees may
enter the building’ this will lead to a conflict for student assistent Alice who is both a student and
an employee. XACML allows specifying how such conflicts shouldbe resolved. Another problem
is obtaining all relevant attributes; if Bob hides his student card we may not know he is a student
and should be denied access. Thus a negative rule should only be used if we can guarantee that
we will get the required information.

Access Control and Logic Above we have seen how we can use roles in AC and also how roles
can be shared between authorities. The roles reduce the maintance effort and capture more of the
why a right is granted instead of only what right is granted. The role based approach, however,
may not be sufficient to capture ourACneeds. If the ‘why’ ismore complex than rolemembership,
the policy cannot be catured well in RBAC. Consider for example a hospital where each doctor
is allowed to access the documents related to their own patients but not those of other patients.
This ‘why’ is a simple (logical) rule that does not fit well in the role system. It is not sufficient to
have a role ‘doctor’ and a role ‘patient’; as then each doctor could access all patient records. One
would already need either a role ‘patient-of-dr-x’ for each doctor x or a role ‘treating-doctor-of-y’
for each patient y. Both benefits of adding roles are thus mostly lost.

(*)1 When we assign resource permissions to a role we are actually describing a block of permis-
sions in an AC matrix; each user in the role (row) gets the permissions for those resources (col-
umn). Thus if the AC rights in the policy we wish to describe do not form blocks then RBAC does
not help us. Still, the structure in the ACmatrix for the hospital policy above is very regular; a sin-
gle right exists in each column - at the treating doctor of a patient. As the treating doctor relation

1This paragraph forms a more technical side node.

60 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

is undoubtedly already present in the system it would good to express the policy in terms of this
relation. A logical specification allows us to describe other structures in the matrix to efficiently
represent it.

12

Logic in Access Control

Express AC rules with logical formulas
Rights expressed by predicates

may-access(p,o,r)
principle p has access right r to object o

Basic rules can also be expressed
may-access(p,o,Wr) may-access(p,o,Rd)
write access implies read access

Different ways to generalize this principle

(Specification, Policies)

13

Logic in Access Control (2)

SAYS: delegation construct:
for stating requests
for delegation, e.g. p says may-access(q,o,r)

p says may-access(q,o,r)
=>
(may-access(p,o,r)

=> may-access(q,o,r)
)

(Decentralized systems, Delegation)

One can describe the AC rights using logical facts and rules. A basic predicate captures single
entries; e.g. may-access(p,o,r) can be used to express that principle p has right r on object o. While
stating a logical fact is just the same as having an entry in an ACmatrix, the predicate formulation
allows the use of logical connectives to build rules. For example, often read access is granted to
anyone with write access. This can be expressed as an implication2: may-access(p,o,Wr) → may-
access(p,o,Rd)

So far we have only considered rights in our logical formulas. However, the true power of the
logical system becomes clear when we also allow the use of other relations and information in
the system: For example, a hospital system will typically have a list of doctors which we can use
in our formulas by introducing a predicate Dr(x). Any role can be expressed as a predicate and
role dependencies as rules (implications); RBAC functionality is also offered by a logical system.
The hospital will also record which doctor is treating which patient. We import this relation in
our logical system as a binary predicate, e.g. DrOf(x,y) where x is a doctor and y a patient being
treated by x .

14

Advanced LiAC issues
Examples:

SAY Pay(1$) CanPlay(movie) TO OtherUser
DrOf(D,x) D SAYS (Nurse(y) or Doctor(y))

canTreat(y,x) & orderDrugsFor(y,x) TO y
DrOf(D,x) & (Nurse(y) or Doctor(y)) D SAYS

canTreat(y,x) & orderDrugsFor(y,x) TO y

Expressiveness
Typically first order; no `all policies such that ...’

Performance and decidability
Verifiability, Provability

Comparing, combining, refining of policies
15

Sandboxing

Run untrusted code in limited environment

Only predetermined access to resources

E.g. run on a virtual machine
JVM (Java)
Type safety, Memory safety

(Enforcement)

Our example of before, where doctors are allowed to read the record of patients they are treating
can now be expressed as a simple implication: DrOf(x,y) → may-access(x, Record(y), read)3.

That x has to the treating doctor of y is an example of an AC condition; a fact that has to be true
before the access right is granted. We can also consider Obligations. Obligations are actions that
need to be taken if the access is granted (or if it is denied-see section on XACML below). For
example, grant access to the medical record but inform the patient, allow playing a video but
only if 1e is payed, allow making a copying of a file but only if copy is deleted within 5 days, etc.

The ‘SAY(S)’ construct is introduced for systems with multiple entities/authorities. For example,

2Note that this is actually an implicit universal quantification for p and o while Wr and Rd are constants.
3See also Exercise 3

61 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

we can state that p has the right to delegate the rights (on o) that he has to q. Subtle differences in
our logical policies can express important distinctions. If we writeDrOf(D,x) → D SAYS (Nurse(y)
∨ Doctor(y)) → canTreat(y,x) TO y this gives doctor D the right to delegate permission ‘if you are
a nurse or doctor you may treat patient x ’ and this right can be delegated to anyone. If we write
DrOf(D,x) ∧ (Nurse(y) ∨ Doctor(y)) → D SAYS canTreat(y,x) TO y this gives doctor D the right to
delegate permission ‘you may treat patient x ’ but only to doctors and nurses. The key difference
here is by whom (where) the check whether y is a nurse or doctor happens. In the first case this
is done by (happens on the system of) y while in the second case it is done by (on the system of)
D. If D and y are on different systems run by different authorities, this becomes an important
distinction.

We see that in a logical system are quite expressive but this does come at a cost; from an access
control matrix we directly see whom gets what right on which object. For a logical policy, it is
much less clear which rights entities actually get based on these logical rules. This is true for a
person looking at a policy but also for the AC system that has to implement the policy; when
a request comes in it will need to logically derive whether or not it should be granted which is
obviously a lot more work then simply looking it up in a table or matrix (or checking two tables
with RBAC). Because of this trade-off logical system typically use first order languages; i.e. we
may have statements like ‘for all objects ...’ and ‘for all subjects ...’ but not ‘for all policies ...’.
(With delegation (says) it would be useful to be able to reason about policies; for instance if I have
two projects for different clients that need to be kept separate (see Chinese wall below) I maywant
to state a delegation of the form I’ll accept all policies from Bob that do not grant read rights to
both projects 1 and 2 to the same entity.) The reason is that non-trivial higher order languages are
usually undecidable; thus wemay get requests for which we cannot even determine whether they
should be granted or not. This is clearly not acceptable in an AC system. Even with first order
languages we have to be careful; making the language too expressive will quickly lead to a very
complex decision procedure impacting performance or even to undecidability.

Notewe havemoved the discussion from specification of access rights to enforcement of the rights.
Typically some enforcement point will intercept request for a resource and check access rights
before allowing the request to proceed. If requests come from other machines we can run the
(relevant) network traffic through the enforcement point so it can intercept and check requests.
If the requests come from code that is being run locally (e.g. an app running on a phone or in a
browser or a programwe have downloaded)we can use sandboxing. The codewill not have direct
access to the underlying system but instead will get to ‘play in a sandbox’, cut off from the rest of
the system. Within the sandbox it will only get access to predetermined resources and requests
can be checked by our AC system.

16

Proof carrying code
(Enforcement)

Generation algorithm
Tries to build proof

Validation algorithm
checks any proof

Formal safety proof
accompanies code
express properties: e.g.
first order logic with
type, memory safety

express proof: e.g.
typed lambda calculus

Formal semantics of code

Validate before running instead of monitor while running
17

PCC Example: Network packet filters

Potential bottle neck - high performance essential
hand-optimized assembler, runs in kernel – safety essential
(interpreted, safe language, sandbox – too much overhead)

proofs smaller than 1K, one-time proof validation below 2ms

e.g. IP
checksum

Proof Carrying Code (PCC) Instead of checking and enforcing policies at the point/time of
access we could also check the code that will be doing the access and make sure that it only uses
resource in the intended way. We can then execute the code without runtime overhead for access
control enforcement. Using a formal semantics (meaning) of the codewe can verify that it satisfied
a given (logical) policy. One application areas for PCC is performance critical applications, where

62 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

the overhead of other access control enforcement mechanisms and/or the use ‘safe’ languages is
unacceptable. Another application area for PCC is mobile agents. In the mobile agent setting, a
user sends out an (autonomous) agent which moves between different hosts, gathering data and
computing results which eventually will be returned to the user. As this requires hosts to accept
untrusted agents, safety of the agent’s code is essential. PCC is way for the host to establish trust
in the agent; by checking the proof it can be sure the agent will adhere to the policies.

18

PCC Example (2): Mobile Agents
Site has Safety policy e.g.

Memory safety
Resource usage bounds

PCC to ensure untrusted agents are safe
Access database of airfares.

assigned access level when received
may only look at lower level database records

Agents must prove:
terminate within given number of instructions
not exceed preset bandwidth
etc.

20

Discretionary – Mandatory AC

Who decides the access rights ?
Owner of the file
Owner of the system (system security policy)

Owner file not always `owner’ information
Classified information.
Programs acting on behalf of the user
Personal information

5.2 Security Models

Recall the discussion on security models in the first lecture. To be able to understand a security
policy we need a security model. The AC matrix security model gives the meaning of policies
in the term of relations on subjects-objects and rights. With RBAC we have the addition of the
notion of roles and permissions assigned to roles (Anderson [3, Ch. 7]) refers to this as a Security
Policy Model). With the RBAC security (policy) model we can find the meaning of policies using
these extensions; i.e. what relation on subject-objects and rights these policies express. Here we
will see other security (policy) models that, like RBAC, introduce newmechanisms to express and
interpret security policies.

When considering AC and security models it is important to consider who is the authority; who
is entitled to set/change a policy on a resource (some AC frameworks(security models) manage
this aspect as well e.g. adminstrative policies in RBAC). A key distinction here is that between
discretionary andmanadatory access control. In discretionary access control the users are in control
of the resources; e.g. if I create a file I can set the permissions on this file. This is fine if the
information in the file is mine, however, this is not always the case. I may be allowed to read
confidential company data (and write my conclusions in a file) but should of course not distribute
the file outside the company. Inmandatory access control, the system is in charge of the resources.
E.g. if I create a file the system will set its permissions based on the information contained in the
file. A combination of the two types of AC is also possible; e.g. the system sets my file to ‘within
the company only’ but I get to decide whom within the company gets to read it.

In amilitary setting confidentiality of certain information is essential. Clearly a formofmandatory
access control is needed. Multi level security models such as the Bell-LaPadula (BLP) model have
been introduce and are still being used for this purpose in this setting. In BLP, the resources are
assigned a classification (security label) which is a level indicating how confidential the informa-
tion is. Basically the levels form a simple increasing sequence e.g. public-confidential-secret-top
secret. (Though BLP also supports compartmentalization using code words, see latices based se-
curity below.) A user (and a process running on behalf of the user) is also assigned a security
label; the clearance level. The simple security property of BLP is that users are not allowed to
read document above their clearance level (No read up). This is likely what you would have ex-
pected. The special property of the BLP model is that also a user is not allowed to write to a lower
level (this is called the ‘no write down’ or *-property). The goal of this property is to prevent a

63 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

high level user or process (e.g. a trojan, see also Section 3.3) from leaking information to a lower
level.

21

Multi Level Security
Military background - still commonly used

TOP SECRET

SECRET

CONFIDENTIAL

OPEN

Add to Mission Plan:
Stop for sponges

Protects confidentiality
but not integrity Prevents e.g. Trojan from

writing to lower class

BIBA: Dual of Bell-LaPadula for integrity

22

Multi Level Security (cont.)
High Watermark – Dynamic clearance level

Clearance floats up as needed (up to max clearance level)

Air-gap separation (physical disconnected systems)
Data diode allows one-way flow (Protect against covert channels)

Biba + BLP
Two labels (confidentiality, integrity)
Read data with lower conf. label, higher int. label
Write data with higher conf. label, lower int. label.

To help protect sensitive data, the principle of least privilege is often used. Users work at the lowest
clearance level that allows them to access the resources that they need, which may be lower than
their (maximum) clearance level. Within BLP this also has the advantage of being able to write to
documents at that lower level. This can be done dynamically; the clearance level increases (upto
the maximum level for that user) as more sensitive documents are read. Note that this affects the
files that the user can write to. For example, the security label of any temporary files being used
to be increased as well otherwise we cannot write to them anymore. Related to this is the problem
label creep; when reading several files any file written after this will have to have a security label
that is a upper bound of all read files. Documents can quickly become (too) highly classified.

The label creep and the fact that one cannot write to a lower file or in other way send information
to entities with a lower clearance level is a big practical problem. Yet it is exactly the goal of
the system to stop such information flow, to prevent disclosing confidential information. Still
one would like to have the possibility to communicate ‘harmless’ information. Declassification
is a technique where the restictions are relaxed and specific, well-defined information may be
assigned a lower classification.

If you look at the BLP rules we see that only the confidentiality of data is protected; a sailor
cannot see what the mission plan is but can overwrite it. The BIBA model is the dual of BLP
for integrity. BIBA can also be combined with BLP (assigning two seperate security labels, one for
confidentiality and one for integrity). Though different classifications are possible one may end
up allowing only read-write in single level (which removes any benefit from creating an order of
security levels; they become the same as isolated, unrelated labels.)

23

Language Based Security

Check program does not leak info to lower levels
Run time enforcement - check levels
Static analysis - check code

Direct Flows (write high value to low variable)
write mission.plan to cleaning supplies

Indirect Flows (value high var effects low var)
if (mission.plan == invade)

write `sponges’ to cleaning supplies
Covert Channels (observable effect high value)

if (mission.plan == invade)
compute - compute - compute

less resources available to other (open) processes

TOP SECRET

SECRET

CONFIDENTIAL

OPENMultiple levels in one system

24

Non-interference

Indistinguishability
Everything the attacker can see is the same
Usually for input - output
Prevent covert channels

Need to model the side channel

Non-interference
If inputs indistinguishable
Then resulting outputs indistinguishable

Implementation To achieve BLPmilitary systems often use physically separated systems for the
different level (air gap separation. These system are connected with ‘data-diodes’ which allow
data to only flow only one way (from the low to high level). On normal networks one could hide

64 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

information in e.g. the timing of acknowledgements of received packages. The data-diodes try
to prevent information from being send by such covert channels (as well as directly, obviously).
Timing is an example of a side channel; another (unintended) channel of obtaining information
about a running process/system other than the input given to and the output generated by the
process/system. (E.g. the response time of the system, temperature of the CPU, etc. See also the
section on side channel attacks ??.)
Using physically separated systems is often not feasible. To implement multiple levels in a single
system one needs to check that programs cannot leak data from a higher level to a lower one, ei-
ther directly or indirectly. The property non-interference is used to capture ‘no information leaks’;
the high level activities and data do not interfere in any observable way with the low level ac-
tivities and data. This guarantees that anyone with only access to low level information cannot
discern anything about the high level information. Of course, what it means to ‘not interfere in an
observable way’ depends on what is observable i.e. on our attacker model. To precisely, formally
define non-interference we thus rely on a notion of indistinguishability to capture the observation
capabilities of an attacker. Indistinguishability gives whether two situations are the same from
an attackers point of view. Note that ‘being able to tell situations apart’ is just a way of captur-
ing/describing knowledge. E.g. Consider a program that outputs two booleans b1 and b2 and an
attacker that knows the output b1 but not output b2. We express this by saying that the attacker
can distinguish between the situations in which b1 is true and any other situation in which b2 but
not between e.g. b1 =true, b2 =true and b1 =true, b2 =false. (See also Exercise ??). A common
assumption is that the attacker can observe all input and output at the lower level, but not those
at the high level. (Typically only two levels are considered in the analysis; all levels at or below
the attacker’s level are grouped in the ‘low’ level and all other levels in the ‘high’ level.) If we also
consider certain covert channels then the related side channels needs to be included (modelled)
in the indistinguishability notion as well.

Given a notion of indistinguishability we define non-interference as; if the inputs given to the sys-
temare indistinguishable for the attacker then the output (including side channelswhere relevant)
is also indistinguishable. In other words the attacker learns nothing from the system running; all
knowledge she has afterwards she already had before hand.

25

Multi Lateral Security
Compartmentation

Non-hierarchical levels
Lattice structure

Chinese wall
Prevent conflict of interest
Non-interference

26

Lattice based security models

Set of security labels
partial order

some elements may be incomparable
A least upper bound for each set
A greatest lower bound for each set

Sometimes the confidentiality of data is determined e.g. by the topic it treats and a should be
restricted to those involved in that topic; e.g. data about foreign countries should be available to
a low ranking diplomat but not to minister of the interior, eventhough the minister has a higher
clearance level in general. Compartmentalization addresses this introducing security levels that
can be incomparable; e.g. Secret-Foreign is lower than Top Secret-Foreign but incomparable to Top
Secret-Internal. (Related to this are Chinese Wall policies. Consider a consultancy company that
works for multiple competing companies. The companies will not want their information to get to
a competing company. A ChineseWall policy can be applied; people working on project X are not
allowed to work on projects for competing companies.) The security levels are not totally ordered
but form a lattice. In a lattice not all levels can be compared but given a set of levels there is always
a least upper bound; a level that is at least as big as all levels in the set and is the smallest of all

65 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

levels that satisfy this property. In this way, if we combine different documents, we know the level
the new document should have. Similarly a lattice has a greatest lower bound; if several people
are working together than the greatest lower bound of their clearance levels is used to determine
the documents they may access.

27

Least Upper/Lower bound

28

Example structures

If we consider the red levels in slide 27 above we see that the blue level is the only one which is
above all of the red levels. Thus it is automatically the smallest of these, i.e. the least upper bound.
Both green levels are below all the red levels (lower bounds). The ‘Secret’ level is the biggest of
the green levels; it is the greatest lower bound. If we look at the Hasse diagrams of slide 28 we see
that all are lattices except figure e. The green levels are the upper bounds for the set of red levels.
However, there is no smallest amongst the green levels.

5.3 XACML

30

OASIS XACML
Policy Enforcement point (PEP)

Receives user requests, enforces decisions PDP

Policy Decision Point (PDP)
Checks request permitted based on policies

31

XACML Policy (sets):
Policy set

Combining Algorithm
Set of Policies

Policy
Target (applicable to what)

Attributes of Subject, Resource, Action,
Environment

Rule (when applicable)
Attributes as above and conditions.

Obligations

The eXtensible Access Control Markup Language (XACML) standard is a popular access control
language and enforcement system. The system defined several components involved in the AC
enforcement. The Policy Enforcement Point (PEP) is responsible for intercepting requests and en-
suring that users only get access to the granted resources. The PEP uses a Policy Decision Point
(PDP) to determine which requests are allowed (should be granted). The PEP gathers informa-
tion about the subject and the resource and the context in which the request is being issued (the
environment) from a Policy Information Point (PIP) and incorporates this in the request sent to
the PDP. The PDP tests the request against the set of policies that it has in its policy store to make
a granted/denied decision. The PDP can also return values indicating it is unable to make a de-
cision: indeterminate(some error occurred) or not-applicable(this PDP has no policies related to
the request).

A policy set contains, in addition to a list of policies (hence policy list would be a better name than
policy set-the order can matter), a combination algorithm that is used to combine the different

66 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

decisions of the policies in the set. Examples are ‘first applicable’; the first policy to return a
decision gets selected, ‘DENY overrides’; if a single policy says to deny the request this is the end
decision, even if others allow the request and ‘PERMIT overrides’ where a single permit decision
overrides any other decisions.

A policy has a target which determines which requests it is (or at least might be) applicable to. for
those requests the rules of the policy will be evaluated. The rules, which each also have a target,
check conditions (e.g. the issuer of the requester is a student) to either PERMIT orDENY a request.
To combine the answers of different rules, the policy also has a combining algorithm. Target and
conditions are expressed in attributes which can be many things; the ID or role of the requestor,
a name or label of the file, time of day, etc. Finally obligations may be associated with a decision;
e.g. PERMIT the read operation but with some action that should be executed; e.g. notify the data
owner, delete any copy of the data within a week, etc.

33

A policy in XACML
<Policy PolicyId="ExamplePolicy"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">

<Target>
<Subjects> <AnySubject/> </Subjects>
<Resources> <Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">
http://server.example.com/code/docs/developer-guide.html
</AttributeValue>
<ResourceAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resource></Resources>
<Actions> <AnyAction/> </Actions>
</Target>
...

source: sunxacml.sourceforge.net/guide.html 34

A policy in XACML (cont.)
...
<Rule RuleId="ReadRule" Effect="Permit">
<Target> <Subjects> <AnySubject/> </Subjects>
<Resources> <AnyResource/> </Resources>
<Actions> <Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType=“...#string">read</AttributeValue>
<ActionAttributeDesignator

DataType="...#string" AttributeId="urn:...:action-id"/>
</ActionMatch> </Action> </Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<Apply FunctionId="urn:...:function:string-one-and-only">
<SubjectAttributeDesignator DataType=“...#string" AttributeId="group"/>

</Apply>
<AttributeValue DataType=“...#string">developers</AttributeValue>

</Condition>
</Rule>
</Policy>

source: sunxacml.sourceforge.net/guide.html

Policies are written in XML making them human and machine readable. (Though XML and
XACML is human readable it it not very human friendly; interpreting a policy can be hindered
by the large amount of textual overhead.) The example on the slide shows part of a policy which
allows a developer to read the developers guide document. Both the generality and power of the
system as well as the fact that it is to cumbersome to specify policies by hand already become
clear from this simple example.

32

A Request in XACML
<Request>

<Subject>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id“

DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name">
<AttributeValue>seth@users.example.com</AttributeValue>

</Attribute>
<Attribute AttributeId="group"DataType="http://www.w3.org/2001/XMLSchema#string"

Issuer="admin@users.example.com"> <AttributeValue>developers</AttributeValue>
</Attribute>

</Subject>
<Resource>

<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI"> <AttributeValue>
http://server.example.com/code/docs/developer-guide.html
</AttributeValue> </Attribute>

</Resource>
<Action> <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>read</AttributeValue> </Attribute>

</Action>
</Request>

source: sunxacml.sourceforge.net/guide.html 35

PDP responce in XACML
<Response>
<Result>
<Decision>Permit</Decision>
<Status>
<StatusCode
Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

</Status>
</Result>

</Response>

source: sunxacml.sourceforge.net/guide.html

The requests and responses are also formulated in XML. The request basically describeswho (user
and attributes; Seth from group developers) wants to do what (action; read) with which resource
(developer guide). It may also contain information about the environment; e.g. the request was
made from within the office and during working hours. The response contains the decision and
a status code.

The system is very general and by using certain formats it can be used in combination with other
identification and access control systems and standards e.g. ‘SAML profile for XACML’. Note that
XACML is an ‘attribute based’ access control system; the policies use attributes (e.g. developer)
(of the requester, resource and/or environment) to make its access control decision.

67 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

5.4 Watermarking

So far in the discussion we have focussed on preventative access control for data being controlled
by some authority. Distributed access control addressed the issue of sharing data and rights with
other, trusted, authorities. But what if the data leaves the premises of the authority? We would
still want our policies to be adhered to. One way is trying to enforce policies on remote data,
e.g. with digital rights management techniques discussed below. The other option is to deter
rather than prevent misuse. For this second approach we will, of course, need to recognize our
data being misused and determine where the policy violation happened.

37

Watermarking
Embed additional data in object
(image, sound file, video, etc.)

appearance not significantly altered
ideally: not removed by re-encoding,
scaling, noise, etc.

39

Watermark options
Visible / Invisible
Who can detect / read

anyone / those who know it is there
anyone / Encrypted content

Type of information
image, text, data, ...

Robustness
Resists recoding, attacks.

Bandwidth
Strong trade off with robustness

Video still with Net5 logo

Watermarking is a technique to embed extra information into an (typically media) object. The ex-
tra information should not make the object unusable/reduce it value; e.g. no significantly altering
of appearance. A good watermark is robust; it will survive different operations the object may be
subjected to; e.g. changing the size or encoding format of an image, added noise, etc.

The embedding information we be used to identify the content and/or its origin. For example the
‘Net 5’ logo on the image is an example of a visible watermark that allows anyone to recognize
that is image is taken from a broadcast by that company. Other watermarks may encode different
information, be invisible (or at least; not apparent) andmay only be detectable by those that know
how to look for it.

40

Watermarking Examples

Manipulate least significant bits (Spatial domain)
Error correcting codes to increase robustness
Will likely not survive translation into GIF format

Small alterations in frequency components
FFT/DCT to translate image into waves
Hide data in amplitudes of middle frequencies

Spread spectrum watermark
Correlated changes over random set of points

42 4
2

Watermarking (a.k.a. Fingerprinting)

Forensic tracking

• Payload = unique identifier of recipient

• Redistribution traced back to source

Examples

• Jan.2004: Man arrested for distributing Oscar screeners.

• Digital cinema

Embedder Detector

original
content

payload

content with
hidden payload

WM secrets

WM secrets

payload

original
content

One method to watermarking an image is to manipulate the least significant bits; this results in
minute color changes which likely will not be visible to the user. A problem is that some encoding
techniques reduce the size of the image by remove exactly this type and for the same reason;
the user will likely not notice the difference between the original and the compressed image. A
second method uses the frequency instead of the spacial domain; instead of as a grid (bitmap) an
image (color values) can be seen as the sum of a number of waves with different amplitudes and
frequencies. Slightly altering amplitudes will also have only small visual effects but spread over
the picture rather than a single bit making it more robust.

68 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

The amount of information that can be added with a specific embedding method, its bandwidth,
needs to be balanced with its robustness, as increasing robustness and carrying more information
both lead to more extensive changes to the object.

One way to use watermarking is for so called traitor tracing. By embedding a unique value into
each copy of the object that you give out, you can find the source of the leak if a leaked document
is encountered. An example is the movie screeners of Oscar candidates sent to the reviewers.

Clearly a potential ‘traitor’ would want to remove or distort the watermark in the object so it can
no longer be recognized as being his copy. Again the attacker model is important to consider
when evaluating (attacks) against watermarks; what knowledge does the attacker have.

Spread spectrum is a way to try to hide the watermark; the ‘locations’ where the watermark is
embedded are chosen randomly making it much harder for an attacker to find and distort the
watermark.

43

Collusion attacks

• Users pool their content
• Differences point to watermark
• Attackers remove watermark

"Coalition of pirates"

1pirate #1

Attacked
Content

1

1

0

0

0

0

1

1

1

10

0

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

1

0

1

1

0

1 0/1 1 0 0/1 0 1 0/1 0/1 0 0/1 1

#2

#3

#4

= "detectable positions"

44

1
1

1
1

0
0

1

Step 2: Generate matrix X with Prob[Xji=1] = pi.

Tardos scheme: Creation

user j

bit i
of watermark

X

Step 1: choose p1,..., pm (0,1); according to:

p1 p2 pmpi

n users
m: watermark bits

Step 3: Give user j content with Xj embedded (keep p and X)

If multiple ‘traitors’ cooperate, it makes it easier for them to find the watermark; difference be-
tween their copies of the same content point at locations where the watermark is embedded. By
creating a combined version which distorts these locations the traitors may try to hide that they
are involved in the leaking.

The Tardos scheme: Detection

• Image with payload y is observed.
• Compare 1’s in y to stored payload Xj

• If Xj also has 1 then evidence guilt of user j
• If Xj has 0 then evidence innocence of user j

• Strength of evidence (g):
• for guilt: big if p is small
• for innocence: big if 1-p small

• User #j gets accused if Sj > threshold

1Observed (y)

1

+

0

0

1

1

+

0

0

+

1

1

+

1

0

1

1

+

0

0

+

0

1

0

0

+

1

1

+

0

1User j (Xj)

Evidence

46

The Tardos scheme: Detection

Proven properties:
With sufficiently long code m:

n = #users m = code length
1 = Prob[accuse specific innocent]
2 = False Negative prob.

• Resistance against up to c0 colluders independent of coalition strategy

• If c>c0, then
– no false accusations!
– high prob. that nobody gets accused

Watermark encodings such as the Tardos scheme aim to protect against colluding traitors. It as-
sumes that somemethod exists to embed and extract watermark bits in the content and focuses on
what codes to encode in the watermarks. For each bit i to be embedded a probability pi is chosen.
Then, for user j the code to be embedded is chosen randomly according to the probabilities pi .
The resulting code X j is embedded in the content and stored.

If later a leaked copy of the content is observed, its watermark y is extracted and compared against
the stored codes. Each bit yi which is 1 in the observed code and also 1 in stored code j is an
indication that X j was involved in creating the leaked content. If the likelihood pi of getting a one
at location i is low then this evidence is stronger; only few people beside j will also have a 1 at this
position. If instead X j has a zero at this location it is an indication that j was innocent. Similarly

69 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

the strength of this evidence depends on the probability p j . (The given formulas have been shown
to be the best choice for ‘evidence strength’.) We add the evidence for guild and subtract the
evidence for innocence to obtain an accusation value. If this is larger than a set threshold user j
gets accused. An obvious improvement to the above scheme, is to also consider the zero’s in the
observed code, considering whether the two bits are equal or different.

The analysis of the Tardos codes has shown that if the code is long enough (quadratic the number
of traitors) the code is resistant against collusion attacks.

5.5 Digital Rights Management (DRM)

Watermarking allows detection of misuse of content. Digital rights management tries to enforce
policies even though the content leaves the premises of the trusted authority. The basic idea is to
encrypt the content and allow content to only be decrypted in a ‘trusted environment’.

51

Digital Rights Management

Usage rules
Expressed by a digital license
Grants rights to a user, e.g.

Frequency of access
Expiration date
Copy and transfer rights

Match business model
rental, subscription, try-before-buy, pay-per-use, ...

49

DRM Trust Model

DRM is not only technology
Trust Model specifies

Legal agreements
Compliance rules
Robustness rules
Security related services

DRM is not just a technology; an effective technology is not possible without some assumptions
about its use. Thus a DRM system also defines an environment in which the technology is de-
ployed to ensure these assumptions can be met. A trust model specifies (legal) responsibilities of
parties involved, and rules they have to comply with.

50

DRM Examples
HDCP (hdmi)
ITunes (FairPlay), Windows Media DRM
Video on demand (set top boxes with smartcard)
Content Scrambling System (CSS)

used on DVD, quickly broken
non skipable tracks on DVDs

Early players had `bugs’ which allowed skipping
Online Free Record Shop
Sony’s `rootkit’ (XCP)
OMA, Marlin, OMArlin

51

Digital Rights Management

Usage rules
Expressed by a digital license
Grants rights to a user, e.g.

Frequency of access
Expiration date
Copy and transfer rights

Match business model
rental, subscription, try-before-buy, pay-per-use, ...

DRM enforces policies. It thus has a policy language with which to express policies; see the dis-
cussion on access control policies before. By using different types of policies the same system
can support different business models for use of the content. Note that AC policy languages
such as XACML can also be suitable as DRM policy languages; both aim to specify usage rights
of resources. Permissions/Rights/actions, objects/resources/assets and subjects/users/parties,
different names for the same key components.

70 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

52

DRM Policy Languages

Source: Frank Hartung. DRM Components and Rights Expression Languages, 2004. Slides on
Multimedia Content Protection.

53

ODRL Rights Expression Language

XML document
Assets
Rights
Parties

Source: http://www.w3.org/TR/2002/NOTE-odrl-20020919/

The management part of DRM involves a distribution method and enforcing the specified rights
(within a compliant environment, see discussion above)

54

Digital Rights Management
Specification of usage rules
Distribution of licenses
Enforce or check compliance with licenses

e.g. encrypt content, require trusted
environment for decryption (e.g. requires
specific viewer)
dedicated hardware, e.g. set top box with
smartcards, DIVX, USB dongles
Self destructing media (EZ-Ds, Self-
Destructing USB Stick)

Inspector gadget reading
a `single use’ message

55

A basic model

Source: Digital Rights Management for Content Distribution by Liu et al.

(Content manager)

(License manager)

Abasicmodel for aDRMbased distribution system considers besides the providers and consumer
of content, also distributers which provide protected (e.g. encrypted) content and a rights seller
that sells the rights (licenses that contain decryption keys, usable by compliant hardware) to use
the content.

56

More detailed specific instance
(source: Privacy, and Trust in Modern Data Management by Petkovic & Jonker)

60

The Analogue hole
Fundamental problem DRM

Content needs to be shown to user
Record and digitalize analogue signal

Loss of quality
Amount of effort

Trusted playback
DRM embedded in TV (e.g. HDMI)

Trusted recording devices
VCR/Video camera does not record protected content

A more detailed view of a specific system shows the main components of the system the part
on the right is local to the consumer. The lower components deal with decryption keys and de-
crypted content and thus need to be trusted by the content provider (thus will typically need to
be compliant devices). Of course the final recipients of the content are not compliant devices;
the consumer themselves. The content will have to be converted to analog form to be consumed.
Once in analog form most protection scheme will no longer work; this is known as the analog
hole. In theory one could e.g. watermark the content even in analog form and have the recording

71 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

device look for watermarks and refuse to record watermarked content. The technical problem is
having to make each recording device compliant (and use the same system). An more important
problem, which applies to all DRMmethods is that of trade-offs; the DRM restricts the use of the
content but some of this use is perfectly legitimate (e.g. fair use), even though the license does not
specifically state the right. What falls under fair is different for different countries and is subject
of ongoing legal debate; capturing it in a DRM policy is not possible.

57

DRM (cont.)

Different goals but usable for DRM:
Mandatory access control

Access control policies set by administrator
determine rights, not creator of the files
implemented in SELinux, SUSE AppArmor,
TrustedBSD, Trusted Solaris, ...

Trusted computing
Trusted Platform module
Create required trusted component

62

Other applications of DRM

Protection of private data within enterprises
Place usage policy on data entered in web form
Electronic health records

Alternative to enforcing: a posteriori AC
Possible if users can be held accountable
Clear for examples above. More difficult in general

Observing actions
Tracing source of data (e.g. watermarking)

As DRM is a form of access control, some access control systems can also be used for DRM and
DRM systems can also be applied for addressing access control requirements in other settings
than multimedia content protection, in which case they are often referred to as ‘sticky policies’.
If users can be held accountable, one could use other sticky policies with monitoring instead of
enforcement; data use is monitored and compliance to policies checked afterwards rather than
enforced at access time. For settings where availability of data is even more important than con-
fidentiality, like in a hospital, this is a preferable solution.

5.6 Conclusions

In this chapter we have looked at access control and content protection mechanisms. Expressing
rights (policy) and enforcing them are the key goals. This has to be done in a convenient, usable
and maintainable way. The need for convenience and ease of use apply for the specifying and
maintaining of policies on the one hand but also for the users of the protected content/resources
on the other hand.

If you wish to learn more about access control mechanisms there is the Master course on Dis-
tributed Trust Management (2IS25).

5.6.1 Literature

Suggested reading (check the course page [2] for the most up to date list of suggested reading
materials):

• Security Engineering Introduction [3, Ch 4,7,8,20]; access control and related topics as well
as copyrights (DRM and Watermarking).

• Logic inAccessControlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
01210062

• ABrief Introduction toXACMLhttp://www.oasis-open.org/committees/download.
php/2713/Brief_Introduction_to_XACML.html

• ApplyingDRMtoE-health datahttp://www.springerlink.com/content/rw850u12353q5ul8

72 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

• PrivacyPreservingDRMhttp://www.springerlink.com/content/w4x8j2vknv0yumgn

• DigitalWatermarking schemehttp://www.cs.ucla.edu/~miodrag/cs259-security/
ip97.pdf. Main ideas (e.g. what is a spread spectrum, collusion attack).

• Tardos fingerprinting is better than we thought https://venus.tue.nl/ep-cgi/ep_
publ_detail.opl?rn=20088020&volgnr=217909. Sections 1 and 2.

• Patent on Digital Watermarking http://www.google.nl/patents?hl=nl&lr=&vid=
USPAT5915027&id=ao4XAAAAEBAJ&oi=fnd&printsec=abstract. Main ideas ofwa-
termarking; what does a patent look like.

5.7 Exercises

1. (a) A lattice is a partial order in which each set has a least upper and a greatest lower
bound. Which of the orders in the hasse diagrams below are NOT lattices?

(b) A common requirement for multilevel access control systems is that the security labels
form a lattice. Explain why.

(c) Permission systems for access control are often monotonic; additional credentials can
only add permissions, never remove them. Why is this important in a distributed en-
vironment?

2. Consider again the online music store of the previous two chapters. Review your require-
ments analysis, addingAC considerations; threats and countermeasureswhere appropriate.

3. (*) In the logical AC formula Dr O f (D, x) → may Read(D, Record(x), x) we are actually
using a function Record that for any patient returns the object that is the record of that
patient. Give an equivalent formulation using only predicates (you will need to introduce a
new predicate).

4. Describe the following scenario and situations (as far as possible) using a logical system, a
role based access control system and the resulting access control matrices.

AHospital has a patient electronic health record (EHR) system. An EHR describes themed-
ication history of a patient. There are two possible actions on the EHR; read the content and
add a new prescription.

• The hospital has Doctors Daisy and Edward, Nurses Nancy and Mark and Patients
Alice, Bob and Charlie.

• Doctors are allowed to read the health records of patients.

• The doctor treating a patient is allowed to add new prescriptions and may let a nurse
read the health record of the patient.

73 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

• Daisy is treating Alice and Bob, Edward is treating Charlie.

• Nurse Nancy is assisting Daisy with the treatment of Alice.

Give a scenario in which Nancy reads the record of Alice; include the steps involved and
what happens in/with the AC system.

5. Translate the following XACML Policy to text:

<Policy PolicyId="SamplePolicy" RuleCombiningAlgId=
"urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides">
<Target>
<Subjects> <AnySubject/> </Subjects>
<Resources> <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">SampleServer</AttributeValue>
<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
</ResourceMatch> </Resources>
<Actions> <AnyAction/> </Actions>
</Target>

<Rule RuleId="LoginRule" Effect="Permit">
<Target>
<Subjects> <AnySubject/> </Subjects>
<Resources> <AnyResource/> </Resources>
<Actions> <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">login</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="ServerAction"/>
</ActionMatch> </Actions>

</Target>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-equal"
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">
<EnvironmentAttributeSelector DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>
</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</AttributeValue>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-less-than-or-equal"
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">
<EnvironmentAttributeSelector DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>
</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#time">17:00:00</AttributeValue>
</Apply>
</Condition>
</Rule>

<Rule RuleId="FinalRule" Effect="Deny"/>
</Policy>

74 Slides and notes Security course 2013 / Version 1.0

