
Technische Universiteit Eindhoven University of Technology

6 Authentication

6.1 Introduction

Who are you? Depending on the situation you could answer this question by giving your name
(“I’m Bob”), a group you belong to (“I’m a student”) by giving the role you are playing (e.g. “I’m
the bartender”), etc. Similarly your identity in a computer system can be a unique property of you
(your user name, bank account number, public key) and/or something you share (being a student
at the TUe) and/or something you are only part of the time (being a bartender in the weekend).

Exercise 3 Validation that a user name indeed belongs to you is typically done with a password. How is
this done for the other examples of identities given above?

So you know who you are, but can you proof it? I.e. how can we validate your identity, how can
you authenticate yourself? There are three basic categories of authentication methods:

• what you have; e.g. the key to your house, a bankcard, an rfid ov chip card, etc.
• what youknow; e.g. the hiding place of the spare key, a security code (pincode), a password,
your mothers maiden name, etc.

• what you are; e.g. your face which is recognized by your roommate, your voice on the
phone, your behaviour (e.g. you’re serving drinks), etc.

One can of course also combine different mechanisms, e.g. a bankcard with a security code com-
bines the ‘what you have’ factorwith the ‘what you know’ factor. Suchmulti-factor authentication
is often used when there are high security requirements such as for use of your bankcard which
represents a large monetary value; the level of authentication is matched with the requirements of
the application. By using different factors attacks which target a single factor no longer work;
e.g. pickpocketing to steal the ‘what you have’ (bankcard, a key) is not sufficient, nor is looking
over your shoulder to learn what you know (security code, password). Both attacks have to be
combined making it much harder to perform.

Exercise 4 Recently credit cards have a chip embedded and require a security code to use. However, older
cards also already used two factor authentication. Describe which factors are used and how for the old and
new cards. Compare the two approaches and giving their relative advantages and disadvantages.

When you call a close friend you can typically suffice with an ‘its me’ as authentication; your
friend will recognize you from you voice. Someone else, on the other hand, may only be able to
recognize your voice after you’ve reminded them by stating your name.

We thus distinguish between identification, finding the identity of an individual (e.g. entering a
user name), and authentication, proving that an individual indeed belongs to a (claimed) identity
(e.g. entering a password). The processes of identification and authentication are not always as
clearly separated as in the user name - password example.

Exercise 5 For the examples above, consider which process/information is identification and which authen-
tication. What are the advantages and disadvantages of combined identification-authentication?

Belowwe consider mechanisms belonging to each of the three factors, beginning with passwords
from the ‘what you know’ category.

75 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

6.2 Passwords - What you know

4

Your passwords
Everybody has several passwords

Did you choose them?
If so how?

Can you remember them?
Also if you do not use often?

Can no one guess them?
`Vectra’ bad password for known Opel fan.

5

Passwords (what you know)

But: How secure & secret is the secret ?

AsD5^#2a2fU
Hard to guess ~
Hard to remember
EasyPassword

Alice
EasyPassword
Bob
Buster
Charlie
PDf47$%2!a
Dilbert

User: Alice
Pwd: EasyPassword

Recovery
Alice’s
Mother’s
Name

Passwords are a very popular way of verifying your identity; they are familiar to the user and easy
to implement on a system, e.g. requiring no new hardware or complicated programming. They
are a key example of ‘what you know’ authentication. But do you actually know the password
and are you the only one who does? I.e. can you remember your passwords and how strong is
password authentication (e.g. can no one guess your password?)? A problem is that a hard to
guess password will likely be hard to remember. The password also needs to be stored on the
system and entered in the system when used to authenticate. Each opens up venues for attacks.

6

Example: pin protected copier

Copier in hallway
Protected by 5 digit code
Enough entropy?
If 10 users with different codes?
Number of tries needed in practice?

7

Ex2: Account passwords in Unix

Usually user chosen
Passwords not stored on system

Why?
HASH of a password stored instead

Hash is one-way
Collision resistant

/etc/passwrd
World readable (for Account info; name, id, group, etc.)
Hashed-password

The amount of security offered by passwords is limited. Recall the discussion on strength of
cryptographic operations; keys sizes such as 128 bites or even 2048 bits in public key settings were
considered for cypher to offer practical security; with strength expressed in the bits of entropy
provided e.g. ‘80-bits security’. So how many bits of entry does a pin code or a password have?

Consider a copier placed in a hallway that uses a 5 digit code to do both identification and au-
thentication. There are 105 possible codes thus the entropy may seem to be log 2 of 100.000 and
the average number of attempts needed to find the code thus 50.000. This could be considered to
be enough; few attackers would try 50.000 codes (if they even get the chance) to be able to make
free copies. However, we are doing combined identification and authentication. What if there are
10 users each with their own code. An attacker who is only interested in making free copies will
now only have to find one of these codes. This reduces the work to an average of 5.000 tries. This
may still seem to be reasonable. In reality the security was actually less. The actual number of
tries we needed to break this system was one! So what is going on here?

Let’s consider another example first; the password system of unix. Passwords on a unix system
can usually be chosen by the user. They passwords are not stored on the system in the clear but
rather in protected from. Newer implementations use hash functions such as MD5 to protect
the password. The traditional approach used DES encryption. Note that it does not encrypt the
password with some key; instead the password forms the key that is used to encrypt some fixed
text (zero). (Which property of a cipher are we thus relying on?) A DES key is effectively 56 bits

76 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

and a (printable) character can be expressed using 7 bits, giving that 8 characters will fill the key
(additional characters are ignored). (Technically this is not hashing but below we will refer to
passwords protected in this way also as ‘hashed passwords’.)

8

Theoretical Strength (ball park)

8 symbols; 128^8 = 72,000,000 G
brute force in little over a year at 1G/s (*)
If restrict to letters, digits or common symbols;

96^8: in ~ 3 months
Only letters and numbers: half a day

(*) 1G/s+ easily realistic (e.g. in 2002 75G/s RC5-64
passwords per seconds using distributed computing)

9

Account passwords in Unix (cont.)

Multiple passwords reduce effort
if any victim is fine

Salt
Still significant risk

Faster computers
Weaknesses found in hash functions
Cannot simply make password longer

Shadow passwords
Access only for `root’, event to hashed pwd

Even the weaker traditional scheme gives a theoretical 72 million billion possibilities. Of course
billions of login attempts, if even feasible, will show that something is wrong. We can limit the
number of allowed failed login attempts and even if set to a million the chance the attacker will suc-
ceed with random guessing is still less minute. However, what if the attacker manages to get
at our database of protected passwords. Traditionally they are stored in a world readable file
‘etcpasswd’. This file contains other account information as well that could be useful for some
programs - and the passwords are hashed so no harm giving access to those right? Right?! (Newer
systems move the hashed password out of this file to a ‘shadow passwords’ file which is readable
only by ‘root’; the most privileged user on Unix.)

To answer that question: no not right. With access to the hashed passwords an attacker can tryout
different passwords without having to attempt to login; the only limit to the number of tries is the
computational capabilities of the attacker. This makes breaking an 8 character password entirely
feasible.

If the attacker does not care about which account is cracked, finding one of the passwords is suffi-
cient. A salting scheme adds a random salt to the password before it is hashed. As different users
will have different salt values, an attacker cannot compare a single hashed password guess against
multiple users but will need to compute the hash for each user separately. (See also lab session.)
Though this prevents additional weakening due to multiple users, the growing computational
power of attackers create significant risks even then.

12

From (Password) Crack tutorial
People tend to pick keyboard patterns ("qwerty",
"!@#$%^&*', etc.) and natural language words.
Suddenly an adversary doesn't have to try 5.96E16
strings.

Success rate 22% using a lists of dutch, english,
french, german, italian, norwegian and swedish
words plus lists of names, jargon words, keyboard
patterns and anything else people tend to use when
picking passwords.

List of 2.2E7 "words“ (out of 5.96E16)
(At 1.000 tries a second: all in 6 hrs)

11

Practical Strength: Password Guessing

Often: dictionary words, keyboard patterns
Complexity too low even with added symbol

Weak!
WHY?...

Guessing: DB with often used words.
Dictionary, common names, etc.
Add symbols, numbers.
Often only a single bad password needed

Random guessing attacks may be a problem for limited length passwords but attackers can do
way better than that. Users typically do not choose their passwords by randomly generating a
sequence. This may be a good way to get a password with high entropy, it will likely also result in
a password that the user cannot easily remember. Instead users pick easy to remember patterns;
such as names, words or keyboard patterns. A smart attacker will thus try those first significanly
reducing the required effort.

77 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Trying only several million common choices from the millions of billions of possibilities one can
already find a good portion of the passwords.

13

Passwords pros and cons

Checking passwords
At time of entry
With password cracking tool

MyOnePwd

Assigned
Randomly
generated

Reuse

Password safe
(Why cannot use hash?)

Guidelines

Generation

Use

System side

14

Some Conclusions on Passwords
Very commonly used system

Well known, easy to use
Cheap

A weak form of authentication
Limited complexity
Badly chosen passwords

Have to be used in correct way
Prevent access to encrypted passwords
Limit guess rates where possible
Remember it may be broken

Different techniques to combat weak passwords each have their own advantages and disadvan-
tages. Randomly generated passwords are stronger but harder to remember. Guidelines on how
to construct ‘good’ passwords should not be too specific as that also gives information to an at-
tacker, i.e. decreases the entropy. Reusing the same password on multiple systems only gives one
that needs to be remembered (so perhaps it can be stronger) but means that a break-in in one sys-
tem (or a malicious administrator) will affect the security of other systems as well. A password
safe can be used to store different strong (e.g. randomly generated) passwords on different sys-
tems but does create a single point of failure, both with respect to confidentiality (all passwords
protected by a single master password) and availability (if safe unavailable or master password
forgotten then all passwords are lost).

Overall passwords form an easy to use but not very strong form of authentication. Protecting high
value resources with only a password is not advisable.

6.3 Biometrics - What you are
When youmeet someone you knowyouwill recognize their face, recognize theway theywalk, etc.
When someone brings you a menu you identify them as the waiter. You may identify someone
hanging around a shop carrying bags and watching the sales person instead of shopping as a
potential shoplifter. When immigration compares you to the picture on your passport. Biometrics
are used; physical and/or behavioural aspects of the subject. Clearly these fall under the ‘what
you are’ category.

16

Biometrics
Physical and behavioral characteristics, e.g.

Fingerprints
Iris
facial characteristics
hand measurements
grip pattern
signature
voice
typing pattern
DNA
etc.

17www.cl.cam.ac.uk

www.byometric.com

Example: Privium
program at Schiphol

Iris recognition
Profile stored on card
Skip passport check
Fallback

Regular check
At front of the line

Examples of applications of biometrics include the privium program at Amsterdam Schiphol air-
port which enables frequent flyers to be authenticated by means of iris recognition so they can
avoid the (lines at the) passport check. Some laptops include a fingerprint scanner which can be
used instead of a password. Passports contain two different biometrics; pictures and fingerprint
information.

78 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

18

Typical Mode of Operation

Verification is easier than identification…
23

Variation in Measurements

Every measurement slightly different
Enrollment

Profile (e.g. average) from many measurements
Validation

New measurements approximately match profile?
Threshold describes allowed distance

Trade off false acceptance rate - false reject rate
Quality often specified by equal error rate

A biometric based identification system typically operates in two phases; first there is the enroll-
ment phase in which a template is created for each subject. The template consists of scores on
multiple features which are quantifiable aspects (e.g. the distance between the eyes, length of the
nose, distance nose-mouth, etc.) extracted from a measurement done by some biometric sensor
(e.g. a camera, fingerprint scanner, etc.).

There are always variations in the biometric measurements; noise, imperfect extraction, but also
changes over time; the biometric of the subject is not exactly the same as when the enrolled hap-
pened. For enrolment this means we will typically want to use multiple measurements to help
reduce noise and ensure the profile reflects the ‘typical’ measurement for the user. For validation
it means that we will need to allow for small variations in the measurement. But what is small;
i.e. what is the threshold for allowed variation ? Here we have a trade-off between false acceptance
and false rejection. If we set a high threshold (i.e. allow larger variation) this means it is unlikely
that wewill reject the correct person i.e. a low false reject rate (also called ‘insult rate’). However, it
also gives a higher false acceptance rate (also called ‘fraud rate’); the chance of an incorrect match
is increased. Setting a low threshold reverses this giving a high false reject but low false accept
rate. There is no universal ‘right setting’ for the threshold; one has to choose this depending on
the application. To still have a single number that can be used to compare two biometric schemes
one often looks at the equal error rate - i.e. the threshold is chosen such that the false accept and
false reject rate are the same. Obviously the lower this equal error rate is the better.

With passwords we have seen that identification is harder than authentication; we loose entropy
if we use the password to both identify and authenticate instead of only authenticate the user.
We have a similar situation with biometrics; validating an identity claim requires comparing a
biometric measurement against a single profile while identification requires comparing against
each entry in the database, increasing the change for an incorrect match. Note that the privium
example does biometric authentication; a card provides the claimed identity (as well as storage
for the profile).

19

Characteristics biometric system
Universal (everyone has it)

Uniqueness (different for everyone)

Permanence (same over time),
...

20

Characteristics biometric system
Collectability (usability, convenience),

Performance (accurate and fast)

=

A good biometric has the following characteristics:

79 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

• Universality; everyone (within the target audience) has it. Voice recognition is not possible
for a mute person, signature not for someone who cannot write, fingerprints not for people
who have done a lot of manual labor with their hands as fingerprints can ‘ware off’, etc.

• Uniqueness; it is different for everyone. The more unique a profile, the stronger the authen-
tication provided by a match.

• Permanence; it stays the same over time. If the biometric changes between enrollment and
use then the profile will no longer match the new measurement.

• Collectability; usability, convenience. Useability of the system depends on how easy it is to
take a biometric measurement (e.g. do I have to stand straight in front of the camera, at a
fixed distance, do I have to type a page of text (to recognize typing pattern) everytime want
to log on ...)

• Performance; accurate and fast. It has to be possible to measure and extract features consis-
tently and within a reasonable amount of time/effort.

• Acceptance; user and societies view. Users may not accept that their finger print/picture/...
is collected (for the purpose of authenticating to the system).

• No Circumvention; not easy to fake. Fake fingerprint - photo in front of camera - etc. Note
that this also dependent on the way the biometric system is used, how the measurement
taken; e.g. could I hold a photo in front of the camera or is there a supervisor that checks
that I am standing there.

21

Characteristics biometric system

Acceptance (user and societies view)

Circumvention (easy to fake)

22

Some Comparisons

Choosing a biometric suitable for your application is a matter of the trade-offs between different
characteristics. If ease of use is important then high collectability is needed, for strong authen-
tication a high uniqueness is required. Along with the biometric one also should consider what
threshold to choose, making a trade-off between false acceptance and false rejection rates.

24

threshold => FAR – FRR trade-off

t small

t big

26

Biometrics
Privacy & `key’ loss issues:

DNA `blueprint’ of a person
very privacy sensitive
interesting e.g. for health insurance companies

Information does not change, cannot be replaced
Information left everywhere

Your fingerprint is on the chair, desk, lunch plate, etc.
Not transferable (*)

Biometric passports
electronic picture (e.g. against fraud with ID)
fingerprint (e.g. against `look alike’)

The type of application and how well we can deal with false accepts/rejects influence the thresh-
old that we choose; In forensics application one is looking for suspects to investigate further and

80 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

false rejects (missed the culprit) are far worse than false accepts (additional suspects to look at):
a high threshold is chosen. In high security applications false accepts are far worse than false
accepts which likely can be dealt with in another way (e.g. like in privium example where after a
failed authentication one can revert to the normal passport check (without having towait in line)):
a low threshold is chosen. In many civilian applications both false rejects and false accepts are
similarly undesirable and allowing one to be high to improve the other a little bit is not acceptable;
a medium threshold is chosen.

You cannot transfer your biometric. What you know or have you can give to someone else but not
so with what you are. This may seem like a good property for identification - however, typically
the end goal is to authenticate subjects and assign them some rights (this is the owner of the car
and she may start the car) rather then identify them (this is Alice). We have to be careful that we
are achieving the right goal and that we do not threaten a more important goal (e.g. keeping your
finger...).

When someone finds your password, you choose a new one. If you lose your key you replace the
lock. A biometric is not replaceable; you cannot change your fingerprints. A biometric does not
remain secret; you leave your fingerprint on the glass you use, everyone around you can see your
face (which may be relevant with respect to circumvention). Despite not being very secret they
can be very they can still very privacy sensitive (e.g. Your DNA, pictures of you, etc.). Combined
this means that storing a template unprotected is not a good idea. (Note that the database should
also be protected against insiders e.g. a database admin. Encrypting the profiles provides no
protection against someone that can get the decryption key.)

Template Protection With passwords we used a hash as a one-way transformation. By storing
the hash the passwords are not (immediately) recoverable even if we manage to get access to the
system. To check that an entered password is correct we hash it again and compare it to the
stored hash value. We cannot use a hash in this way with biometric templates; a new biometric
measurement should be close to the stored template, but will not be exactly the same. As such its
hash will be completely different from the hash of the stored template. (Recall that a good hash
is a random function; two inputs that are close together will still result in completely different
outputs.) Other protection schemes are needed.

One class of template protection schemes apply transformations to the features; trying to make
the stored feature reveal little about the biometric itself (e.g. a picture that is warped so it is no
longer be recognizable). Adding noise or applying one-way transformation that do map close
points to closely related points. Another class tries to extract a binary key from the biometric.
Below we look at the setup of one such a system.

Template Protection

27

Template
Storage

Securely Store templates
• Normal hash not possible

28

A Template Protection Scheme(*)

Shielding function
G : Rk × {0, 1}k {0, 1}K

K-bit secret S chosen randomly,

biometric X

create helper data W so G(X,W) = S

(*)Practical Biometric Authentication with Template Protection, P. Tyles et al.

k Features K bits secret

To translate a biometric measurement into a binary key, a shielding function is used. First a K -bit
key is randomly generated for the user. The shielding function will map the biometric template to
the K -bit of this user. To be able to do this the function uses k bits of so called helper data. Instead
of the template we now store the helper data. For a new biometric measurement we apply the

81 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

shielding function to the new measurement and the stored helper data to obtain the key (which
can then be verified).

29

Template Protection Scheme (cont.)

Noise insensitive (-contracting)
d(X’, X) < => G(X’,W) = G(X,W) = S

Secure (-revealing): I(W; S)
W leaks less than bits on S

Template protecting (-revealing) : I(W; X)
W leaks less than information on X

Shielding function G : Rk × {0, 1}k {0, 1}K

helper data W

30

Template Protection Scheme (cont.)
Enrolment:

extract features X from Alice’s biometrics
choose random secret S
compute helper data W
Use one-way hash function H and store

(Alice, W , H(S))

Verification of identity of Alice:
measure biometric: X’
load helper data W for Alice
Compute S = G(X’,W) and H(S).

The shielding function should obviously also make sure that measurements close to the template
map to the same key so the correct key is recovered. It should also make sure that the key remains
secure; the helper data should not reveal the key. Finally, as our goal is to protect the template,
the helper data should not reveal the template.

Biometrics conclusions:
-Varying strength of identification
-Can be tailored to the application
-Additional hardware needed
-Non-replaceable
-Privacy & Acceptance

6.4 Hardware tokes - What you have

44

Functional & Security Goals

Example Tokens

45

Physical security

Secure processing
(image source: IBM)

Hardware security tokens, e.g. a key to your house, a credit card, your ov chip card, your tele-
phone, fall in the ‘what you have’ category. (Note that when we look at how we can be sure that
‘what you have’ is actually the what we are looking, i.e. when we try to authenticate your token,
we again see the same factors appearing; we can use e.g. its shape (what it is) for your house key
or information that it stores (what it ‘knows’) for your credit card, or a sim card (what it has) for
your phone.)

82 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

46

Smart Card History

Dethloff (‘68), Arimura (‘70), Moreno (‘74)
First chip by Motorola & Bull (‘77)
France Telecom phone card (‘84)
Java Card (‘95)
1 Billion Java cards (2005)

Used in many SIM and ATM cards

Standards (ISO 7816, GSM, EMV, VOP, CEPS)

47

Form factors

85.6 mm

53.98 mm

0.76 mm SIM Card

Contactless Card

I-button
Embedded `Card’

ISO 7816

Physical tokens may contain secrets that need to be protected; in case of loss of the token but
possibly also against the holder of the token herself. Consider the example of the chipknip where
the card stores its own balance; the holder should not be able to raise the balance without paying
for it.

48

What makes the card smart?

CPU (8-bit, 16/32 bit)
Memory (RAM, ROM, EEPROM/Flash)
I/O channel (Contact/Contact less)
Cryptographic co-processor
On card devices (Fingerprint, display)

49

Applications of smartcards (1)
Banking

(new) creditcards, Chipknip, internet-banking
(e.g. ABN-Amro card).

Telephone cards
Toll payment

`Rekening rijden’
Public transport

Many systems in use
OV chip card

As the holder has access to the token, physical tampering with the hardware to extract or change
information on the token is a threat that needs to be addressed; the token has to be made tamper
resistant. Smart cards arewell known examples of tamper resistant deviceswithmany, sometimes
high value, applications. As such they are interesting targets for attackers.

50

Applications of smartcards (2)
Identification & Authorization

eNik (Electronic ID)
SIM cards
Building Access cards
Loyalty cards

Secure data storage/access
Privium program schiphol
Electronic health record Germany

51

Terminals

Embedded systems
Standards (ISO 7816,
PC/SC, OCF)
Communication: APDU
(Application Protocol Data
Unit)
Problems: connections,
yield, power, thickness

Logical attacks against smartcards use flaws in the design of the system; the use of weak crypto or
protocols, mistakes in the implementation. Because the attacker has physical access to the device,
however, there are additional attack possibilities; side channel attacks in which the attacker learn
more by observing the physical properties of the device and hardware attackswhere the hardware
is manipulated to e.g. extract a secret.

83 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

52

Attacks on smartcards

Logical Attacks
crypto, protocols, implementation

Physical attacks
hardware

Side Channel attacks
physical properties

Invasive - Non-invasive
53
53

Physical Attack
Removing chip from smartcard

heat, etching, acid, etc. to remove protective covering

[Source: Oliver Kömmerling, Marcus Kuhn]

Reading out the rom memory, either directly or by re-enabling a testing mode that was disabled
before issuing the card, breaking or creating connections using an ion beam and eavesdropping
channels on the chip by physically connecting to them are examples of hardware attacks that are
employed in smartcard testing labs.

54
54

Eavesdropping & Altering
Physical needles
Electron beam
Ion beam

Also remove/create
connection

Read out Rom, etc.

[Source: Brightsight]

blown fuse: Restore to re-enable testing mode
55

Countermeasures

Smaller circuitry
makes many physical attacks harder

Obfuscate chip layout
eg hide bus lines

encrypt bus, memory content
add sensors

Detect tampering

Several logical attacks have made the news; the ov-chipcard being a key example. These attacks
are not specific to hardware tokens and can use flaws in the design (see also the first lecture,
Chapter ??), the access control (see Chapter ??), the protocols (see next lecture; Chapter ??), etc.

93

Active/Invasive attacks

Probing attacks:
Tap specific parts of a chip (a bus)

Change specific parts
reconnect test circuits

...both require special equipment
Map entire chip logic

If algorithm/implementation unknown...

56

Logical attacks

Card reader and PC (*)

Man in the middle

(*) E.g. Software from RU Nijmegen to readout chipknip:
http://www.ru.nl/ds/research/smartcards/

6.4.1 Side Channel Attacks

When analysing a program, such as an encryption function, we typically look at its input-output
behaviour; e.g. does the key remain hidden if the attack can see the plain text (input channel) and
cipher text (output channel). Side channel attacks use physical characteristics of the device as an

84 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

additional channel of information. For example by looking how long a computation takes wemay
learn about how ‘difficult’ it is, which in turn may tell us something about the secrets used. How
much power a device consumes while running the program, any electro-magnetic emissions, and
heat it produces are examples of potential side channels.

68

Side Channel attacks
Use physical characteristics of the device
to gain extra information.
Examples:

Power consumption
electro-magnetic emissions (EE)
Heat
Timing information

SPA, DPA, Timing attack

69

Power Consumption

Usually easy to obtain, non-invasive

Power consumption while running DES (source: TNO-TPD).

If wemeasure the power consumption of a device runningDES (see Section ?? onDES)we can eas-
ily recognize the phases of the computation; preprocessing is followed by sixteen similar rounds
(the Feistel rounds) and then some post processing. We can recognize the cipher being used,
which may already be of some use. However, if we look at the power consumption in detail we
can do much more than this.

70

(*) Actually for most of current devices: Changing value causes power consumption;
data with many changes consume more power.

Power Analysis
Timing attacks
Simple Power Analysis (SPA)
• Power consumption is higher for a 1 than a 0(*)
• Gain extra information from a single power trace:

Data with many 1’s will consume more power.

71

Differential Power Analysis (DPA)
Look at differences in average power consumption
• Collect a set of power traces
• Split into two groups
• Find difference in average power consumption:

Difference trace

Thepower consumption allowsus to seewhat phase of the computation startswhen. This strength-
ens our timing attacks; instead of only having the overall time it takes the algorithm to complete
we know how long each phase takes. Below we will see an example for RSAwhere this is already
enough to easily extract the key.

Looking not only at the general shape of the power consumption trace but also at the heights of
the peaks, we can try to extract information directly. If at time stamp 2500 the algorithm is using a
1, it will consumemore power thenwhen it is workingwith a 0. (Actually changes in values being
put on the internal memory bus of the device are what causes much of the power consumption
but this detail is not important for the analysis. Often ‘many 1s equals high consumption’ is a
valid assumption. For devices where this is not the case the type of power analysis discussed here
may still be possible by adjusting this assumption, i.e. by using a different ‘power model’.)

If we know when a given bit of the key is used we can perform a Simple Power Analysis (SPA)
attack in which we examine the power trace at that location and judge whether the consumption
at that point is ‘high’ or ‘low’ to determine whether that bit is one or zero. Difficulties are finding
the exact location in the trace, the small difference between ‘low’ and ‘high’; it will be hard to
know whether a score is ‘high’ without having something to compare it with and noise in the
measurement may lead to the wrong conclusion.

85 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Instead of just looking at one trace we would like to have many traces which we can compare to
remove noise and see a difference between high and low. That we have to look at (near) location
2500 and that the value is high is not very clear from the blue trace alone but when we take the
difference with the green trace, where the value is low, this becomes obvious. By using multiple
‘blue’ (high) and ‘green’ (low) traces we can also average out at least some of the measurement
noise. Of course a bit of the key will always be ‘low’ or ‘high’ for all traces that we generate from
this device; we only get blue or green traces (and we won’t know which or else we did not need
to do this attack). We have to use a more indirect route to extract useful information using this
approach.

72

DPA: Bit Propagation
• Collect Traces (random inputs I1,I2,...In)

• Choose input bit X

• Group traces by value bit X

• Difference trace shows where bit X used

Partial diff. traces for DES input bit X = 16,17,18,19

Input
I1 I2 ... In

Trace
T1 T2 ... Tn I1 bit X = 1

T1 => G1
I2 bit X = 0
T2 => G0
etc...

Avg – Avg
Diff. trace

T1
...

T2
...

Boolean functionAny function (#1s)

73

Fundamental idea: Lower Complexity

Goals is to check a guess for PART of the key.

Example: 64 bit key
nr of possibilities: 18,446,744,073,709,551,616
At 1G encryption per second: more than 500 years

If one can check 1 byte at a type:
nr of possibilities (256 per byte, 8 bytes): 2048
Easily doable even if millions of instructions needed
for each check.

As a first stepwewill use are differential method to find the locations in the computation at which
certain bits of the input are being used. We need to generate many high (blue-bit is 1) and low
(green-bit is 0) traces. We can do this be choosing random inputs I1, . . . , In , feeding these to the
card and recording the power traces that this gives us. If bit X of the input I j is 1weput the trace in
groupG1, otherwisewe put it in groupG0. We end upwith two groups containing approximately
n/2 each traces. Where ever input bit X is used in the computation, G1 will be working with a one
while G0 with a zero; G1 will on average have a higher power consumption at this location. Thus
by subtracting the average of the traces in G0 from the average of the traces in G1 we should get a
positive value at this time location. For all values that do not depend on bit X the expected values
in groups G1 and G0 are the same; the difference in averages should thus be (close to) zero.

Spikes in the difference trace (the difference between the averages of the trances) thus showwhere
the bit we selected is being used. We have thus found a way to extract information by differential
information. The next step is to extract (even) more interesting information. The first observation
that we can make is that we do are not restricted to checking for an input bit; we can look for any
boolean function that we can compute (given the input). A second observation is that the function
does not even have to be boolean; we can look for an arbitrary function and group based on ‘the
function outcome hasmany ones’ (so expect high power consumptionwhere this is computed)’ or
‘the function outcome has few ones (so expect low power consumption where this is computed)’.
Again the difference between the two group will reveal where this function outcome is being
computed through a spike in the difference trace.

So how can we use the knowledge whether a function is being computed to extract keys? The
idea is that with this check we can validate a guess for part of the key, for example one byte. If
we can do this then we reduce the number of guesses needed from exponential to linear; e.g. for
a 64 bit key we would need to only check a few thousand options rather than billions of billions
of possibilities. This is thus worthwhile even if checking making a single check is a significant
amount of work.

Our goal is thus to check a guess for part, for example one byte, of the key. We do this by finding
an intermediate result that will have to be computed. For example, an implementation of AESwill
have to, at some point, compute the xor of the (round)key and the input. If we take one byte of this,
e.g. (input[1] XOR key[1]) then this depends only on one byte of the (round)key and information
that we know (the input).

86 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

74

Extracting keys with DPA

What: Validate guess for part of the key
In practice: part < 32 bits

Select intermediate result
Use guess of the key to predict
Check prediction

75

Extracting keys with DPA
What: Validate guess for part of the key
Select intermediate result

algorithm needs to compute
Don’t care where in implementation

depends on part of the key
The part to be guessed

Use guess of the key to predict
Check prediction

Input

Output

Our targeted intermediate result depends only on the input and a small part of the key. If we
knew this part of the key we could thus use the differential approach above to find out where the
intermediate result is computed: where it is the difference trace will show a spike. However, if
we use a wrong value for the key then the result that we predict will not actually be computed
so no spike will occur anywhere. But wait - this is exactly what we are looking for; some way to
tell whether our guess is correct. If the guess is correct there will be a spike somewhere in the
difference trace (we don’t even care where) and if it is not then there will be no such spike. (There
may actually be some smaller spikes even for incorrect guesses as the ‘wrong’ result may still be
correlated to some computed value but the spike for the correct guess will be the biggest.)

What: Validate guess for part of the key
Select intermediate result
Use guess of the key to predict

calculate intermediate result using guess

Check prediction

Extracting Keys with DPA

76

Input
I1 I2 ... In

R1 R2 ... Rn
Predicted

Intermediate

guess guess

Input
I1 I2 ... In

R1 R2 ... Rn
Predicted

Intermediate

Each guess
=> different function

R, R, ...

77

Extracting keys with DPA
What: Validate guess for part of the key
Use intermediate result
Use guess of the key to predict
Check prediction (see Bit-propagation);

function R, (R, R,...) computed?
Group Ti by few 1s/many 1s in Ri, (Ri, Ri, ...)
Can see where computed

Nowhere for wrong guess/prediction
Peak in difference trace: correct guess

(Also shows when R is computed)

A guess for this small part of the key can thus be checked as follows: We try each possible guess
for the part of the key. Each guess gives us a different function from input to intermediate result.
Only the function for the correct guess is actually computed by the device so it will be the only
one that will show up by producing a spike in the difference trace.

78Difference trace for Correct guess and incorrect guesses 79

Correlation power analysis (CPA)

Compute correlation: #1s in predicated
value (X) and power consumption (Y)

Or actually: sample correlation coefficient

Improves efficiency

87 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

We so far look at a single ‘low’ group and a single ‘high’ group. This discards some potentially
useful information (e.g. should the power consumption be high (6 ones) or very high (8 ones)).
We can actually be slightly more efficient by using this information in our analysis: instead of
only considering low and high we can consider all possible values; e.g. no ones up to 8 ones when
looking at a byte. Group 0 should have the lowest power consumption, 1 a little higher, 2 higher
again etc. By computing the correlation between the group number and the power consumption
we get a score which shows an even bigger difference between a correct and an incorrect guess.
(This is important if the differences in power usage are small in comparison to the amount of noise
in the measurements.)

80

Key Retrieval Example: DES

S-box 1:
subkey candidate: 24, peak value: 0,953 at position 66
subkey candidate: 19, peak value: -0,439 at position 66
subkey candidate: 26, peak value: -0,419 at position 66
subkey candidate: 7, peak value: -0,418 at position 66

81

Example(*): AES (Rijndael)
Symmetric cipher 128 bits key (i.e. 16 bytes)
First round starts with:

Intermediate value: input[i] ^ key-guess.
(Need to check 256 possibilities.)

void AddRoundKey()
{

for(i = 0; i < 16; i++)
{

inputdata[i] = inputdata[i] ^ key[i];
}

}

(*) for simple example: assume hamming weight leaks

The results show some figures of difference traces for different key guesses with the correct key
guess clearly standing out. The image of the simulation tool below shows the difference trace for
the correct key guess projected on top of the simulated power consumption (for the AddRound-
Key method only). Here we are attacking the second byte of the round key here and the spike
occurs in the second iteration of the loop as expected.

82Simulation tool from the PINPAS Project 83

Example: RSA
Public key crypto, 512+ bit key size
Encryption: calculate mpk mod M
Typical SQR-MUL-implementation:
r = 1;
for (i = 0; i < bitlength(pk); i++)
{

r = SQR(r, M);
if (bit(pk, i) == 1)
{

r = MUL(r, m, M);
}

}

Consider a SQR-MUL implementation of RSA. In such an implementation the exponentiation
(message M to the power key) that needs to be done in RSA encryption/decryption is performed
by doing a sequence of square and multiply operations. Squaring a number is multiplying its
exponent by 2 (i.e. shifting it one position to the left). Multiplying byM is adding 1 to the exponent
(i.e. setting the least significant bit). This gives an easy iterative way to build Mk .

Unfortunately this implementation is very vulnerable to a power analysis-timing attack: if we can
recognize the different rounds of SQR and MUL operations from the power consumption (which
is likely as MUL is harder than SQR) such an implementation basically allows reading out the key
from the power consumption graph as the simulation clearly shows.

88 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

84

RSA (2)

Smartcard implementation:
SQR, MUL in coprocessor

Coprocessor in tool:
Add two new instructions to processor
Java BigInteger class for functional behavior
Power consumption: leaks Hamming weights
of coprocessor input – output + timing.

85

RSA (3)
Timing attack possible:

0 0 0 1 1 0 0 0
...
if (bit(pk, i) == 1)
{

r = MUL(r, m, M);
}
else
{

dummy = MUL(r, m, M);
}
...

One defense against timing attacks is to make the running time independent of the data being
used. Here this can be achieved by inserting a dummy multiplication; at the cost of extra opera-
tions (performance loss) the revealing pattern is removed.

94

Active/Invasive attacks
Fault attacks:

Purposefully cause errors in computation;
prevent unwanted updates (e.g. pincounter)
use faulty computation to derive information.
check for dummy instructions

How:
Change voltage
Bombard with light
Shake it
Drop a hammer on it...

87

Countermeasures (1)

Randomization
Prevent traces from lining up.
Add dummy operations
Randomize order real operations

void AddRoundKey()
{ order = random_permutation(0, 15);

for(i = 0; i < 16; i++)
{ inputdata[order[i]] =

inputdata[order[i]] ^ key[order[i]];
}

}

We have to make sure that the ‘dummy operation’ looks and act real; if they are obvious the
attacker can remove them. One way to test for dummy operations is to induce errors. If the end
result remains unchanged the attacker knows that the error occurred in a dummy calculation. In
the RSA implementation with timing countermeasure this can be used to find which are MUL
operations are dummies, i.e. which bits of the key are zero.

Removing data dependent timing information does not stopDPA attacks. Actually, there prevent-
ing traces from lining up is a possible defense; if the same operation in different runs happens in
different places we cannot compare the power consumption between different traces anymore.

88

Countermeasures (2)

Randomization
Dummy operations must appear real
Correlation reduced not removed

Nr traces needed increases ~ square of probability.

Masking
Mask intermediate values with random mask

am = a XOR m
confusion: confuse mask also
diffusion: `masked version operation’.

Provably resistant against DPA

Sbox:
Compute for every possible input
in random order
return the result for the correct value

Masked computation of S-box
Input x + r (x masked with random r)
Output S(x) + s

S(x) masked with new mask s

91

One can also try to prevent the comparison between traces by changing the data rather than the
operations. By masking the data computed with a different randommask in each run comparing
different traces no longer works. One way of masking is by using an XOR with a random value.

89 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Note that we cannot remove themask to preform operations such as S-Boxes (this would create an
attackable intermediate result); instead we create a version of the S-box that works for this mask.
Only once the final result is readywill themask be removed. (The final result will go to the output
anyway so no need to mask it.)

Schemes to implement key components S-boxes with combinations of masking and randomiza-
tion that make them provably resistant to DPA have been proposed. However, the performance
overhead is big and, though resistant to DPA, they are not necessarily resistant to other types of
power analysis attacks.

92

Tamper resistant

... but not tamper proof

“make something foolproof and
somebody will invent a better fool”

Design moral: breaking card should not
break whole system

97

Exercise: DPA attack
1. Determine algorithm & location to attack

(done)
2. Gather traces (done)
3. Make Key Hypothesis (i.e. key 00,01...)
4. Check Hypothesis

Does difference trace show expected peak?
5. Check key value (not in exercise)

A main message to take away is that tamper resistant is not tamper proof. Often this is good
enough; it is not the weakest point in the system but the tamper resistant device should not be a
single point of failure. E.g. using the same key on all devices would likely be a very bad idea.

6.5 Exercises

1. Consider again the online music store of the previous two chapters. Review your require-
ments analysis, considering the role of identity management and authentication; gather
threats and countermeasures considering their effect on (these and other) threates as well
as the security goals.

2. See separate document: DPA exercise.

3. A differential power analysis attack targets an intermediate value that the algorithm needs
to calculate and which depends on part of the key. It tests a hypothesis about a part of the
key by comparing the predicted outcome using this key with the actual power consumption
of the device.

(a) Why is this useful; how can it be used to reduce the complexity of an attack?

(b) Assuming the algorithm and the input given to the algorithm are known, which in-
struction(s) in the following piece of pseudo code would be useable for a DPA attack
(explain your answer).

1. if i > 15 go to 8;
2. r1 := key[i];
3. r1 := input[i] XOR r1;
4. r1 := SBOX[r1];
5. output = output XOR r1;
6. i := i+1;
7. go to 1;
8. return output;

(c) The code in previous part contains a loop. In which iteration(s) would it be easiest to
attack the algorithm?

90 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

4. With pin payments two factor authentication of the paying party is performed.

(a) Which are the two factors, how are they implemented in this example and why are two
factors used rather than only one?

(b) What is the third factor and how could it be applied in this setting?

(c) After entering the pin the terminal shows the amount to be transfered and asks for con-
fimation from the user. What type of attacks is this ment to prevent and how effective
is this method?

5. The privium program at Schiphol airport allows its users to avoid the passport check by
using iris scans: " Ě The same advantage applies at the border check, which is directly fol-
lowed by security. Ě The identity is determined by the unique characteristics of the iris,
which are stored, neatly encrypted, on the membership card. Ě The whole process takes
about 30 seconds and then Ű if everything checks out Ű a gate opens and the security check
of personal items and hand luggage follows. If things do not check out (for example because
the iris is not correctly recognized) the traveller can continue to the Śold fashionedŠ passport
check. Ě in the US, experiments with palm prints have been taking place for several years
already, however that system has quite a few technical difficulties. The biometrics approach
of Schiphol can be considered innovative: the accuracy of the iris-scan is much higher than
other forms, such as the before mentioned palm print recognition and no other system lets
the clients carry their own data with them. This last point is fundamental. ŞWe have had
to develop every thing ourselvesŤ says Conny Lanza, ŞAll existing technology assumes that
data is stored in a database and we did not want thatŤ. [wereldverkenning.nl, 2000]

(a) Why have the developers chosen to store biometric profiles on a smartcard instead of
a central database; give advantages and risks for both approaches. How could you try
to minimize the risks you mentioned?

(b) Sketch a graph with the false accept and false reject rates for iris and palm print recog-
nition.

(c) Biometric measurements are never precisely the same and a threshold need to be cho-
sen for allowed deviation. Based on false accept and false reject rate explain what
threshold you would use in this application and indicate this threshold in the sketch
of part b.

91 Slides and notes Security course 2013 / Version 1.0

