
Technische Universiteit Eindhoven University of Technology

7 Security Protocols

7.1 Introduction

A security protocols is a ‘recipe’ for communication; it describes the sequence ofmessages that the
participants in the communication should send. The goal of security protocols is to provide secure
communication over an unsecure channel. Here secure can mean for example confidentiality
of the data exchanged or proper authentication of the parties involved and their messages. In
the example of internet banking you want both of these properties; the bank should be properly
authenticated before you enter your login information and the requests for transfers by the client
also need to be authenticated. Confidentiality is needed to protect the privacy of the client (as
well as the login information).

2

Q: Why security protocols?

A: To allow reliable communication over an
untrusted channel (eg. Internet)

Alice Bob

Security Protocols are out there…

AuthenticationConfidentiality

In earlier chapters we have seen mechanisms that can be used to achieve such properties; encryp-
tion, MACs, digital signatures, etc. A good security protocol combines these methods in a way
that all desired security properties are achieved.

4

Example: HTTPS (HTTP + TLS)
Security for web services

HTTP over TLS (transport layer security)
Provides:

Authentication server
Confidentiality, integrity, authenticity
communication

First negotiate algorithms to use
ciphers (e.g. RSA), key exchange (e.g. Diffie-
Hellman), MACs (e.g. MD5)

5

Example: HTTPS (HTTP + TLS)
Server sends public key certificate (X.509)

Can contact CA to verify.
Unknown/untrusted CA’s (e.g. self signed
(root)-certificates) ...

Client creates random nr used to create
session key
Further communication can be
encrypted/authenticated using session key

To ‘security’ browse on theweb, HTTPS i.e. HTTP over a TLS connection, is used. WithHTTPS the
server is authenticated (based on a certificate authority tree using X5.09 certificates; see previous
chapter) and confidentialilty, integrity and authenticity of the communication is provided. For the

92 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

user the authenticity is a guarantee that they are indeed communicating with the correct server;
the one that belongs to that webaddress (according to the CA). The client does not have certificates
to prove their identity; the authenticity for the webserver only means that all messages come
from the same (unidentified) party. To identify the party it needs to employ other mechanisms;
e.g. having the user enter a username and password (see also Chapter 6 on Authentication) once
the connection has been established.

Because the server has a (certified) public key but the client does not, in the setup of the connection
we can send messages confidentially from the client to the server but not the other way around.
As such the client should generate the secret (random number) on which the session key is based
(any contribution from the server is to be seen as public information).

Another commonly used security protocol is Secure Shell (SSH) which is used to remotely log
onto a server. It is a transport layer protocol that supports tunneling, in which traffic for e.g. X11
(graphical interface) connections and TCPports can be forwarded over the secure SSH connection.
SCP for securely copying files and SFTP, a secure alternative for FTP (File Transfer Protocol), also
use SSH. SSH supports password authentication of the client but also a public key can be used;
you place your public key on your account on the server. Your local SSH client can then connect
to the server by using your private key instead of you entering a password. (Though you would
likely want to protect your private key with a password/phrase but then against attackers with
access to your machine rather than eavesdroppers on the network - i.e. a completely different
attacker model.) External authentication (e.g. Kerberos) is also possible.

6

Example (2): SSH
Secure shell

remotely log onto server
Tunnelling (e.g. X11 connections, TCP ports)
SFTP, SCP for file transfers.

Creates a secure channel
Transport Layer; similar to TLS
User authentication Layer

Password
Public key
others (interactive, external (e.g. kerberos), etc.)

7

Example (3): WS-Security (WSS)
(OASIS standard)

Security for Web services
Goal: Secure SOAP message exchange
Mechanisms to construct protocols

Not fixed protocol
Single message security

But end-to-end (e.g. across multiple services
Building blocks

E.g. how to encode kerberos ticket in SOAP.

The Web Service Security (WS-Security or: WSS) standard by OASIS is technically not a protocol
but rather provides building block and mechanisms to construct protocols. Its goal is to provide
end-to-end security of individual (SOAP) messages. In a web services setting communication
may not be simply between a client and a single web service; instead information may need to
travel accross several web services. End-to-end security means that the data is protected along
the entire chain, not just for a single step in the chain.

What is a security protocol?
Message exchange between several parties
Uses (mainly) symmetric or public key crypto

Typical goals:

Confidentiality. Who can read it?
Authentication. Who sent it?
Integrity Has it been altered?
Anonymity Who could’ve sent it?
Non-Repudiation. Can deny usage?
….

9

Q: Security protocols can’t prevent?

A: Identity theft (eg. via phishing scam,
Computer taken over by virus, …)

Alice Bob

93 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

Above we have seen some examples of well-known/commonly used protocols. But what makes
a protocol work; how can security goals be achieved?

11

Authentication with a secret
Identify by sending secret

E.g. garage door remote control
Problems: Reveals secret, Can be replayed

Challenge-response
Prove you have a secret without revealing it
Guarantee freshness
Challenge: a fresh nonce
Response: Encryption of nonce

proves possession of key ... or at least: key used.
12

Authentication on a network
Challenge-response vulnerable to relay attack:

A challenges C
C passes challenge on to B and returns Bs response

On network never directly talking to B
Routers, ISPs, …

Different Authentication property
B is currently active and participating in the (same)
protocol.

Relay above is not considered an attack;1
C is (correctly behaving) part of network between A,B

1) Recall discussion security model

Lets try to construct a very simple protocol for authentication: I have a secret stored on a de-
vice/server andwhen Iwant to authenticate I send the secret. If the attacker is not able (remember
security depends on the attacker model) to see messages between me and the device and cannot
guess the secret (see e.g. the section on passwords, Section 6.2) then this solution works. On a
computer network, however, we definitely need to consider attackers that are able to eavesdrop
on the communication. With such an slightly stronger attacker model this approach is clearly not
secure - after the first time I authentication the attacker also has the secret. Simply encrypting the
secret will not help; the attacker does not learn the secret but can simply replay the samemessage
to authenticate.

A challenge-response mechanism can be used instead to prove that I have the secret without re-
vealing it. The server sends a challenge (e.g. a random number) and my response should be one
that only I can make and only after I have received the challenge (e.g. secret+challenge; which
should be sent encrypted to not reveal the secret). In this way upon receiving the response, the
server can be sure that I got the challenge and that my response is fresh and not a response that I
sent out in an earlier session.

What the server cannot know is how far away I am. When remotely accessing some service on
the network it likely does not matter how far away the user is. When running a protocol between
e.g. an OVchip card and a metro access gate one would like to be sure that the user (card) is
actually at the gate. If a response comeswithin amillisecond the challenge travelled atmost 0,001s
* 300.000 km/s = 300km thus responder is at most 150km away. To actually get useful distance
bounds one needs to use more advanced distance bounding protocols which are outside the scope
of this course. (See the Master course Physical Aspects of Digital Security (2IC35) if you want to
learn about distance bounding protocols.) In the protocol analysis treated here we will assume
the location is irrelevant.

Authentication in our securitymodel for communicating over a network becomes: Authentication
of Bob to Alice is correctly achieved when: Bob is currently active and running the same protocol.
Usually a protocol also tries to share some data (e.g. amessage fromAlice to Bob, randomnounces
to create session keys,etc.) between Alice and Bob. Secrecy of such data is thus also a common
protocol goal.

94 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

13

Motivation (formal) analysis

Security Protocols are difficult to do right!

‘‘Security protocols are three line programs that
people still manage to get wrong’’

(Roger Needham)

(Famous) Example: NS created in 1978, flaw
found in 1995.
Using formal methods!

14

What can do?

Total network control:
See all exchanged messages
Delete, alter, inject and redirect messages
Initiate new communications (has a valid identity)
Reuse messages from past sessions

Usually known as ‘formal attacker’, Dolev-Yao.
Good for automatic verification:

Finite participants, infinite messages -> decidable
Infinite participants -> undecidable

Eventhough the protocols may seem simple, it is easy to make mistakes. Formal analysis, some-
times supported with automated ways of checking models or proofs, helps to find mistakes.

15

What cannot do...

Break strong crypto
Break “hard” problems (factor long primes, etc.)
Guess pseudo-random values (eg. nonces)
Get other identities (identity theft)
Time messages & statistical traffic analysis (eg.
Timing attacks)
Alternative: Computational attacker

attacker = (prob) Turing machine running in poly-time

16

Attacker model (Dolev-Yao)

All communication through attacker
Attacker builds knowledge (AK)

Sending message adds it to AK
Derivation of other knowledge

Attacker can send messages in AK
Only way to advance honest agents

Clearly not for availability analysis.

To do formal analysis we have to be very precise onwhat our securitymodel is. We already looked
at goals (e.g. authentication) is some details. The next thing we need is an attacker model. As the
network is a dangerous place (see Chapter 3) we play it safe and assume the attacker has full
control over the network; it can intercept (all) messages, block or changes them, and create new
messages. The attacker may also have a (or several) valid identity on the network with which it
can partake in protocol runs. On the otherhand we do need some tools to be able to build secure
protocols. So we do not have to mix the analysis of the protocol logic with the analysis of the
cryptography used we assume we have ‘perfect’ cryptography available; the attacker will not be
able to decypher any encrypted messages without the key and will not be able to guess random
numbers. This attacker model is called the Dolev-Yaomodel.

17

Attacker Knowledge in Dolev-Yao

Sending message adds it to AK
Derivation of other knowledge

compose messages; m, m’ in AK => < m, m’ > in AK
decompose messages; <m, m’> in AK => m, m’ in AK
decrypt if key known; { m }k and k in AK => m in AK
encrypt with known key; m and k in AK => { m }k in AK

AK infinite
symbolic representations
most-general unifiers.

19

A simple protocol…

A->B : mail
Let’s add confidentiality… :
A->B : encrypt mail with pk(B)
Let’s add authentication…:
A->B : encrypt mail with pk(B), sign with sk(A)
Still not good?:

Replay protection
Session keys?

The Dolev-Yao model is very suitable for automated formal analysis. As long as the number of
(potential) participants is finite verification of properties like authentication is possible (decidable)
even when considering an arbirary number of possible messages. An alternative attacker model

95 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

is the computational attacker where an attacker is an arbitrary probabilistic turing machine. With
such an attacker model we can also consider the cryptographic primatives being used (is encryp-
tion schema x combined with random number generator y suitable for protocol z?) but it is much
harder to reason about. Here we will stick with the Dolev-Yao model.

Crusial to analysing a protocol is the attacker knowledge. As the attacker has full control over
the network, sending any message will add that message to the knowledge of the attacker. The
attacker can combine this messagewith the knowledge she already has; e.g. decrypting amessage
if she knows the key. With possible goals and attacker model in place we can start designing and
analysing security protocols.

To describe a protocol we list the sequence of messages that each participant in the protocol is
intended to send. For instance in A->B: mail the initiator (for example Alice) takes the role A and
the intended recipient (e.g. Bob) takes role B. Thus an email from Alice to Bob saying ‘lets meet
at five’ would be one run of this protocol.

As the attacker can seemessages, wemay need to protect the confidentiality of themessagewhich
we could do by encrypting with it the public key of B. Here we assume that the participants in
a protocol run already have the right public keys (recall the first lab session). Alice thus already
knows the correct public key of Bob (recall the first lab session) and can send her message en-
crypted.

Though only Bob can now read themessage, Bob cannot knowwhom it came from. (It is supposed
to come from Alice as she is playing role A in this run of the protocol but it may as well have been
created by the attacker.) To solve this Alice could sign her message. However, Bob is still not sure
that this is a fresh message from Alice; the attacker could be replaying the same message that
Alice sent last week.

A challenge-response mechanism could be achieve proper authentication. We may also try to
achieve a shared secret which can be used to create a session key for further communication.
The basic protocol design contains three steps: Alice tells Bob she wants to talk, Bob presents a
challenge to Alice to know it is really her and Alice proofs this by answering the challenge.

20

Example: Design of an
authentication protocol in 3 steps

Goal: Alice wants to “authenticate” herself
to Bob over the internet

The informal dialog:
“Hi, I’m Alice”

“Prove
It!”

“Here’s the
proof”

Privacy warning!
(stay tuned)

21

Design of a protocol 2/3

We implement the “dialog” using public-
key encryption and nonces

A->B : Nb “Here’s the proof”

A->B : A “Hi, I’m Alice”

B->A : Nb encrypted w/ pk(A) “Prove It!”

Our first attempt at implementing the basic design uses the public key of Alice and a randomly
generated nonce to challenge her. Only Alice can decrypt the challenge and returning the nonce.
The final message obviously reveals the nounce so it will not be a shared secret between Alice and
Bob. We can try to address this by having Alice encrypt her answer with the public key of Bob. Is
Alice now correctly authenticated to Bob? (i.e. if this is used as the ‘meet at 5 today’ protocol, can
Bob now be certain that Alice wants to meet him today at 5?) Does the nounce they use remain
secret (can they savely use it to encrypt following messages? e.g. where to meet, what to bring,
etc.)

96 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

22

Design of a protocol 3/3

What is needed if we also want to
exchange a secret session key?

A->B : A
B->A : Nb encrypted w/ pk(A)
A->B : Nb

“Hi, I’m Alice”

“Prove It!”

“Here’s the proof”encrypted w/ pk(B)

23

Designing correct protocols is
difficult!

A->B : A
B->A : Nb encrypted w/ pk(A)
A->B : Nb encrypted w/ pk(B)

“Hi, I’m Alice”

“Prove It!”

“Here’s the proof”

Q : Are we completely sure that this protocol is secure ?,
Ie each time that Alice and Bob finish the execution,
A is really who she says she is ? Is Nb secret ?

A problem can occur when Alice wants to mean Ivy who, as it turns out, is malicious. Ivy can
misuse Alice’s wish to meet to authenticate to Bob, making Bob think that Alice wants to meet
him while Alice actually wants to meet Ivy.

24

What can go wrong
A->I : A “Hi, I’m Alice”

B->A : Nb encrypted w/ pk(A) “Prove It!”

A->I : Nb encrypted w/ pk(I) “Here’s the proof”

I(A)1->B : A “Hi, I’m Alice”

I->A : Nb encrypted w/ pk(A) “Prove It!”

I(A)->B: Nb encrypted w/ pk(B) “Here’s the proof”

Meet the infamous man-in-the-middle attack!:
Now I has succesfully impersonated A wrt B !
Moreover, I knows Nb

1) I `pretending to be A’. The (A) is only informative; `I(A)’ exactly the same as `I’. 25

Not an attack:
A->I : A “Hi, I’m Alice”

B->I : Nb encrypted w/ pk(A) “Prove It!”

A->I : Nb encrypted w/ pk(B) “Here’s the proof”

I->B : A “Hi, I’m Alice”

I->A : Nb encrypted w/ pk(A) “Prove It!”

I->B: Nb encrypted w/ pk(B) “Here’s the proof”

Here I is just being a faithful network.
Notice the subtle but essential difference.

When Alice sends her meeting request, Ivy forwards it to Bob (pretending to be Alice in the pro-
tocol run with Bob). Bob will send a challenge to check whether Ivy is actually Alice. Ivy cannot
answer this challenge herself but can forward it to Alice (predenting it came from her). As Alice
is waiting for a challenge to come from Ivy, she is trying to authenticate to Ivy afterall, she will
answer this challenge, decrypting the nounce and returning it to Ivy encrypted with Ivy’s public
key. In this way Ivy obtains the nounce and can now answer the challenge from Bob by encrypt-
ing the nounce with his public key. Bob will now go to meet Alice and will think that any further
communication (e.g. where to meet) using the nounce comes from her.

Note that the analysis of a security protocol can be quite subtle. For example, the second sequence
above looks very similar to the man in the middle attack that we saw before but is actually quite
different. Here Ivy is actually a good friend faithfully passing along messages between Alice and
Bob. Alice and Bob agree to meet each other as the protocol intended. Also, Ivy does not obtain
the nounce.

97 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

26

The patch

A->B : A
B->A : Nb
A->B : Nb encrypted w/ pk(B)

“Hi, I’m Alice”

“Prove It!”

“Here’s the proof”

,B encrypted w/ pk(A)

Q AGAIN: Are we completely sure that this protocol is
secure ? We need the aid of formal verification!

27

Patch stops the attack:

A->I : A “Hi, I’m Alice”

B->A : Nb,B encrypted w/ pk(A) “Prove It to B!”

A ?? was expecting I not B (A stops protocol)

I(A)->B : A “Hi, I’m Alice”

I->A : Nb,B encrypted w/ pk(A) “Prove It to B!”

So how can we protect against the man in the middle attack we found? The problem comes from
the fact that Alice does not know that the challenge came from Bob. We can solve this by simply
telling her; including the identity of the challenger in the challenge. Now Ivy’s attack will no
longer work; when she forwards the challenge to Alice, Alice will see that it is a challenge from
Bob and not the challenge from Ivy that she was expecting - she will thus not answer it. Note that
Alice cannot be sure that the challenge came from Bob as anyone can construct such a challenge;
however, Bob when getting a response to his challenge, can know for sure that Alice intended this
to be for him.

The adjustment makes the attack above impossible. However, are there no other attack possible?
In informal argument for correct authentication (of Alice to Bob) should at least argue the fol-
lowing points: (1) A secret of Alice is used; a challenge that only Alice can answer ensures that
the attacker cannot complete the authentication without involving Alice (2) Freshness of Alice’s
response; the secret has to be used in this session and not be e.g. replayed from an earlier session.
(3) Alice’s response is meant to authenticate her to Bob; when Alice is not trying to authenticate
to Bob it should not be possible to trick her into answering the challenge for the attacker.

We addressed point 3 above by adding Bob’s name in the challenge that is sent to Alice. But is
this always sufficient to prevent Alice from being confused? Let us consider another example
protocol: the Otway-Rees Protocol for session key distribution using a trusted server.

36

Otway-Rees Protocol
1. A->B : M,A,B,[Na,M,A,B]+Kas
2. B->S : M,A,B,[Na,M,A,B]+Kas], [Nb,M,A,B]+Kbs
3. S->B : M, [Na,Kab]+Kas, [Nb,Kab]+Kbs
4. B->A : M,[Na,Kab]+Kas

Aim: key distribution using trusted server
Kab: short-term key

Could be guessed.
Na and Nb serve as challenges.

37

Attack upon Otway-Rees

a.1 A->e(B) : M,A,B,[Na,M,A,B]+Kas
a.4 e(B)->A : M,[Na,M,A,B]+Kas
(A expects: M,[Na, Kab]+Kas)

Type flaw attack
A takes [M,A,B] to be the key
Authentication failure
Secrecy failure

The intruder just replies part of first message

The protocol uses a trusted server to create a short term session key for communication between
Alice and Bob. Alice and Bob already share (long term) keys with the trusted server. The server
is trusted in that we assume it will behave correctly; generate good random keys, not leak infor-
mation to the attacker (other then what is leaked by correctly following the protocol) nor misuse
the information it has. The server, for example, will know the key used by Alice and Bob to com-
municate but this is not considered to be a problem.

A so called type flaw attack is possible against Otway-Rees. The attacker sends a message to Alice
which is of a different type than she is expecting. Depending on the implementation, however,
Alice may not be able to tell that this is the case. As part of step 4, Alice is expecting to receive

98 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

her nounce and a key encrypted with the key that she shares with the server. An attacker will not
be able to create such a message. However, there are other messages that are encrypted with this
key that the attacker could use: the first message of the same run of that protocol for example. If
the attacker sends back the message part from message 1 then it will contain the rights nounce
(Na). The remainder of the message [M, A, B] could then by mistake be accepted as being K ab.
Care needs to be taken that messages cannot be misused elsewhere in the protocol.

29

EX1: Needham-Schroeder (1978)

A->B : [A,Na]*pk(B)
B->A : [Na,Nb]*pk(A)
A->B : [Nb]*pk(B)

Some notation
msg*k: asymmetric encryption
Na, Nb: nonces
A, B: Agents (Alice and Bob)
pk(A): public key of A

30

Goals of NS

A->B : [A,Na]*pk(B)
B->A : [Na,Nb]*pk(A)
A->B : [Nb]*pk(B)

Mutual Authentication of A and B
Exchange two secrets

can be used to form a key

The Needham-Shroeder protocol aims to achieve mutual authentication between Alice and Bob.
It basically runs the authentication protocol we designed before in both directions. It also aims to
maintain secrecy of the nounces used so they can be used to create a session key.

31

What can go wrong in NS

Attack:
A -> I: [A,Na]*pk(I)

I(A) -> B: [A,Na]*pk(B)
B-> A: [Na,Nb]*pk(A)
A->I : [Nb]*pk(I)

I(A)->B : [Nb]*pk(B)

Breaks:
Secrecy

(Na and Nb are
disclosed)

Authentication
B “thinks” he is talking
to A, while he is talking
to I

I is the intruder.

A->B : [A,Na]*pk(B)
B->A : [Na,Nb]*pk(A)
A->B : [Nb]*pk(B)

32

The Patch

A->B : [A,Na]*pk(B)
B->A : [Na,Nb,B]*pk(A)
A->B : [Nb]*pk(B)

Patch proposed by Lowe, the new protocol
is known then as Needham-Schroeder-
Lowe (NSL)

The flaw is also very similar as the one we saw before; Alice can be tricked into answering a
challenge from Bob eventhough she is not trying to authenticate to Bob but rather to Ivy. The
patch is also the same; add identity B to the challenge from B. On NSL there is also a potential
type flaw attack (though the type confusions that needs to happen seems unlikely to occur in
practise).

39

Type flaw attack upon NSL
a.1 A->I(B) : [A,Na]*pk(B)
a.1' I(A)->B : [A,I]*pk(B)
a.2 B->e(A) : [I,Nb,B]*pk(A)
b.1 I->A : [I, [Nb,B]]*pk(A)
b.2 A->I: [[Nb,B], Na' ,A] *pk(I)

Intruder intercepts session (a), then also starts new
session (b) with Alice.

Message a.2 is passed as b.1.
Notice that a.2 has three fields, while b.1 has two
In b.2 I learns Nb.

Rather unrealistic
A would need to accept [Nb, B] as a nounce
B would have to accept I as a nounce 33

Authentication via hash-chains

Alice generates a secret Na
Get hn(Na) to S securely
Login send:

A->S : hs(Na)

s initially n-1, decrease after use

Upon receipt, S hashes hs (Na) to obtain a
match
One-wayness of hash function h gives security

Lamport in ‘81

99 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

So far we have seen symmetric and asymmetric cryptography being used. Hashes are also com-
monly used tools in protocols. For example one way to ‘reuse’ a secret is by using hash chains.
First hn(Na) (i.e. the hash function h applied n times to random nounce Na) is somehow securely
sent from Alice to S. Once this is achieved it can be used n times to authenticate Alice. When
Alice wants to authenticate she sends hi (Na) where i is initially n − 1 and decreased after each
authentication. The server can easly check the value by hashing it and comparing it to the stored
value for Alice. As the hash is collission resistant other values than hi (Na) will not hash to Al-
ices values. The hash is a one-way function so if the attacker learns value hi (Na), the values Na
through hi−1(Na)will still be secret.

34

What about privacy ? Cont’d

A possible patch:
A->B : A encrypted w/ pk(B)
B->A : Nb,B encrypted w/ pk(A)
A->B : Nb encrypted w/ pk(B)

Here, I can deduce B’s intentions:
I->B : A encrypted w/ pk(B)
B->A : Nb,B encrypted w/ pk(A)

35

Private Authentication Protocol
Due to Abadi (2002):

1. A->B : ‘hello’, [‘hello’,Na,pk(A)] * pk(B)
if B wants to talk to A:

2. B->A : ‘ack’, [‘ack’,Na,Nb,pk(B)] * pk(A)
otherwise, send a ‘decoy’ message:
2’. B->A : ‘ack’,[N] * K

No traffic analysis… but vulnerable to timing attacks!

We also mentioned privacy issues with our little the authentication protocol design. Alice’s iden-
tity is sent in the clear. We can solve this by encrypting it with Bob’s public key. Yet even then
there is a potential privacy issue: an attacker could determine whether Bob is willing to talk to
Alice. Anyone, including the attacker, can send the message [A]∗ pk(B). Eventhough the attacker
cannot answer the challenge from Bob, the very fact that Bob sends a challenge is sufficient. The
solution to this is to have Bob always send a reply as is done in Abadi’s private authentication
protocol.

40

Running multiple protocols
2 `good’ protocols may not combine:

Basic challenge response:
A -> B: [na] encrypted with pk{B}
B -> A: na

Combined with any protocol which uses pk{B}
for secrecy is problem
Signing + Pk encryption with RSA

Analyze protocols together, use different
keys for different protocols

42

Conclusions

Finding Flaws is not Easy!
Analysis difficult to do “by hand”
One can use

Belief logics (e.g. BAN logic).
Theorem Proving.
Model Checking and alike.

Another aspect is the use of multiple protocols. Two protocols that are by themselves correct may
became vulnerable/flawedwhen combined. A basic challenge response protocol using the public
key of Bob, combinedwith a protocol that relies on secrecy ofmessages encryptedwith this public
key are obviously flawedwhen combined. To address this we should analyse all protocols that use
the same keys together. Using different keys for the challenge response and the secrecy protocols
would solve the problem while analysing them together would reveal the weakness so it can be
addressed. (How would you address this weakness?)

100 Slides and notes Security course 2013 / Version 1.0

Technische Universiteit Eindhoven University of Technology

7.2 Exercises

1. Consider again the online music store of the previous chapters. Review your requirements
analysis, adding security protocol considerations; threats and countermeasures where ap-
propriate.

2. Mutual authentication protocol:

(a) A->B: A, K

(b) B->A: {B, K, Nb}pk(A)

(c) A->B: {Nb}K

where A and B are agent identities, K is a fresh symmetric key and Nb is a nonce, pk(X) is
the public key of agent X, and {M}pk(X) is message M encrypted with the public key of X
using a public-key algorithm (as in message 2).

The protocol above aims at mutual authentication of agents A and B. Authentication of B to
A is not accomplished, since A is not really presenting a challenge to B.

(a) Provide an attack that allows the intruder to impersonate agent B and fool A into think-
ing she’s communicating with B

(b) Provide a fix for the previous flaw, and explain why you think it avoids the mentioned
vulnerability.

(c) Which secrets, if any, are shared between A and B after the original protocol and after
the fixed protocol?

(d) Is authentication of A to B accomplished? (Explain your answer.)

(e) Is the "B" really necessary in message 2. B->A: "B",K,Nbpk(A)? (Explain your answer.)

101 Slides and notes Security course 2013 / Version 1.0

