Cryptography Basics

Part 1: Concepts
Contents

- Cryptography goals
- Encryption principles
- Encryption quality
- Public key cryptography

Next week:
- Example algorithms
 - DES, AES, AES
- Encrypting larger messages
- ‘Provably secure’ crypto
Security Goals and Cryptography

- Confidentiality
- Authenticity
- Data integrity
- Non-repudiation
- Privacy
- Availability
Greetings to all at Oxford. Many thanks for your letter and for the summer examination package all Entry forms and Fess Forms should be ready for final dispatch to the Syndicate by Friday 20th or at the very latest, I’m told, by the 21st. Admin has improved here, though there’s room for improvement still; just give us all two or three more years and we’ll really show you! Please don’t let these wretched 16+ proposals destroy your basic A and O pattern. Certainly this sort of change, If implemented immediately would bring chaos.
Another Example:
What’s the message

Welcome back to Oxford. Thanks again, this letter explains the winter examination method and its related forms. Early submission does guarantee full and early feedback but does not influence the grading of the quality of the work done. A full grade report will be available once the deadline for submissions has passed. In it the evaluation is explained. The evaluation is final as the criteria for the work are now known.
A final greeting to our Oxford graduates. Though with a slight delay, we hope this letter finds you well. The new variation in the forms attached shows how our alumni will continue to play a key role in our school and will not be forgotten. Instead we hope that you continue to work with us, and any contribution that you can bring, either directly or indirectly, will be appreciated.
Algorithms + keys

Cipher (aka cryptosystem)
“Public” algorithm + Secret keys (Kerckhoffs’ principle)
When is message `safe’?

- Suggestion 1: `cannot know the message’.
 - Kill the king with a @#$%~!.
- Suggestion 2: `cannot know even a single bit’.
 - 99% chance “Kill the king”, 1% “Drink coffee”...
- ... lets find a definition...
- For ciphertext each plaintext equally likely
 - Can this be done?
Yes(*): One time pad

- Vernam’s one time pad is information theoretically secure

<table>
<thead>
<tr>
<th>plaintext bits</th>
<th>key bits</th>
<th>Bitwise xor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ciphertext bits</td>
</tr>
</tbody>
</table>

Note: random key equally long as message
XOR

- XOR truth table:

<table>
<thead>
<tr>
<th>In 1</th>
<th>In 2</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Addition modulo 2
- Property: \((c + k) + k = c\)
 - Repeat operation to `undo`.
- If \(k \ `random`\)
 - \((c+k) \ `random`\)
 - independent of \(c\) (!)
Some History: the Caesar cipher

- Monoalphabetic substitution
- Replace letter by letter 3 places further

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciphertext</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>...</td>
</tr>
</tbody>
</table>

- Example:
 “attackatdawn” → “dwwdfndwgdzq”

- Letter frequency undisturbed

- Nr of keys: 26 (25)

Encrypt: C = P+3
Decrypt: P = C-3
Vigenere cipher

- Polyalphabetic substitution
- Key is keyword
- Encrypt: Add keyword (letter by letter)
 - Modulo 26 with A=0, B=1, etc.
- Decrypt: Subtract keyword
- Example

\[
\begin{array}{c}
\text{wearediscoveredsaveyourself} \\
\text{deceptivedeceptivedeceptive} \\
+ \quad \text{ZICVTWQNGRZGVTWAVZHCQYGGLMGIJ}
\end{array}
\]
Cryptanalysis – plaintext structure

- (English) Text
 - Distribution of characters known
 - Distribution of bi-graphs also known:

- Data
 - Format known

<account>87539</account>
<amount>1234</amount>

- E: 12%
- T: 9%
- A,I,N,O,R: 8%
- TH: 3.2%
- HE: 3.1%
- ER: 2.1%
Transposition cipher

- Change order of letters in the message

“meet me after the toga party”

```
Mematrhtgpry
etefeteeoaat
```

“mematrhtgpryefetefeteeoaat”
Modern Block Cipher

- Principle: Combine
 - Confusion (substitution)
 - Diffusion (transposition)
- Design: Iterate a round function
- Two common types:
 - Feistel network (e.g. DES)
 - Substitution-permutation network (e.g. AES)

More on this next week – Now first: asymmetric (public key) cryptography
Many symmetric keys needed

To send to Alice, everyone needs a **different key**
To receive, Alice needs all these keys
Asymmetric (public) key

To send to Alice, everyone uses her **public** key.

To receive, Alice needs a single **private** key.
Asymmetric keys

Encrypt with Public Key

Decrypt with Private Key
Authenticity - Symmetric
Authenticity - ASymmetric

All can `sign' only Alice check: message for Alice.
Authenticity - ASymmetric

Digital signature: reverse role encryption – decryption
Alice can Sign, All can check: is a message from Alice
Key

Asymmetric
- Obtain public key
 - Authenticity
- Public keys
 - Tampering
- Private keys
 - Confidentiality

Symmetric
- Establish shared key
 - Confidentiality
- Many keys
 - Confidentiality
 - Tampering

Distribution
- Observe key status

Storage
- Observe many keys

Revocation
- Bilateral

Asymmetric Symmetric
- Confidentiality
 - Confidentiality
 - Tampering

Symmetric
- Confidentiality
 - Confidentiality
 - Tampering

Bilateral
- Confidentiality
 - Confidentiality
 - Tampering

Asymmetric Symmetric
- Confidentiality
 - Confidentiality
 - Tampering

Symmetric
- Confidentiality
 - Confidentiality
 - Tampering

Key

Asymmetric Symmetric
- Confidentiality
 - Confidentiality
 - Tampering

Symmetric
- Confidentiality
 - Confidentiality
 - Tampering

Bilateral
- Confidentiality
 - Confidentiality
 - Tampering
Diffie Hellman key exchange (1976)

Basis: Discrete log is hard
(for large numbers – e.g. 1024 bits)

\[
\begin{align*}
\text{random } x & : a^x \mod p \\
\text{random } y & : a^y \mod p \\
\text{public: prime } p & \text{ gen. } a \\
a, b, b = a^i \mod p
\end{align*}
\]
DH - Soundness and Security

- Alice key equals
 \[r^x \mod p = (a^y \mod p)^x \mod p = a^{xy} \mod p \]

- Bobs key equals
 \[r^y \mod p = (a^x \mod p)^y \mod p = a^{xy} \mod p \]

- Eavesdropper sees
 \[a^x \mod p \]
 \[a^y \mod p \]

- Vulnerable to man-in-the-middle attack

<table>
<thead>
<tr>
<th>A</th>
<th>E</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>(a^x)</td>
<td>→</td>
</tr>
<tr>
<td>←</td>
<td>(a^{y'})</td>
<td>←</td>
</tr>
</tbody>
</table>
Encrypting Larger messages

- Seen methods to encrypt block
- Split into blocks (padding to fill last block)
- Treat blocks separately?

“attack at dawn”

ascii

97 116 116 97 99 107 32 97 116 32

32 bits block

01100011 01101011 00100000 01100001

Block representation of text
ECB mode

- Same plaintext block maps to same ciphertext block
 - Reordering, replacing possible
- No error propagation
 - Bit changes only
 - Bit deletions/omissions are a problem
Example: Mickey Mouse

- Original picture
Example: Mickey Mouse

- Encrypted in ECB mode
Encrypting larger messages

- Operation modes
 - Electronic codebook (ECB)
 - Cipher Block Chaining (CBC)
 - Cipher Feedback (CFB)
 - Output Feedback (OFB)
CBC mode

- Same plaintext block maps to different ciphertext block
 - Reordering, replacing not possible
 - Depending on previous block
- Limited error propagation
 - Affects only current and next block
Example: Mickey Mouse

- Original picture
Example: Mickey Mouse

- Encrypted in CBC mode
CFB mode

- Self-synchronizing
Stream Ciphers and OFB mode

Stream Generator

IV

encrypt

Pseudo Random Key stream

Plaintext stream

Ciphertext stream
Stream ciphers

- Fast and `easy' in hardware
- (Almost) no buffering
- No error propagation

- Most stream ciphers are confidential
 - GSM A5/1 -- broken!
 - Military

- Related: Random number generation
Modern Block Cipher

- **Principle:** Combine
 - Confusion (substitution)
 - Diffusion (transposition)

- **Design:** Iterate a round function

- **Two different types:**
 - Feistel network (e.g. DES)
 - Substitution-permutation network (e.g. AES)
One Feistel round

\[\text{Li} \rightarrow \text{Ri} \]

\[\text{Round Function } F_i \]

\[\rightarrow \text{Li}+1 \rightarrow \text{Ri}+1 \]
DES

- Data Encryption Standard
 - published by NIST as FIPS PUB 46 in 1977
- Based on Lucifer by IBM
- NSA changed the design
 - Fear of weaknesses

- Used extensively by banks
 - E.g. ATM
- With whitening in Win2K encrypted FS

- Becoming less common (move towards AES)
DES properties

- Block size 64 bit
- Key size 64 bit
 - 56 bit real key data
 - Remaining 8 bits are parity bits
- 16 rounds Feistel network
- Complement property:
 - \(E(k, x^c) = E(kc, x)^c \)
One Feistel round

64 bit block split into 2x32 bits

Li	Ri

48 bit "round key" (selected from the 56 key bits)

F

S

S

S

S

S

S

S

P

E

Exclusive OR

P Permutation

E Expansion

Li+1 | Ri+1
DES Round function (F)

Round key Ki

6 to 4 S-box

permutation
Key-schedule

Permutated choice

Ki

PC2

48 bits

Ci-1 (28 bit) Di-1 (28 bit)

shift by 1 or 2 (depends on i)

Ci (28 bit) Di (28 bit)
DES: discussion

- Extensively studied
 - No severe weaknesses found
- However, 56 bit key too short
 - 3DES
 - AES as new standard
3DES

(ANSI X9.17, ISO 8732 standard)

Why useful?

(if $K_1=K_2$)
RSA

- By Rivest, Shamir and Adleman in 1978
- First “public” public key system
- Most popular
- Patent expired September 2000
- Large keys (1024 bits or more)
RSA preliminaries

- Euler Totient Function ϕ
- $\phi(n) = \# \{ i \mid i < n, i \text{ relatively prime with } n \}$
- $\phi(p \cdot q) = (p - 1) (q - 1)$ for p, q prime
- $a^{\phi(n)} \mod n = 1$
 - If a,n relatively prime
 - For $n=p\cdot q$ also without a,n relatively prime
- Inverse modulo n `easy’ to find.
RSA Key generation

- Pick two large primes p, q and set $n = p \times q$
 - $p \neq q$
- Pick e, d such that
 - $ed = 1 \mod \varphi(n)$
 - i.e. $ed = 1 \mod (p-1)(q-1)$
- Destroy p, q
- Public key: (e, n)
- Private key: (d, n)
RSA Encryption, Decryption

- Encrypt P: $C = P^e \mod n$
- Decrypt C: $P = C^d \mod n$

Why it works:

$$C^d \mod n = (P^e \mod n)^d \mod n$$
$$= P^{ed} \mod n$$

$[ed = 1 \mod \phi(n)] = P \times P^{\phi(n)\times k} \mod n$
$$[P^{\phi(n)} \mod n = 1] = P$$
RSA Key generation Example

- Choose p, q: p = 7 and q = 17
- Gives n = 119 and $\varphi(n) = 6 \times 16 = 96$

- Pick e relatively prime with 96, e.g. e = 5
- Compute d with $ed = 1 \mod 96$.
 - Result: d = 77
 - Verify: $77 \times 5 = 385 = 4 \times 96 + 1$
- Public key: (5, 96) Private key (77, 96)
RSA Encrypt/Decrypt Example

- Public key: (5, 96)
- Encrypting P=19:
 - $19^5 = 2476099 = 20807 \times 119 + 66$
 - Ciphertext is 66

- Private key (77, 96)
- Decrypting 66
 - $66^{77} = 19 \mod 96$
RSA: Setup and Security

- Given \(p, q \), it is easy to find \(e, d \) such that

 \[
ed = 1 \mod \phi(n) = 1 \mod (p - 1)(q - 1)\]

- Without \(p, q \)
 - computing \(\phi(n) \) is hard
 - finding \(d \) given \(e \) as hard as finding \(p, q \)
 - finding private key as hard as factoring
RSA Special properties

- $E(m \cdot m') = E(m) \cdot E(m') \mod n$
 - Add redundancy to sign messages

- Blinding with a random r
 \[E(m r^e) = (m r^e)^d \mod n = m^d r \mod n \]
 - Hide message from signer
 - Application: Anonymous money

- RSA can be used to sign or encrypt
 - signing = decrypting
 - use separate key pairs
RSA: choices & requirements

- $e = 3, e = 7$ or $e = 65537 = 2^{16} + 1$
 - Salt append random bits (e.g. 64) to plaintext
 - Otherwise attacks exist to find private key and encryption small m less than n; easily recovered
- All users must pick distinct modulus n
 - Any e, d with $ed = 1 \mod \phi(n)$ allows factoring n
 - Easy to compute any d' from e'
RSA: choices & requirements (2)

- d roughly the same size as n
 - Otherwise it can be found efficiently from e and n

- factoring n must be hard
 - p,q sufficiently big
 - p,q roughly the same size
 - still p-q sufficiently large
RSA vs DES performance

- RSA ~ 1000 slower in hardware
- RSA ~ 100 time slower in software
- Gets worse with longer keys

How long a key is needed?
- Estimate effort needed by attacker
Hypotheses

- 56 bit DES key was strong enough in 1982
 - Breaking it requires 500,000 Mips Years
 - 1 Mips Year = 20 hours on 450Mhz Pentium II
- Computing per $ doubles every 18 months
 - Variant of Moore’s law
 - Every 10 years, 100x computing power per $
- Budget of organisations doubles every 10 years
- Algorithmic improvement
 - Computation required halves every 18 months
Overview

<table>
<thead>
<tr>
<th>Year</th>
<th>DES</th>
<th>RSA</th>
<th>DSA</th>
<th>EC</th>
<th>Mips years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>56</td>
<td>417</td>
<td>102</td>
<td>...</td>
<td>5×10^5</td>
</tr>
<tr>
<td>2002</td>
<td>72</td>
<td>1028</td>
<td>127</td>
<td>139</td>
<td>2×10^{10}</td>
</tr>
<tr>
<td>2012</td>
<td>80</td>
<td>1464</td>
<td>141</td>
<td>165</td>
<td>4×10^{12}</td>
</tr>
<tr>
<td>2022</td>
<td>87</td>
<td>1995</td>
<td>154</td>
<td>193</td>
<td>8×10^{14}</td>
</tr>
</tbody>
</table>
Cryptography Basics

Part 4: (Provable) Security
Definitions of security

- Information theoretical (aka unconditional)
 - Possible in public key setting?
 - Public key known: Anyone can encrypt.
 - Try all possible private keys
 - (Recall why is this not possible for one time pad...)

- Computational
 - Breaking cipher is mathematically hard problem
What is a hard problem (1)

- Algorithm for short or long instances
 - Running time depends on length of instance
 - E.g.: Sorting 10 numbers takes less time than sorting 10,000 numbers

- For some problems minimum number of steps for any algorithm known
 - Sorting n numbers takes at least $n \log n$ steps
 - Very hard to prove
What is a hard problem (2)

- `Hard` problem: requires at least an exponential number of steps to solve
 - I.e. nr of steps more than any polynomial.
 - In size of problem (= security parameter)

- No hard problems in NP known

- Known solutions take exponential time:
 - Factoring a product of two primes
 - Computing the discrete logarithm
P vs NP

- P
 - Solving takes polynomial time

- NP
 - Solution can be checked in polynomial time
 - But finding solution may take exponential time

- NP contains P

- It is unknown whether P = NP
Trapdoor function: F

Example:
Multiply 2 primes
Factoring hard
...unless 1 known
Can we prove crypto is `good’?

- Argued that it is hard to find private key
- Is this sufficient to show message `safe’?

- Show breaking solves `hard’ problem
- Security game expresses exact property
- Probabilistic; always tiny chance to guess
 - Attacker advantage; better than pure guess
Security Game 1 (IND-CPA)

Indistinguishable under chosen-plaintext attack

1. **Opponent** picks two plain texts
2. **We** randomly pick one, encrypt it & give cipher text to opponent
3. **Opponent** guesses which text was encrypted

Opponent advantage: \(| \Pr(\text{correct guess}) - 1/2 | \)

Good cipher: opponent advantage small
Example: ElGamal

- Multiplicative Group $Z_q = \{1\ldots q-1\}$
 - Multiply, divide, exponentiation easy, log hard
- Key creation: sample x from Z_q,
 - x is the private key, g^x is the public key
- Encryption: sample y from Z_q (salt)
 - $\text{enc}(m, g^x) = (c, k) = (m \cdot g^{xy}, g^y)$
- Decryption:
 - $\text{dec}((c, k), x) = c / k^x$

\[
\begin{align*}
\text{dec(} & \text{enc(m, g}^x\text{), x)} \\
& = \text{dec(} (m \cdot g^{xy}, g^y), x) \\
& = m \cdot g^{xy} / g^{yx} \\
& = m
\end{align*}
\]
Game stepping (reduction)

Tasks:
1. Show security of basic game
2. Show correctness of implications (games steppings)
`Cheater’ Game for ElGamal

- Opponent picks two plain texts
- We randomly pick one and encrypt it.
- Opponent gets g^z for random z
- Opponent guesses which text encrypted.

- Opponent advantage:
 \[\left| \Pr(\text{correct guess}) - \frac{1}{2} \right| \]
- Information opponent independent of choice
 - no opponent advantage possible
Security Assumption
(the `hard’ problem)

- Decisional Diffie Hellman (DDH):

 “no effective attacker can distinguish between
 \((g^x, g^y, g^z)\) and \((g^x, g^y, g^{xy})\)”

- Exists \(\epsilon\) such that, for any attacker, any \(q:\)

 Random \(x, y, z\) in \(Z_q\);

 \(\text{guess1} = \text{Attacker}(g^x, g^y, g^z);\)

 \(\text{guess2} = \text{Attacker}(g^x, g^y, g^{xy})\)

 \(|P(\text{guess1}) - P(\text{guess2})| < \epsilon(q)|
Transformation

- Use property of * to conclude

Random x, y, z in Zq

\[
\text{guess-game1} = \text{Attacker}(g^x, g^y, m * g^z);
\]

\[
\text{guess-game2} = \text{Attacker}(g^x, g^y, m * g^{xy})
\]

\[
| \mathbb{P}(\text{guess-game1}) - \mathbb{P}(\text{guess-game2}) | < \varepsilon(q)
\]

- If can tell difference \(m * a \) and \(m * b \) then can tell difference \(a, b \)
Difference Cheat - Security Game

- In real game attacker gets
 - Public key: \(g^x \)
 - From the cipher text: \(g^y \) and \(m \times g^{xy} \)

- In the basic game the opponent
 - Public key: \(g^x \)
 - From the cipher text: \(g^y \) and \(m \times g^z \)

- If the attacker can distinguish then also between
 \((g^x, g^y, g^z) \) and \((g^x, g^y, g^{xy}) \)
 - Play security game with this input.
 - For first will be basic game, for second security game
Security Game 2 (IND-CCA2)

- **Opponent** has **Enc**, **Dec** oracle
- **Opponent** picks two plain texts
 - Can use **Enc/Dec** as wanted before choosing
- **We** randomly pick one and encrypt it
- **Opponent** gets cipher text (challenge)
- **Decryption** oracle not for challenge
- **Opponent** guesses which text encrypted
Math

- Computing modulo n
- Groups
 - Generator g (e.g. 2 in the multiplicative group \mathbb{Z}_{13}^* below)
- (Possibly…) hard problems
 - Factoring an integer
 - Computing the discrete logarithm

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^i</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
Attacks

- Ciphertext only
- Known plaintext
- Chosen plaintext
- Adaptive chosen plaintext
- Chosen ciphertext
- Adaptive chosen ciphertext

- Aim to increase `attacker advantage'.

More on this next week
Attacks

- Brute force key search
 - passwords
- Timing attack
- Differential cryptanalysis
- Birthday attack
 - Collision likely to happen when # inputs in order of square root of size outcome space.
- Side channel attack
Further study

- Exercises available (see server)

- **Security Engineering, Chapter 5**
 - www.cl.cam.ac.uk/~rja14/book.html

- **Handbook of applied cryptography**
 - www.cacr.math.uwaterloo.ca/hac

- **Courses on cryptography**