Car Connections

Johan Lukkien

System Architecture and Networking
Smart mobility, TU/e wide

Cooperative Driving (platooning), A270: Helmond-Eindhoven, 2011
(Mechanical Engineering/TNO)

Full electric: Lupo (ME)

Full Solar: Stella

Strategic Area Smart Mobility
Smart mobility, TU/e wide

- 4X Local controllers for steering, braking, suspension;
- Front and rear IVDC;
- 1X Global IVDC state estimation and supervisory control.

(Semi-)independent developed components by various partners!

Hybrid Innovations for Trucks (HIT) project

Safety-Critical Domain Certification

InMotion, Solar Team, “Cars in Context” TU/e projects

M&CS, ME

scalability in V2V

Functional safety methodology (PDEng projects)
Agenda

• Privacy, Safety and Security
• Intelligent Transport Systems overview
 – Communication ‘spheres’
 • within the vehicle
 • inter vehicle: short and long range
• Security in short range communication
 – applications, and architecture
 • US and EU schemes
 – safety, privacy
 – current viewpoints
• Security within the vehicle
• Conclusion and outlook
Privacy, Safety, and Security

• **Privacy**: control over personal information

• **Safety**: freedom from danger or risk on injury resulting from recognized but potentially hazardous events

• **Security**: regulating access to (electronic) assets according to some policy
 – *policy*: allowed and disallowed actions
 – *security mechanisms*: can be regarded as enforcing the policy

• Privacy and safety restrictions result in security policies
 – security for privacy and security for safety
Requirements

• Examples:
 – Safety:
 • safety violations by malicious external parties must be prevented
 • safety must be maintained while executing regular functions (functional safety)
 – Privacy:
 • personal data must remain under control of the owner

• Leads to Common Criteria, classification of functions and development process (ISO 26262), certification

• Sounds rather abstract, so, let’s look at some details....
Vehicles operate using networked ICT
Vehicles become parts of a larger whole
A conceptual view of ITS

- Example data flows:
 - (1) gather detailed driving data to determine
 - local weather
 - road condition
 - (2) accident prevention by direct intervention
 - (3),(4) informing driver about upcoming road conditions

- Example data flows:
 - Accident prevention
 - V2V network
 - Internet, V2I

- In-car network
 - Local Control

- V2V

- Congestion control
 - Road maintenance
 - Environment control

And whatever sensing you can think of…
A more detailed view on V2V/V2I

- In-Vehicle Domain
- Access Network
- Infrastructure Domain
- Ad-Hoc Domain

Nodes, Server, Internet, GW, RSU, OBU, AU, HS

- IEEE 802.11p
- IEEE 802.11a/b/g
- Other wireless technology (full coverage)

C2C-CC (Car2Car Communication Consortium initiated by six European car manufacturers) architecture (~2010)
<table>
<thead>
<tr>
<th>Scenario and warning type</th>
<th>Scenario example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear end collision scenarios</td>
<td></td>
</tr>
<tr>
<td>Forward collision warning</td>
<td></td>
</tr>
<tr>
<td>Approaching a vehicle that is decelerating or stopped.</td>
<td></td>
</tr>
<tr>
<td>Emergency electronic brake light warning</td>
<td></td>
</tr>
<tr>
<td>Approaching a vehicle stopped in roadway but not visible due to obstructions.</td>
<td></td>
</tr>
<tr>
<td>Lane change scenarios</td>
<td></td>
</tr>
<tr>
<td>Blind spot warning</td>
<td></td>
</tr>
<tr>
<td>Beginning lane departure that could encroach on the travel lane of another vehicle traveling in the same direction; can detect vehicles not yet in blind spot.</td>
<td></td>
</tr>
<tr>
<td>Do not pass warning</td>
<td></td>
</tr>
<tr>
<td>Encroaching onto the travel lane of another vehicle traveling in opposite direction; can detect moving vehicles not yet in blind spot.</td>
<td></td>
</tr>
<tr>
<td>Intersection scenario</td>
<td></td>
</tr>
<tr>
<td>Blind intersection warning</td>
<td></td>
</tr>
<tr>
<td>Encroaching onto the travel lane of another vehicle with whom driver is crossing paths at a blind intersection or an intersection without a traffic signal.</td>
<td></td>
</tr>
</tbody>
</table>

Source: GAO analysis of Crash Avoidance Metrics Partnership information.

from: Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Applications, NHTSA, August 2014
How does this work?

- It is cooperative

- Two different approaches, same network technology (802.11p)
 - **US**: Wireless Access in Vehicular Environments – WAVE, using single-hop broadcast
 - **EU**: ETSI TC ITS standards, using Geo-networking

- Essentially: vehicles emit *periodically or event-driven* status information
 - called *Basic Safety Messages* (BSM, US)
 - and *Cooperative Awareness Messages* (CAM, EU)
Some application examples (BSM ~SAE J2735)

<table>
<thead>
<tr>
<th>Apps.</th>
<th>Comm.type</th>
<th>Freq.</th>
<th>Latency</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Change Warning</td>
<td>V2V, periodic, P2M</td>
<td>10Hz</td>
<td>100ms</td>
<td>150m</td>
</tr>
<tr>
<td>Collision Warning</td>
<td>V2V, periodic, P2M</td>
<td>10Hz</td>
<td>100ms</td>
<td>150m</td>
</tr>
<tr>
<td>Emergency Brake Lights</td>
<td>V2V, event-driven, P2M</td>
<td>10Hz</td>
<td>100ms</td>
<td>300m</td>
</tr>
<tr>
<td>Pre-Crash Sensing</td>
<td>V2V, event-driven, P2P</td>
<td>50Hz</td>
<td>20ms</td>
<td>50m</td>
</tr>
<tr>
<td>Stop Sign Assists</td>
<td>I2V and V2I, periodic</td>
<td>10Hz</td>
<td>100ms</td>
<td>250m</td>
</tr>
<tr>
<td>Left Turn Assistance</td>
<td>I2V and V2I, periodic, P2M</td>
<td>10Hz</td>
<td>100ms</td>
<td>300m</td>
</tr>
<tr>
<td>Traffic Signal Violation</td>
<td>I2V, periodic, P2M</td>
<td>10Hz</td>
<td>100ms</td>
<td>250m</td>
</tr>
<tr>
<td>Curve Speed Warning</td>
<td>I2V, periodic, P2M</td>
<td>1Hz</td>
<td>1s</td>
<td>200m</td>
</tr>
</tbody>
</table>

Eight high priority vehicle safety applications as chosen by NHTSA and VSCC.

VSCC – Vehicle Safety Communication Consortium of CAMP (Crash Avoidance Metrics Partnership)

V2V = Vehicle to Vehicle
P2M = Point to Multipoint
I2V = Infra structure to Vehicle
Security to protect safety in BSM

- A vehicle could perform a (physical) action upon receiving certain messages. This response must be on good grounds, and safe.
 - authentication: does this message really come from
 • that particular car?
 • the car left behind me?
 - authorization: what is allowed
 • by this party?
 • by this message?
 - integrity: was this message not tampered with?

- Further concerns regarding safety:
 - are messages really delivered (and not lost or jammed)?
 - functional safety
 • maintain safe and responsive behavior while executing normal functions
Security to protect privacy in BSM

• Communication might reveal sensitive information
 – location of vehicle, one could track it
 – driver identity, number of passengers
 – driving behavior

• Security mechanisms might add to this
 – e.g. the signing of messages

• Hence:
 – policies on data handling, certification of those policies
 • e.g. collect only anonymous data, forbid vehicle tracking in mandatory services
 – requirements on security mechanisms
Requirements on security

• Interoperable
• Process-able in real-time and limited in size (bandwidth)
• Identity-free
• Non-repudiation (sender cannot deny having sent a message)
• Scalable
 – local: few hundreds of vehicles
 – global: millions of vehicles
• Extensible, towards other applications of V2x communication
Proposal (US)

- Use *Public Key Infrastructure* to *sign* messages
 - authentication, integrity & non-repudiation

- *Certificate* associates public and private key
 - decryption using the public key demonstrates:
 - knowledge by the sender of the private key, which is associated with an identity
 - that the message was not altered

- Complex extensions to deal with the specific concerns of these applications
 - intermittent connectivity, anonymity
 - small size certificates, keys and certificates: ECQVI / ECDSA
 - though these require 10 times more processing power
System outline

• Comparison: basic PKI / V2x design

from: Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Applications, NHTSA, August 2014
Zooming out....

- Security concerns *within* the vehicle....
Hacker with access to internal systems

Hackers Reveal Nasty New Car Attacks--With Me Behind The Wheel (Video)

This story appears in the August 12, 2013 issue of Forbes.

• Funny....
• ... but more harmful hacks are possible as well
 – e.g. disabling the brakes
• However, any malicious physical access is dangerous
Next Generation Vehicle OS

Apple CarPlay
The best iPhone experience on four wheels.

Tesla

Microsoft
Concluding remarks

• Security in ITS serves privacy and safety
• Security within the vehicle is lagging behind
• Security between vehicles is being designed in

• ITS is a required step towards fully automated driving
Literature

• Used in this presentation:
 – Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Applications, NHTSA, August 2014
 – Rate-Adaptation Based Congestion Control for Vehicle Safety Communications, PhD thesis Tessa Tielert