A Systems of Systems perspective on
The Internet of Things

Johan Lukkien
Eindhoven University
System

Applications, platform, network

Reservations, Budgets
Admission test (temporal) Isolation
Real-time interfaces

Multiple integrated applications

In-vehicle network

Local Control

TU/e Technische Universiteit Eindhoven
University of Technology
System of systems
Intelligent Transportation Systems

- **Vehicle**: integrated system components
 - systems by themselves, but not independent

- **V2V**: system of systems (vehicles) with V2V applications
 - e.g. accident prevention, parking spot finding, collaborative driving

- **V2I**: ‘slower’ (higher latency) applications, global applications

- **ITS** is a SoS but also a typical IoT system (or Cyber Physical system)
Internet of Things

- A unified protocol and naming scheme between every pair of devices
- Pervasive, extending network communication to billions of endpoints
- Reaching into the physical world, reaching deep into (production) systems, gathering large amounts of detailed information about states and events
- Moving into safety criticality (CPS)
Smart grid
Water supply
Industry
Public services
Mobility management

Smart City
Street Lighting
Smart Mobility
Telecom
Smart Building
Smart Energy

Applications
Navigation
Safety
Well-being
Emergency
Management of carbon release
Energy load balancing

Another typical SoS and IoT system(s)
SoS characteristics

- Operational Independence
 - autonomous behavior and goal of subsystems

- Managerial Independence
 - subsystems managed by different authorities

- Evolutionary Independence

- Geographic distribution
 - Emergent behavior
 - properties deriving from the combination of subsystems
 - properties difficult or impossible to deduce from subsystems

- Heterogeneity

- Networks as integration point
Composition of systems into SoS

competition of control
- local versus global

uncorrelated requirements
architectural diversity
Two worlds

- Pervasive connectivity moves into the safety critical domain
 - by including actuation
 - by penetrating safety critical systems
 - uncertainty and concerns of connectivity and scalability are complemented with timeliness and dependability

- Safety critical systems (CPS) are becoming connected
 - by including open networks
 - robustness and (timing) guarantees are complemented with scalability and uncertainty
Connected domains

• Applications run on top of connected (managerial) domains
 • an application takes resources from that domain and possibly runs code
 • within a domain a single behavioral policy may be assumed
 • the overall application is emergent

• The perimeter is not that clear
 • the domain can be more logical than physical

• IoT example: smartphone apps
 • take resources from phone, network, back office cloud
 • crossing of managerial domains by user consent
 – sometimes policy, sometimes just black & white
How to engineer (compose) SoS applications?

• E.g. a Smart City application

• Lewis et al.: three step life cycle
 1. list all software services in the concerned subsystems
 2. build the integrated SoS application from these
 3. examine and realize the consequences for the original subsystems
 − e.g. access to data, using computation and data resources

• Some thing like this has to be done but
 • this assumes a stable software ‘base’ (independent evolution!)
 • it requires subsystem managers to be involved
 • it invites adjustments of subsystems to the applications at hand leading to maintenance problems
 − …. reducing dependencies is key
 • it is difficult to involve third party application developers
Composition architecture – some requirements

• Separate the following
 • *development API* for application developers ("North side")
 • *integration API* for subsystems ("South side")
 • adaptation layer for subsystems

• Interfaces include
 • *reservation* of resources
 • *policies*, and negotiation thereof
 • *coordination* of SoS applications
INTEGRATION AND COORDINATION

subsystem 1

Application 1

Adaptation

Local App

subsystem 1

Legacy collaboration

subsystem 2

Application 2

Adaptation

Local App

NORTH API

SOUTH API

Discovery (subsystems, services)

Coordination / Reservation (policies, intra-subsystem)

Control / Data / Code

Service Discovery

Policies / Reservation

Control / Data / Code
In summary

- Pervasive networking and Safety Critical systems move closer and get mixed.

- Both domains have characteristics of Systems of systems
 - composition of systems with an independent goal
 - composition of applications on top

- Such compositions should focus on:
 - reservations, extra-functional properties at interfaces
 - an explicit role for third party developers
 - avoiding increasing complexity in individual subsystems ad-hoc solutions