Real-Time Architectures
2003/2004

Scheduling Analysis

Johan Lukkien

Overview

• Algorithm and problem classes
• Simple, periodic taskset
 – problem statement
 – feasibility criteria
 • utilization bound
 • response time criterion
• Analysis of example algorithms
 – Rate Monotonic Scheduling
 – Earliest Deadline First
 – Deadline monotonic

Issues, questions of interest

• Relevant properties of methods
 – cost functions, comparison, classification, optimality
• When to apply what method
 – criteria
 • system types, parameters
 • assumptions on execution environment
 – OS & platform
 • additional requirements (e.g. behavior under overload)
 – how to prove properties of a (method, taskset) combination
 • static and dynamic tests to demonstrate feasibility
System types

- Properties of the task set
 - periodic, sporadic tasks
 - fixed/dynamic parameters
 - deadline within period
 - precedence relations & preemptability
- Criticality mix
 - hard, firm and soft
 - hard and firm: acceptance test
 - overload possibilities
- Number and type of resources (e.g. processors)
- Modes: subsets of tasks
 - statically defined / dynamically created

Algorithm classes

- Priority static/dynamic
 - fixed priority: priority of job fixed
 - dynamic task, fixed job priority
 - dynamic
- Preemptive
- Online / offline
 - online: e.g. admission/acceptance computation (guarantee), assignment of priorities
 - offline
 - precomputation of a table
 - complex optimizations possible
- Cost functions
 - e.g. maximum lateness,

Overview

- Algorithm and problem classes
- Simple, periodic taskset
 - problem statement
 - feasibility criteria
 - utilization bound
 - response time criterion
- Analysis of example algorithms
 - Rate Monotonic Scheduling
 - Earliest Deadline First
 - Deadline monotonic
Problem

- System
 - periodic, preemtable taskset, Z
 - fixed parameters
 - deadline equal to period
 - non-blocking
 - no precedence relations
 - single processor

- Find
 - one or more algorithms that work
 - and for such an algorithm
 - a criterion for feasibility
 - an analysis method and proof
 - a comparison with other methods

Feasibility criteria

- sufficient condition
 - (easy to check)
 - exact boundary

Feasible tasksets

Infeasible tasksets

Utilization criterion

- Recall
 - $U_j = C_j / T_j$ utilization for task j
 - $U = \sum U_j$ total utilization

- Clearly,
 - for $U>1$ the set is not schedulable by any algorithm (overload)
 - proof: the amount of computation time in a hyperperiod T is the number of times each task releases a job times the computation time of that job, hence
 - $T \sum C_j / T_j = \sum C_j / U_j$
 - with $U>1$, the latter term exceeds T which is a contradiction
 - for $U=0$ the set is schedulable (by any algorithm)

- A given utilization factor can be decreased by
 - decreasing computation times
 - increasing periods
Bounds

- Assume the algorithm is independent of computation times. These then can be varied to change the utilization factor.
- There is a utilization factor, dependent on algorithm and taskset such that computation times cannot be increased anymore without destroying feasibility
 - \(U_{\text{max}}(Z, \text{Alg}) \) -- increase computation times to the limit
- Minimizing over tasksets gives the least utilization bound for the algorithm
 - \(U^*(\text{Alg}) = (\min Z: U_{\text{max}}(Z, \text{Alg})) \)
- Meaning: for tasksets with utilizations below \(U^* \) the algorithm will produce a feasible schedule
 - Use \(U^* \) acceptance criterion ('sufficient condition')

Critical instant, WCRT

- A critical instant of a job \(\tau_{j,i} \) is a combination of jobs (including \(\tau_{j,i} \)) with release times chosen such that \(\tau_{j,i} \) has a worst-case response time.
- Worst-case response time (WCRT): determine for the critical instant, \(WR_j \), the response time of the first job of task \(j \).
- Then, WCRT feasibility criterion:
 - \(WR_j \leq d_{j,0} \)

Feasibility criteria

- \(U = 1 \) infeasible tasksets
- Increasing computation times till \(U_{\text{max}} \)
Overview

- Algorithm and problem classes
- Simple, periodic taskset
 - problem statement
 - feasibility criteria
 - utilization bound
 - response time criterion
- Analysis of example algorithms
 - Rate Monotonic Scheduling
 - Earliest Deadline First
 - Deadline monotonic

Rate Monotonic Scheduling

- Algorithm
 - fixed task priorities: higher priorities for shorter periods
 - preemptive
 - can be used both off- and online
 - minimize maximum lateness
- Advantages of RMS
 - simple, fixed priority assignment
 - in-depth analysis available
 - OS support
 - deals reasonable with overload conditions

NOTE:
- for now, assume tasks are sorted in order of increasing period

RMS (cnt’d)

- For RMS:
 - a critical instant of job \(\tau_j \) occurs when \(\tau_j \) is released simultaneously with all higher priority jobs

- Questions
 - \(U'(RMS) \)?
 - \(U'(RMS) \) maximal in some sense?
 - what if \(U^*<U<1 \)?
 - what about the response time of RMS?
Critical Instant in RMS

Example: utilization and schedulability

- Two tasks (written as \((C,T)\))
 - \((3,6)\) and \((4,9)\)
 - RMS yields deadline miss at \(t = 9\)
 - \(U = \frac{51}{54} = 0.944\)

 - \((2,4)\) and \((4,8)\)
 - is feasible with RMS
 - \(U = 1\)

Utilization bound for RMS

- \(U^*(RMS) = n(2^{ln-1})\), \(n\) tasks
 - result due to Liu & Layland (called LL-bound)
 - converges to \(ln(2) \approx 0.69\)
 - hence, in fact \(U^*(RMS) = ln(2)\) (independent of taskset)
 - worst case taskset: tricky
Example with WCRT

- Task set Z consisting of 3 tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>Period T_j</th>
<th>Execution time C_j</th>
<th>Utilization U_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>10</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>τ_2</td>
<td>19</td>
<td>11</td>
<td>0.58</td>
</tr>
<tr>
<td>τ_3</td>
<td>56</td>
<td>5</td>
<td>0.09</td>
</tr>
</tbody>
</table>

- Notes:
 - $U = 0.97 \leq 1$, hence Z could be schedulable;
 - $U_1 + U_2 = 0.88 > LL(2) \approx 0.83$, therefore $U > LL(3)$, hence another test required.

Techniques

- Time line:

Iterative definition of WCRT

- Define a series of approximations as follows
 - $WR^{(0)}_j = C_j + (\frac{\sum_{i: 1 \leq i < j} C_i}{T_j})$
 - $WR^{(k+1)}_j = C_j + (\frac{\sum_{i: 1 \leq i < j} WR^{(k)}_i / T_i}{C_j})$

- Remarks
 - the extra term represents the contribution of higher priority jobs in that time span
 - the interference
 - the procedure stops if $WR^{(k+1)}_j = WR^{(k)}_j$; the value then is the response time
 - termination is guaranteed because $U \leq 1$
Techniques

• Calculation (visualization):

![Diagram showing task scheduling and response times](image)

- Task τ_1
- Task τ_2
- Task τ_3

Recursive definition of WCRT

• Define:
 - $R(t, s, j)$: "response time at time t when $s-t$ equals the computation time left to do for job τ_j"
 - $\text{Comp}(t, s, j) = \sum_{i: 1 \leq i < j} \text{Act}(t, s, i) \cdot C_i$
 - $\text{Act}(t, s, i) = \left\lceil \frac{s}{T_i} \right\rceil - \left\lceil \frac{t}{T_i} \right\rceil$
 - $\text{Act}(t, s, i)$: the number of activations of task i in the interval $[t, s)$

- $R(t, s, j) =$
 - s, if $\text{Comp}(t, s, j) = 0$
 - $R(s, s + \text{Comp}(t, s, j))$, if $\text{Comp}(t, s, j) \neq 0$

Optimality

• RMS is optimal among all fixed priority preemptive algorithms
 - if a taskset can be scheduled feasibly with any fpp algorithm it can so with RMS
Earliest Deadline First

• Algorithm
 – job with nearest absolute deadline gets highest priority
 – minimizes maximum lateness
 – online algorithm

• Advantages / disadvantages
 – relatively simple
 – needs priority queue for storing deadlines
 • logarithmic access
 – needs dynamic priorities
 – behaves badly under overload