Real-Time Course

Transaction based temporal model for Real-time databases
Real-time data

Data used in classical administration system
“bank account”
-> represent status of constant real-world

Data used in real-time systems
“current position” (flight control system)
“outside temperature” (home heating system)
“water level” (mine pumps)
“stock price PHILIPS” (stock market investor)
-> represent status of changing world

Normal consistency criteria do not suffice
-> the database has to “refresh” its content to accurately represent the real world
Temporal data

Distinguish “temporal” and “non-temporal” data

New consistency criteria?

-data items equal status of the world
 - impossible to realize, system is not instantaneous
-data items equal status of the world within error margin
 - impossible without notion of distance
 - impossible without bounded change rate
-data items follow the change of the real-world within bounded time
Temporal model

Temporal item X has an absolute validity duration AVD(X)
-> transactions never read values of X older than AVD(X)

Example

Suppose the mine-pump system has to react to a change in water-level in 10 seconds

Suppose AVD(water-level) = 5

The reaction should take place within 10 –5 = 5 seconds
Temporal model

- Applications issue real-time transactions to database
- Global clock τ_{now} used by the database
- Applications specify real-time demands using τ_{now}
Temporal model

Database contains set of data-items
Data-items can be atomically *read* and *written*
A data-item X is represented with an instance x

An instance x is unique and has a value $x.v$ and some control information (defined later)

When X is written a new instance x is created and old instance is removed

Two types of data-items
- non-temporal items
- temporal items
Temporal model

Trivial: as time progresses instances grow old. The *time of measurement* $x.\tau$ of instance x defines the moment that $x.v$ accurately reflected the real world.
Age of instance x is $t_{\text{now}} - x.\tau$

Two types of temporal items
- sensor items
 $x.\tau$ is defined by transaction that writes x
- derived items
 these items were never measured
Derivation rules

Relation with the time of measurement of input

Semantic information about derivation is available
- X is time critical
- Q is not time critical
Derivation rules

No semantic information available

\[X \ ? \]
\[Q \ ? \]

Information hiding in derivation trees

\[X \]
\[Y \]
\[W \]
\[Z \]

June 2004
Temporal sets

t specifies temporal constraints for temporal items in t.Spec

t.IN set of temporal items that t reads
t.OUT set of temporal items that t writes
t.Spec set of temporal items, constrained by t

t specifies maximal age $t.m(X)$ for each item X in t.IN
t specifies maximal age $t.m(Q)$ for each item Q used to derive X in t.IN
Transaction types

- **User transactions** do not write temporal data $t.\text{OUT}=\emptyset$ and have effects outside the database or write non-temporal data.
- **Refresh transactions** have a supporting role.

Diagram showing the relationship between transaction types and age categories.

- **Single writer**
 - Age < 10

- **Serialized writer**
 - Age < 10
Refresh Transactions

• Sensor transactions $t.IN = \emptyset$

• Derive transactions
Absolute consistency

Database *absolutely temporally consistent* if
- all transactions satisfy all temporal constraints

For all t: for all X in t.Spec
t reads an instance x with $t_{\text{now}} - x.t \leq t.m(X)$

Requirement holds at start of transaction
Relative consistency

For each t, a set $t rtc$ of relative temporal constraints, rc is specified.

Constraint rc consists of:
- a subset $rc.s$ in $t.Spec$ of data-items
- a maximal age difference $rc.m$

Instances read by t must have $t.o.m$ such that
For all X,Y in $rc.s$: $|x.t - y.t| \leq rc.m$

If all rc of all transactions are satisfied, the database is relatively temporally consistent
Database and transactions

Sensor transactions

Derive transactions

Actuator Transaction 1

Actuator Transaction 2
TOM functions

- Sensor transaction: worst case assumption
 \[tom(t, x) = \text{start}(t) \]
- Derive transaction: worst case assumption
 \[tom(t, y) = \min_{x \in t.in} x.T \]
- One critical input \(X \)
 \[tom(t, y) = x.T \]
- Proportional influence
 \[tom(t, y) = \sum_{x \in t.in} x.T / |t.in| \]
- Prediction model
 transaction \(t \) uses instance \(x \) to create instance \(y \)
 \textit{which} is “measured” in the future: \(y.T > T_{\text{now}} \)
 \[tom(t, y) = x.T + \delta \]
Design decisions

• **First decision**: all requirements are met at all times
 \[ma_X = \min(\min_{t,X: X \in t.\text{Spec}} t.\text{ma}(X), \min_{t: rc \in t.\text{rtc and } X \in rc.s} rc.m) \]

• **Second decision**: refresh transactions are periodic

• **Sensor transaction**: if \(t \) writes \(X \), then \(t.p + t.d \leq ma_X \)

 - \(t.p \) is period of \(t \)
 - \(t.d \) is deadline of \(t \)
Derived age calculation

Derive transactions read instances that have aged
worst case:
Reaction time system is
\[ma_x + t.p + t.d \]

Last refresh of X
Transaction reads X

Additional age \(aa_Y \) is maximum of \(t.start - tom(t,y) \)

Example \(t \) reads \(X \) and \(Q \) to write \(Y \)
\[tom(t,y) = 0.5 x.t + 0.5 q.t \]
If \(ma_x \) in \([0,8]\) and \(ma_Y \) in \([0,6]\) then \(aa_Y = 7 \)

\[t.p + t.d \leq ma_Y - aa_Y \]
Derived age calculation(2)

This holds for each Y that transaction t writes

$$t.p + t.d \leq \min(Y \text{ in } t.OUT: ma_Y - aa_Y)$$
Example

Show Warning: SW.p=15 and SW.m(D)=15
Show Count: SC.p=60 and SC.m(C)=60

tom(Detect, D) = r.τ
tom(Count, C) = min(r.τ, f.τ)
tom(Radar image, R) = Radar image.start
tom(Flight info, F) = Flight info.start
Example (2)

Design choice requirements on detect and count

Detect\(m(R) = 10\)
\(rc.s = \{R,F\}\) with \(rc.m=30\) and \(rc\) in detect.rtc
Count\(m(R) = 40\)
Count\(m(F) = 40\)
Example (3)

\[\text{ma}_D = \text{SW.m}(D) = 15\]
\[\text{ma}_C = \text{SC.m}(C) = 60\]
\[\text{ma}_R = \min(\text{Count.m}(R), \text{Detect.m}(R), \text{rc.m}) = 10\]
\[\text{ma}_F = \min(\text{Count.m}(F), \text{rc.m}) = 30\]

\[\text{tom}(\text{Detect}, D) = r.\tau, \text{ma}_R = 10\]
\[\text{tom}(\text{Count}, C) = \min(r.\tau, f.\tau), \text{ma}_R = 10, \text{ma}_F = 30\]

\[\text{RC.s} = \{R, F\}\]
\[\text{rc.m} = 30\]
Example (4)

\[\text{detect.p + detect.d} \leq \text{ma}_D - \text{aa}_D = 5 \]
\[\text{count.p + count.d} \leq \text{ma}_C - \text{aa}_C = 30 \]
\[\text{radar image.p + radar image.d} \leq \text{ma}_R = 10 \]
\[\text{Flight info.p + flight info.d} \leq \text{ma}_F = 30 \]