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Abstract

This paper proposes the restriction of the significant
event occurrences, i.e., the sending and receiving of
messages in a distributed real-time system, to the lattice
points of a globally synchronized spaceltime lattice. One
dimension of this spaceltime lattice represents the
progression of time, the other dimension denotes the
computational processes in the system. This additional
constraint simplifies the solutions to the agreement
problems. After an analysis of the interdependence
between temporal order, causal order, receive order, and
the limits to time measurement in a distributed real-time
system, criteria for the selection of the lattice points of
this spaceltime lattice are presented.

1. INTRODUCTION

The performance of a distributed real-time system
must be predictable. Accepted variations of the hardware
components (e.g. specified deviations from the nominal
frequency of a quartz crystal) or the occurrence of
hypothesized faults should not have any effect on the
quality and timeliness of the system service. The slightly
varying timebases in the different nodes of a distributed
system or the occurrence of faults can lead to major
disagreements in the states of the nodes if proper
agreement protocols are not provided.

Agreement on time, order, membership, and data are
fundamental problems in any distributed system. In a
real time system these agreement problems have to be
solved within the given time constraints. Many solutions
to agreement problems, e.g., the establishment of a
consistent order [Lam78], have been investigated in an
asynchronous environment without a global timebase.
These solutions are complex and expensive. The
introduction of a synchronized global time [Lam84] can
speed up the solution of agreement problems. [Cri88] has
shown that the membership problem has a simpler
solution if a common notion of time and a synchronous
architecture can be assumed. In this paper we go one step
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further. We restrict the occurrence of significant events
(e.g., the sending and receiving of messages) to the
lattice points of a globally synchronized action lattice,
i.e., a sparse timebase. If the lattice points of this action
lattice are properly chosen, temporal order and
simultaneity of actions can be realized without
considerable protocol overhead.

This paper is organized as follows. In the next section
we describe our computer system model and introduce
three desired properties of distributed real-time systems,
the consistent order property, the simultaneity property,
and the temporal order property. After a discussion of the
relationship between temporal order, causal order and
receive order we discuss the limits of global time
measurement. In order to avoid complex agreement
protocols the introduction of a sparse timebase is
proposed in Chapter 5. The problems occurring at the
interface to the environment are elaborated in the final
chapter.

2. DISTRIBUTED COMPUTER SYSTEM

We assume a distributed computer system consisting
of a set of fail-silent node computers that are attached to
a real-time bus. The nodes communicate by the exchange
of messages only. Some nodes, the interface nodes,
support a connection to the intelligent instrumentation,
i.e., the sensors and actuators in the environment. We
assume that every node has its own real-time clock. All
clocks of the nodes are synchronized such that an
approximate global timebase is available to all client
tasks in the different nodes. We will discuss the
properties of this global timebase in more detail in
chapter 4.

In a typical real-time application, the computer system
has to perform a multitude of different functions in
parallel, e.g., the display of sensor readings (we call a
sensor reading at a particular point in time an
observation) to the operator, the monitoring of
observations (both their value and rate of change) to
detect alarm conditions, the processing of observations
by process models in order to find new setpoints, etc.. In
distributed computer systems, these different functions



are normally allocated to different nodes. Additionally,
replicated nodes are introduced to provide fault tolerance
by active redundancy.

To guarantee a consistent behavior of the distributed
computer system as a whole and to maintain replica
determinism [Bar90] between replicated nodes, it should
be assured that all nodes act

1) on different observations in the same order
(consistent order property).

2) on the same observation at about the same time
(simultaneity property).

A3) on different observations in the temporal order

of their occurrence (temporal order property).

If the consistent order property is violated, the internal
state changes of replicated nodes can be different and the
nodes might enter diverging states. If the simultaneity
property is violated, the temporal coordination of the
actions of the nodes is impaired and a scemingly
unsynchronized behavior of the system may result. If the
temporal arder property is violated, an event analysis
which tries to reestablish the possible causal order of
event chains is obstructed.

If the temporal order property can be guaranteed then
consistent ordering is implied. However, we will see that
there are fundamental limits to the fulfillment of the
temporal order property. To find these limits, we need a
better understanding of the relationships between causal
order, temporal order, and time-measurement.

3. TEMPORAL AND CAUSAL ORDER
Temporal order

Let us assume that the continuum of real time is
modelled by a directed timeline consisting of an infinite
set of instants {T} with the following properties
[Whi90,p.208]:

1) {T} is an ordered set, i.e., if p and q are any two
instants, than either p is simultaneous with q or
p precedes q or q precedes p and these relations
are mutually exclusive. We call the order of

instants on the timeline the temporal order.

{T} is a dense set. This means that, if p
precedes r, there is at least one q which is
between p and 1.

@

Let us further assume that there exists an omniscient
external observer who can observe all events that are of
interest in a given context. (Note that we disregard
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relativistic effects.) This observer possesses a single
reference clock z with a frequency f,, which is in perfect
agreement with the international standard of time TAIL
We call 1/f, the granularity g, of clock z. Whenever this
observer perceives the occurrence of an event ¢, he will
instantaneously record the current state of his reference
clock as the time of occurrence of this event ¢ and thus
generate a timestamp of e. We denote with clock(event)
the timestamp generated by the use of a given clock to
timestamp an event. Since z is the single reference clock
in our system, we call z(e) the absolute timestamp of an
event e. We will measure the duration between two
events by counting the ticks of the reference clock which
occur between these two events. The temporal order of
events which occur between any two consecutive ticks of
the reference clock, i.e., within the granularity g, cannot
be reestablished from their absolute time-stamps. This is
a fundamental limit in time measurement.

We call a set of events {E} d-precedent if the events
in this set occur either simultaneously or precede each
other by more than d time units [Ver89). Given a single
timebase with a granularity g we can only reconstruct the
temporal order of a set of time-stamped events if this set
is g-precedent.

Causal order

In many real time applications we are interested in the
causal dependencies between events. For example, in an
alarm analysis we have to identify the event which was
the cause of a set of consequent alarms, i.e., an alarm
shower.

Reichenbach [Rei57,p.145] suggested to define
causality by his known 'mark’ method without reference
to the time dimension: "If event el is a cause of event €2,
then a small variation (a mark) in el is associated with
small variation in e2, whereas small variations in e2 are
not necessarily associated with small variations in ¢1."

Causal order is transitive, i.e., if el is the cause of €2,
and e2 is the cause of €3, el is also the cause of e3.

Temporal order is a prerequisite for causal order. If
and only if the occurrence of an event el has preceded
the occurrence of an event €2 in the domain of real time,
it is possible that el has an effect on 2. On the other
hand, if it can be established that e2 has occurred after
el, then e2 cannot be the cause of el. It is important to
note that the time of event occurrence, not the time of
event recognitiont (the receive order) by some subsystem -
observing the world, establishes potential causality.

To illustrate this point, consider the following simple
practical example: A distributed system consisting of
three nodes k, 1 and m monitors a plant. The interface



node k observes the rupture of a pipe, OP, and the
interface node 1 observes the consequent fall in pressure
OF. As soon as the event OF is recognized by node m it
performs an emergency shutdown OS. Because of the
variable delays in the communication system the events
are reordered during transmission. An omniscient outside
observer sees the events in the following temporal order:

OP OF RF OS RP

oP Occurrence of pipe rupture

OF Occurrence of pressure fall

RF Recognition of pressure fall by node m
(0 Occurrence of shut down action

RP Recognition of pipe rupture by node m

Although the event "recognition of pipe rupture” was
perceived by node m gfter the event "shut down" action,
the "occurrence of pipe rupture” was the originating
cause for this "shut down" action. The temporal order of
the event recognition (the receive order) may not be
taken as the basis for a causal analysis, if clandestine
communication channels cannot be ruled out. Such

clandestine communication channels exist in many
environments of real-time systems.

Consider a system without globally synchronized
clocks. In such a system the causal relationship which is
brought about by a clandestine channel within the
environment between nodes k and 1 will not be
necessarily reflected in the consistent order generated by
an atomic broadcast protocol [Cri85] nor in the
"happened before" relation, the precedence order,
established by Lamport [Lam78]. It could even happen
that this precedence order, based on the event
recognition, is opposed to the temporal order, based on
the event occurrence, and contradicts the actual causality
generated by a clandestine channel in the environment
(Fig 1 shows the possible logical order of the events
introduced in the previous paragraph). Ordering protocols
[Ray90], which are viable in a closed system may not be
used in a real-time system which is an open system.

A global time, which is used to time-stamp the event
occurrences helps to reconstruct the temporal order,
which is a prerequisite for causal order. But what are the
limits to time measurement in a distributed system?

Nodem  (0)....ccccoueuuuene RF(2)..05(3).....RP(4)
Nodel  (0)....cc.u... gF(l)
'I
Nodek  (0)........... OP(1)
............................................................ > real time
---- clandestine channel message transmission

The logical clock-tick number generated by Lamport's algorithm

[Lam78] is given in the parenthesis.

Fig.1 Physical and logical order of events

4. GLOBAL TIME

Accuracy and Precision

Let us analyze a real-time clock k with a granularity
gk Provided the granularity gy of this clock k is much
larger than the granularity of the reference clock g, (this
is normally the case), we can measure the granularity of
clock k with the reference clock. We assume that
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whenever clock k ticks, the state of the clock is
incremented by its intended granularity gy, expressed in
the ticks of the reference clocks, and that, on start up the
clock is initialized with the state of the reference clock.
We denote the state of clock k after its ith tick by k(k;),
(we denote the ith tick of clock k by k;). Since the state
of the clock is not modified between two consecutive
ticks, all events which occur within a granule of time gy
will be time-stamped with the same value. On the basis
of the time-stamps of clock k with granularity g, the
temporal order of a set of events can only be
reestablished if they are known to be gy-precedent.



Ordinary clocks are not perfect. They can drift by up
to ¢ sec/sec, the drift rate of clocks, from the reference
clock z. Quartz controlled clocks have a drift rate of the
order of 10”9 1o 10°7. The granularity of such a clock
may differ by up to o*gy seconds from the intended
granularity. Therefore a normal clock has to be
resynchronized with the reference clock every so ofien.
We call the maximum guaranteed difference [Kop87]
between the state of clock k and the state of the reference
clock

Ak MAX ( Vi | k&) - z&) D
the accuracy AKof the clock k.

Let us now consider an ensemble of n clocks with the
same intended granularity g. We call the maximum

difference between any two elements of this ensemble

I = MAX ( VivkVl | zk&) - z@) | )
the precision IT of the ensemble. Precision and accuracy
are two different (but related) concepts. If all clocks of
the ensemble run at the same speed, but faster than the

Tick i i+1
Clock k I I
Clock 1 I I
Clock m I I

global tick gy
I

reference clock, then they might have a good precision
but a bad accuracy. The opposite is not possible, since

I1 <2A.
Granularity of a Global Time

A global time is an abstract notion which can be
approximated by properly selected ticks from
synchronized local real-time clocks of an ensemble. Let
us assume that in a given ensemble of { N } nodes the
clocks are synchronized to a precision IT . The "global
tick" will then happen within an interval TI on the
timeline (the global tick interval). In order to avoid the
overlap of global ticks, the granularity of the global time
gg must be

gg> IL.
We call this relation between granularity of the global

time and the precision of synchronization the
"granularity condition”.

Fig. 2: Precision of global timebase

Dense Timebase versus Sparse Timebase

Assume a set { E } of significant events which are of
interest in a particular context. This set { E } could be
the ticks of all clocks or the events of sending and
receiving messages. If these events are allowed to occur
at any instant of the timeline, we call the timebase
dense. If the occurrence of these events is restricted to
some sections of the timeline, we call the timebase
sparse. If a system is based on a sparse timebase, there
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are timeintervals where no significant event is allowed to
occur.

It is evident, that the occurrences of events can only
be restricted if the given system has the authority to
control these events, i.., these events are in the sphere of
control of the computer system [Dav79]. For example, in
a distributed computing system the sending of messages
can be restricted to some subsections of the timeline and
can be forbidden at some other subsections. In general,
the occurrence of events outside the sphere of control of



the computer system cannot be restricted, ie., these
external events are based on a dense timebase.

Let us assume that

8g= II+K

where K is the time interval separating the latest clock
of global tick i from the earliest clock of the global tick
i+1 (In Fig. 2 these are the intervals between the global
tick bars). If the occurrence of significant events within a
system is restricted to the intervals denoted by K--a
sparse timebase--, then these events will be timestamped
with the same tickvalue by every clock of the ensemble.
If the events can happen on a dense timebase, such a
consistent timestamping of events in a distributed system
cannot be guaranteed. It may happen that a single event
may be timestamped differently (difference = 1) by two
nodes of the ensemble, even if the granularity condition
is observed. We call this phenomenon the "imprecision
effect". The imprecision effect can be circumvented if the
event set under observation is at least Zgg-precedenL

5. COMMUNICATION WITHIN THE
SYSTEM

Let us consider a message exchange between two real-
time tasks residing at different nodes. We call the real-
time interval between the start of the send statement in
the sending task and the termination of the receive
statement in the receiving task, measured by their
absolute timestamps, the message transit delay d. This
message transit delay is determined by the time it takes to
execute the protocol stack at both ends of the
communication and by the transmission delay. We call
the maximum message transit delay dpy,y and the
minimum message transit delay dpy;n. The difference

€ =dmax - dmin

is called the temporal uncertainty & of the
communication protocol.

If the receiver acts on a message as soon as it is
delivered, neither the consistent ordering property, nor
the simultaneity property, nor the temporal order
property is assured. Because of the temporal uncertainty
of the communication protocol messages can be
reordered, i.e., a message A which has been sent after
another message B can arrive before this earlier sent
message B.

Therefore a receiver must wait after the receipt of a
message until the system is stable. A system is stable in
relation to a given message A if all outstanding messages
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that have been sent earlier than this message A are
guaranteed to have arrived. We call this temporal
interval between the start of sending of a message and the
point in time after which the system becomes stable, the
action delay. The action delay depends on the
performance parameters of the given system architecture,
such as the bandwidth and the delay characteristics and
of the communication channel, the speed of the computer
hardware, the structure of the operating system and the
communication protocols (e.g. the media access
strategy), and the precision of clock synchronization. In a
system with a global timebase the action delay is dp,x +
2g,, after the send time. In a system without a global
timebase the action delay is dp,, + €. [Kop90].

We can guarantee all three properties, the consistent
order property, the simultaneity property and the
temporal order property within a distributed system if all
significant events, i.e., the sending and receiving of
messages, are restricted to the globally synchronized
lattice points of a sparse timebase with a granularity
larger than the action delay. Since there may be many
different processes in the system with different timing
requirements, this lattice is two-dimensional. The x-axis
represents the progression of time and the y-axis denotes
the process identifications as shown in Fig. 3. We call
this timebase an action lattice [PDCS90] and the interval
between lattice points --the granularity of the action
lattice--g,. In the present implementation of the MARS
architecture, which supports a sparse time-base, the
granularity of the action lattice g, is in the order of a
millisecond[Kop89]. Such a system has the following
advantages:

¢)] The consistent order property is guaranteed
since all nodes receive all messages before the

next message is sent.

2) The simultaneity property is guaranteed since all
nodes act on the message at about the same
time, ie., at the next lattice point, which is

globally synchronized with a precision of I1.

?3) The temporal order property is guaranteed, since
the system is g,-precedent. Messages which are
sent simultaneously are sent at the same action
lattice point with the same timestamp. Messages
which are not simultaneous are sent at different

lattice points. The imprecision effect is avoided.
@

Since at the lattice points no messages are in
transit, the system is in a ground state [Ahu90).
The internal state of a node is well defined at the
ground states. This supports the reconfiguration

of the system and the reintegration of nodes.



The testability of the system is improved. Since
events are restricted to the action lattice points,
the size of the input space is reduced
significantly [Sch91]. The test coverage, i.e., the
relation between the number of test cases to the
number of points in the input space is increased
accordingly.

®)

Whenever an action has to be taken, it has to be
delayed until the next lattice point of the action lattice. If
we do not want to pay this price, we have to introduce
agreement protocols, e.g., an atomic broadcast protocol
to guarantee consistent ordering. However, the execution
of these agreement protocols might take longer than the

delay introduced by the action lattice.
Process
identifier
A 0O o O O
B O e o o
C o 0o e o
D e 0 O
E o & 0 O
F e 0 0 o

A distributed real-time system which supports such an
action lattice provides an ideal execution environment for
the implementation of real time programs written in a
synchronous language, such as LUSTRE ([Cas87] or
ESTEREL [Ber85]. These languages separate temporal
concerns from data-transformation concerns by assuming
that every program step is executed within a granule of
the action lattice. Since no significant event can occur
within such a granule, the program execution is taking
place in a "timeless” environment.

If we are only interested in the temporal order property
(and not in the simultaneity property), then it is
sufficient to introduce a sparse time lattice with a lattice
interval of Zgg, where &g is the granularity of the: global
timebase. However, we still may have to wait for the full
action delay until the system becomes stable.

o o0 O
¢ O O
o e O
o ¢ O
o o O
o o ¢

> real-time

e an event occurs at this lattice point
o no event occurs at this lattice point

Fig. 3: Space/time lattice

6. COMMUNICATION WITH THE
ENVIRONMENT

Whereas it is possible to restrict the points of event
occurrences within the sphere of control of the computer
system, such a restriction cannot be enforced on the
events happening the environment. These events happen
on a dense timebase. Because of the imprecision effect it
is not even possible to guarantee that two observations of
a single external event will carry the same timestamp,
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even if the clocks are synchronized. It cannot be ruled out
that the external event happens during a global tick
interval. ‘

One solution to solve this problem is the execution of
an agreement protocol at the interface between the
distributed computer system and the environment. All
nodes observing a part of the environment must agree on
the point in time and the value of an observation-before
this observation is released to the rest of the system.
These agreed values will reflect the temporal order only
if the events are at least 2g, apart, but at least the agreed
timestamps are consistent within the system. The quality



of clock synchronization constitutes a fundamental limit
for the recovery of the temporal order and thus for the
causal analysis of events.

In most applications these agreement protocols will be
application specific. Knowledge about the physical
process, the quality of instrumentation, and the past
performance of the sensors will be integrated into these
application specific algorithms.

7. CONCLUSION

The slightly varying clock rates in the nodes of a
distributed system, as well as the requirement to tolerate
faults which are covered by the fault hypothesis, can lead
to divergent states in replicated nodes. One solution to
this problem is the execution of agreement protocols. In
the general case of asynchronous architectures and
unrestricted fault-models these agreement protocols can
be expensive in time and computational resources. The
introduction of additional regularity assumptions
simplifies the solutions of many agreement problems.
Such assumptions relate to the fault model, e.g., fail-
silent nodes and fail-silent communication links, and to
the points in time when significant events are allowed to
occur. If fail-silent nodes are assumed and if the
occurrence of a significant event is restricted to the
lattice points of a properly chosen globally synchronized
action lattice, then the problem of temporal order and
simultaneity of actions can be solved without the
execution of agreement protocols. Since, in most cases
the execution of an agreement protocol takes longer than
the the granularity of the action lattice, we may improve
the responsiveness of a system by delaying an action
until the next lattice point. This result is counter-intuitive.
Another advantage of such a system relates to the faster
solution to other agreement problems. For example, the
membership problem, is easier to solve if the system is
based on a sparse time model[Kop91].

The introduction of an action lattice is in some sense
orthogonal to the issue of whether a real-time system is
time-triggered or event-triggerd. In both designs the
regularity provided by the action lattice will reduce the
complexity of the solutions to the agreement problems.

Since the events occurring in the environment cannot
be restricted to an action lattice--they occur on a dense
timebase--, agreement protocols are still needed at the
interface between the distributed computer system and
the environment.
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