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1 Introduction
We are working on the development of a system architecture that enables autonomous mobile
systems to cooperate in real-time using their own distributed infrastructure such as computing re-
sources and wireless communication channels. Due to locomotion of the mobile systems, the
cooperation is subject to strong real-time constraints. Furthermore, the systems share and compete
for resources, e.g. network bandwidth. Our work aims at providing a hierarchy of real-time
communication protocols that support the cooperation of autonomous intelligent systems. These
protocols should support real-time and fault-tolerance properties. The development of the
protocols is based on the IEEE 802.11 standard for wireless communication in local area networks
[IEEE 97]. The protocols will be implemented in conformance with the infrastructure networks
defined in the standard so that they can be used on standard hardware components (e.g. Lucent's
WaveLan cards). The functionality of the standard is enhanced with respect to real-time and fault-
tolerance properties either by adding additional protocol layers and, if necessary, by extending the
standard implementation of the medium access control layer on the level of the device drivers.

On the lowest layer, which serves as basis for achieving real-time properties in the higher
communication layers, a clock synchronization protocol implements a global time base for the
cooperating systems. A global time base is the basic precondition for the real-time planning and
execution of cooperative acts in such systems. The global time base can for instance be used to
implement access control mechanisms in higher protocol layers based on the principle of time
division multiplexing. Due to the unavoidable drift of local clocks, a global time base can only be
achieved by the means of a clock synchronization protocol. In the context of mobile autonomous
systems, the protocol must be based on wireless communication links. A global centralized
protocol, such as provided by the GPS (Global Positioning System), does not solve the problem
because the availability of the GPS is not guaranteed under all circumstances. Thus, a protocol
working in a local group of cooperating systems is needed. The IEEE 802.11 standard includes a
simple protocol for clock synchronization, which, however, only achieves limited precision and
does not tolerate message losses. In this paper, we present a clock synchronization protocol that
enhances the IEEE 802.11 standard by achieving high precision even in the presence of message
losses.
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2 Clock synchronization
In [Lam 78], the necessity of clock synchronization in general is motivated, [LuL 84] gives a
lower bound on the precision that can be achieved (with deterministic algorithms) and proposes an
algorithm achieving that precision. In [Cr 89], a probabilistic algorithm is introduced that achieves
a higher precision (at the price of being non-deterministic). Examples of fault-tolerant algorithms
for clock synchronization can be found in [LMS 85, KoO 87, LuL 88, Ver 92]. These protocols
have in common that they spend a relatively high overhead for communication in order to achieve
a sufficient level of precision and fault tolerance. Implicitly, they are designed for wired
communication links that offer a sufficiently high bandwidth (e.g. Ehternet with 10 Mbits/sec) and
a considerable reliability with respect to message delivery. In contrast to that, the wireless link has
relatively low bandwidth (1 Mbit/sec, optionally 2 Mbits/sec) and a poor reliability. Therefore, a
protocol for clock synchronization suitable to work in the application environment of mobile
autonomous systems is required to achieve sufficient degrees of fault tolerance and precision with
a low communication overhead. Furthermore, it should comply with the IEEE 802.11 standard,
which is commonly accepted for wireless local area networks.

For the so-called infrastructure networks, the IEEE 802.11 standard already provides a
master/slave clock synchronization mechanism. A special fixed node, the access point, is used as
master. The access point coordinates the medium access for all stations that are reachable over the
wireless medium. It determines alternating phases of medium access control: the "contention
period" with CSMA based arbitration, and the "contention free period" with centralized medium
arbitration. The access point initiates the contention free period by sending a high-priority message
("beacon frame"). This beacon frame includes a time-stamp that serves for synchronizing the local
clocks of all slaves. The precision that can be achieved by this approach is bounded by the variance
in the delay that is encountered between taking the time-stamp at the access point and receiving
that time stamp at the slave stations.

3 The clock synchronization protocol
The basic idea of the proposed clock synchronization protocol is to increase the precision of the
IEEE 802.11 clock synchronization protocol by exploiting the broadcast property of the wireless
communication medium. As in [Ver 92, GS 94], we assume that message reception is tight, i.e., if
any two receivers receive the same frame, they receive it approximately at the same time. Thus,
we can make the precision achieved independent of the variance and delay of message delivery by
the following procedure (that we have already applied in our clock synchronization protocol for
the CAN-bus [GS 94]):

1. The master broadcasts an indication message. The transmission delay of this message is
irrelevant for the precision of the clock synchronization, the protocol only assumes that message
reception is tight.

2. Each slave (and the master) takes a local time-stamp right after reception of the indication
message. We assume that the delay of an interrupt routine that time-stamps the reception of a
frame is bounded and has a small variance.

3. The master sends its own time-stamp for the last indication message.
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Now each slave can compare the master’s time-stamp with its own time-stamp for the reception of
the last indication message, compute the difference and adjust its local clock. The waste of
bandwidth (two messages per synchronization) can be eliminated by an additional modification:
the masters time-stamp for the last indication message now serves as new indication message, so
we have only one synchronization message to be sent per synchronization period.

Let us now consider the fault-tolerance properties of the protocol in the context of the IEEE
802.11 standard. Applying the protocol in this context means that the access point acts as master,
and that the beacon frame includes the time stamp of the reception of the previous beacon frame.
We consider the access point to be stable because the IEEE 802.11 standard uses the access point
as central coordinator during the contention free period. Since the master does not need to be
aware of the existence of the slaves, failures and recovery of slave stations are transparent to the
clock synchronization protocol. Thus, (fail-silent) site failures are tolerated by the protocol.
However, the problem of message losses still has to be tackled. The number of message losses is
considerable higher than for wired local area networks, because the wireless medium is unshielded
and thus exposed to external interference. The protocol described so far achieves a high precision
with a low communication overhead, but it does not tolerate message losses. A slave must receive
two consecutive beacon frames in order to carry out synchronization. This is unacceptable when
message losses occur frequently. For instance, loosing every second beacon frame would prevent
the clocks from being synchronized at all.

Exploiting the tightness of message reception for synchronizing the clocks relies on analyzing the
contents of the time-stamp message that refers to the reception of an earlier (indication) message.
Thus, any fault-tolerant variation of the protocol still requires the successful reception of at least
two different messages at the slave station. However, we can relax the requirement that these two
messages must be consecutive. In order to tolerate up to (n-1) consecutive message losses, the
time-stamp values for the last n synchronization messages are included in each synchronization
message.

In more detail: Let smi denote the i-th synchronization message being sent by the master. Let tmi

denote the time-stamp of the master and cmi the time-stamp of the slave for the reception of that
message. Then, each synchronization message contains, besides its sequence number i, the values
of tmi-n, tmi-n+1, tmi-n+2,…, and tmi-1. Suppose that the last synchronization message received by the
slave is smj at the slave's time cmj. If the slave now receives smi, and if i-j≤n, then the value of tmj

is included in smi and the slave can adjust its local clock based on the value of cmj - tmj.

Thus, on the reception of a synchronization message, a client can synchronize its local clock with
the master clock if it has received at least one of the preceding n synchronization messages. An
analysis of the precision of the protocol as well as its implementation on Windows NT network
drivers for Lucent WaveLan PCMCIA cards are currently under way.
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