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Abstract

We present a method for synchronizing pausible clocks in
GALS (Globally Asynchronous, Locally Synchronous) sys-
tems. In contrast to most conventional GALS schemes the
method is not based on including in each ring oscillator
a synchronizing element (such as for instance an arbiter)
which on one side can pause the clock and on the other side
offers a handshake interface. Instead, we propose a scheme
in which each synchronous module has both an incoming
and an outgoing clock signal, which have been obtained by
opening the module’s ring oscillator. Since these clock sig-
nals also behave as handshake signals, handshake circuits
can be used to synchronize the clocks.

We demonstrate the technique in the context of proces-
sors and memories. All the designs have been simulated
and showed functionally correct.

Keywords: GALS systems, pausible clocks, asynchronous
crossbar/bus, processor/memory architectures.

1. Introduction

Two developments undermine the role of globally
clocked VLSI circuits. In the first place, the trend towards
system-on-chip designs leads to chips containing several
memories and IP modules which all have different cycle
times. Secondly, in future technologies it will become in-
creasingly difficult to distribute high-speed low-skew clock
signals. Therefore, future chips will contain several locally
clocked submodules, which communicate through dedi-
cated glue logic. These heterogeneous systems are called
GALS (Globally Asynchronous, Locally Synchronous) sys-
tems [3]. Two kinds of GALS systems can be distinguished
depending on the way the synchronous submodules com-
municate.

� In a data synchronization system, the submodules
have free-running clocks and the data being commu-
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nicated is synchronized from one clock domain to
the other. Examples of data synchronizers are the
well-known two-register or double-latch synchronizer
[12, 4] or more elaborate synchronizing schemes such
as pipeline synchronization [16]. Since these synchro-
nizers have to deal with metastable states, the designer
has to trade off between safety and low latency. More-
over, special precautions are needed to keep multi-bit
words consistent.

� In a clock synchronization system, the submodules
have so-called pausible clocks (also known as stretch-
able or stoppable clocks), which are ring oscillators
that can be halted. Several approaches have been pro-
posed to stop and restart the clock safely. One ap-
proach first samples the inputs in latches and then waits
until all (potential) metastability has been resolved be-
fore releasing the clock [12, 14]. Recent approaches
incorporate a mutual-exclusion element (or arbiter) in
the ring oscillator [19, 2, 20, 10, 7, 9] in order to pause
the clock when the asynchronous environment wants
to communicate with the module. In each cycle, the
arbiter decides whether either the internal clock or the
environment may proceed. The fact that the designs in
both approaches have to resolve metastability, makes
their worst-case cycle time unpredictable. Designs for
clock synchronization avoiding arbiters are addressed
in [12, 15, 3]. The synchronous modules in these de-
signs indicate when they want to communicate and ad-
ditional circuitry then converts these indications into
handshakes.

The clock synchronization approaches mentioned above
have all one property in common: they include in the ring
oscillator a synchronizing element that on one side can
pause the clock and on the other side offers a handshake
interface. Each approach has its specific synchronizing el-
ement (such as for instance an arbiter). The fact that either
the clock or the environmentmay proceed implies that input
and output operations are mutually exclusive (no overlap in
the data validity intervals). A communication between two
clock domains then implies two conversions: first from one
clock domain to handshakes and then from handshakes to
the other clock domain. Therefore, during such a commu-
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nication first the one clock and then the other is paused.
We propose a scheme in which the handshake signals

are obtained directly by opening the module’s ring oscil-
lator. The simplest form of clock synchronization is then
by means of a C-element which synchronizes the two clock
domains directly with a small and predictable timing over-
head (and without the need for any conversion). The com-
mon clock signal generated by the C-element can be used
to support bidirectional communication. Arbiters are only
needed when they are unavoidable, for example for sharing
resources between independent clock domains.
We demonstrate the scheme in the context of processors

and memories. We aim at robust modular designs that al-
low plug-and-play compositionality. Therefore the designs
given below may not be the fastest ones, but they are rather
easy to reason about. The designs have been implemented
in a 0.18 �m CMOS technology. They have been simulated
using back annotation with estimated wire loads (with a real
model of the memory and a worst-case behavioural model
of the processor) and showed functionally correct.

2. A locally clocked module

Fig. 1(a) shows the design of a locally clocked module,
which contains a synchronous finite state machine SFSM
and the provisions for a pausible ring oscillator consisting
of a delay line � with an inverter (open circle at the end of
the delay line). We obtain a ring oscillator by directly con-
necting the two clock signals Creq and Cack. We define the
cycle time of a component as the minimum time it takes for
that component to execute one cycle (an up- and a down-
going transition). Therefore the cycle time of this locally
clocked module is 2 ��.
Fig. 1(b) shows a timing diagram of the two clock signals

of the locally clockedmodule. The module delays incoming
signal Cack over period � and then inverts it before send-
ing the result out as signal Creq, whereas the environment
delays edges of Creq for certain (possibly variable) times
(�0 and �1) before feeding them back via Cack. Note that
the two clock signals execute a handshake protocol in which
every clock cycle corresponds with a four phase handshake.
Therefore, handshake circuits can be connected to such a
handshake port. Handshake circuits [1, 11] are constructed
from a small set of basic components that use handshake
signalling for communication.
The figure also shows the intervals during which the data

signals in the bidirectional data path are valid. We assume
SFSM to be designed as a conventional synchronous mod-
ule that can safely operate with a cycle time of 2��. There-
fore we may assume that outgoing data Dout is valid in the
interval starting just (setup time S) before the rising edge
of Creq and, since SFSM is driven by clock signal Cack,
these signals remain valid until the hold time H after Cack.

    SFSM

Creq

Cack

∆

Dout

Din

(a) Design

Creq S

H

Cack S

∆ ∆τ0 τ1

Din

Dout

(b) Timing behaviour

Figure 1. Synchronous module with pausible
clock

One can easily extend this interval by latching Dout when
Creq is high (latches transparent when Creq is low). The
incoming data signals (Din) must meet the setup and hold
requirement with respect to Cack.

When comparing the proposed synchronization scheme
(direct scheme) with the schemes based on inserting an ar-
biter in the oscillator ring (arbiter schemes), the following
differences can be observed:
- the direct scheme offers an active handshake port (the
clock generator starts each handshake by making Creq
high), whereas an arbiter scheme offers a passive handshake
port (the environment has to take the initiative);
- in the direct scheme the clock can be paused in both
phases, whereas in an arbitration scheme the clock can only
be paused in the low phase;
- the direct scheme allows bidirectional communication,
whereas in an arbiter scheme the input and output opera-
tions exclude each other in time.
The last difference is very important, since bidirectional
communication is the normalway of communication in syn-
chronous systems. It also makes the handshake circuits
different from the conventional ones which offer one-way
communication.
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3. The memory

Fig. 2(a) shows a conventional memory, which has in-
coming data signals Acc (access information) and outgoing
data signals Rdata (in the case of a read access, the data
being read). The access information consists of an address,
a read/write indication wr (when true indicating a write ac-
cess), and –in the case of a write access– the data being
written. In addition it has two control signals: output signal
Ready and input signalMreq.

Mem

Acc

Rdata

Mreq

Ready

(a) Design

SMreq

Ready

Access

Acc Rdata

(b) Timing behaviour

Figure 2. Memory

Fig. 2(b) shows the timing diagram of the control signals
and the corresponding data validity scheme. Note that these
control signals also execute a handshake protocol. When
the memory is ready for an access, output signal Ready is
high. In this state the memory waits for signal Mreq to go
high and when this happens, it simultaneously makes signal
Ready low and starts an access corresponding to the access
information. As soon as the memory access is completed
and signalMreq is low, signal Ready is made high again.
Since the memory we used stores the access informa-

tion, it requires no hold time. Instead it has a rather long
setup time of 0.37 ns. These requirements are appropriate
for synchronous circuits, but they may lead to additional de-
lay matching in an asynchronous design (as we will see in
some of the circuits that we present below).
In the case of a read access, the Rdata signals are valid

when Ready is high. Since we aim at robust solutions that
allow the processor clock to be delayed with respect to

MemProc
Cack Mreq

Rdata

Acc

C

Creq Ready

(a) Design

Cack/Mreq

Creq

Ready

∆ ∆

(b) Fast processor and slow memory

Figure 3. One processor with one memory

memory signal Mreq, we extend the validity period of the
read data by latching the memory output whenMreq is high
(the delay in the processor clock mentioned above can be
due to the clock synchronization circuit as well as the clock
tree in the processor module).
Since the access time is defined with respect to the rising

edge ofMreq, the moment of time of the falling edge is not
important as long as it occurs before the completion of the
access. Therefore, the handshake protocol of the memory is
more flexible in time than the protocol of the processor with
its fixed delays for both the low and the high phase. Note
that a memory access does not correspond with a conven-
tional handshake since it starts and ends with signal Ready
high.

4. One processor with one memory

Fig. 3 shows a simple system with synchronized clocks
consisting of a processor and a memory. The dotted box
in the middle, which connects the two active ports, is a so-
called bidirectional passivator (one of the basic handshake
components). Both the processor and the memory operate
with a common clock signal, which is obtained by synchro-
nizing both the up- and the downgoing transitions in the sig-
nals Creq and Ready (by means of the C-element in the pas-
sivator), and at the rising edges of this common clock signal
there is bidirectional communication between the two mod-
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ules. This two-phase synchronization could lead to a loss of
performance in the case that both modules have fixed asym-
metric delays. However, such a performance loss is avoided
due to the flexibility in timing offered by the handshaking
mechanism of the memory. Therefore, the cycle time of
the system is the maximum of the cycle times of the two
modules plus the overhead introduced by the C-element. If
the memory is faster than the processor, the common clock
signal is a symmetric signal based on the delay line of the
processor and the cycle overhead is the cycle time of the C-
element, which in our implementation is 0.4 ns. If, however,
the memory is slower than the processor, we find the more
irregular timing behaviour shown in Fig. 3(b) in which we
assume the delay of the C-element to be negligible. Since
signal Ready goes low directly after the start of a new ac-
cess, the common clock signal is asymmetric in that only
the low phase is stretched to match the cycle time of the
memory. In this case, the cycle overhead is 0.2 ns, since
only the rising edge delay matters.
In principle only the upgoing transitions need to be syn-

chronized, since the downgoing ones are not important for
the communication. Therefore, one could be tempted to re-
place the C-element by an AND-gate. In such a design,
however, the interface circuitry does not enforce handshake
signalling, which implies, for example, that a minimum cy-
cle time of 2 �� it is not guaranteed anymore.
This design offers the advantage that the system auto-

matically runs at the minimum cycle time. More convincing
advantages of the proposed synchronization scheme show
up in more complex designs, of which we present the fol-
lowing cases:
- the memory is not accessed every clock cycle (section 4.1);
- the processor does not wait for the completion of a write
access (section 4.2);
- the memory consists of several modules (section 5);
- several processors share a memory (section 6);
- several processors share several memories (section 7).

4.1. Conditional memory accesses

In many cases the processor does not need to access the
memory every clock cycle. If in that case, memory cycles
take longer than processor cycles, the design shown in the
previous section does not give the maximum performance.
In this section we present a solution in which the processor
clock is conditionally synchronized with the memory. For
this purpose the processor has an additional output signal
sel indicating whether the memory is accessed or not.
Fig. 4(a) shows the global design of the proces-

sor/memory interface supporting conditional memory ac-
cesses. The control circuitry consists of three handshake
components: a handshake demultiplexer (Dmux), a passi-
vator and a wait component. Depending on control signal

Proc Mem
Cack

sel

Creq

Acc

Rdata

Dmux

Ready

Aack Mreq

Areq

Sack

Sreq

C

(a) Global design

Areq

Creq
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Cack
Aack

Sack

Sreq

(b) Handshake demultiplexer (Dmux)

Figure 4. Conditional memory accesses

sel, the handshake signals Creq and Cack are demultiplexed
over two active ports: access port A (with signals Areq and
Aack) and skip port S (with signals Sreq and Sack). The
handshakes through access port A are again synchronized
with the memory by means of a passivator, whereas the
handshakes through skip port S are delayed by a wait com-
ponent until the memory is ready. Therefore, the first skip
cycle following an access cycle can be delayed. However,
since a skip cycle does not start a new memory cycle, all
subsequent skip cycles are not delayed but performed at full
processor speed. In the general case, the wait component is
constructed from an asymmetric C-element with arbitration.
In this case a simple AND-gate will do, since the wait con-
dition (Ready) is stable during a skip cycle (a condition is
defined as stable if it can only make a transition from false
to true).
Fig. 4(b) shows the design of the handshake demulti-

plexer. Signal sel is fed into a latch which is transparent
when Creq is low. Simple AND-gates can then be used to
demultiplex Creq over Areq and Sreq (one may be tempted
to use asymmetric C-elements for the demultiplexing, but
signal sel may become high when Creq is high and in that
case Areq should remain low). The two acknowledge sig-
nals are combined into one outgoing acknowledge signal
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Cack by means of an OR-gate, which introduces skew be-
tween the processor and the memory clock signals (Cack
andMreq).
One can apply three peephole optimizations. First, the

two AND-gates in the skip path can be combined into one
three input AND-gate. Secondly, the AND-gate and C-
element in the access path can be combined into an asym-
metric C-element, which has Creq and Ready as both-way
inputs, and the latched selection signal as conditional input
for rising edges (here we use the fact that when sel is low,
Areq remains low). Thirdly, by shuffling inverters around
we get faster gates. After these optimizations, the overhead
of a skip cycle is 0.41 ns, and for a slow memory, the over-
head of an access cycle is 0.39 ns.
This design only makes sense in a single processor archi-

tecture if the cycle time of the memory is larger than the cy-
cle time of the processor. In a later section we demonstrate
that it also can be used advantageously in architectures in
which processors share a memory.

4.2. Posted write accesses

In the design presented above, the first skip cycle after a
memory access is delayed until the memory is ready. How-
ever, such a delay is only necessary after a read access, in
which case the processor has to wait for the read data to be-
come available. For write accesses this synchronization is
superfluous. Therefore we can refine the design by support-
ing so-called posted write accesses, which means that the
processor does not wait for the completion of a write ac-
cess, but instead continues concurrently with the memory.
In such a design, the interface circuit needs to store infor-
mation about whether the previous memory access was a
read access or not. For this purpose a conventional flipflop
read is introduced, which at every rising edge of clock sig-
nal Cack stores the value sel � wr . The output of this
flipflop can then be used to generate signal ReadRdy, which
is high only if the memory is not busy with a read access
(R eadRdy = R eady+ read). Signal ReadRdy should then
be used as the wait condition for the skip port (instead of
signal Ready in the previous design).
Fig. 5 shows the simulation results of a design with

posted write accesses. The signal ordering has been partly
determined by the causal relations in the interface circuitry.
Since the processor is driven by signal Cack, this signal is
used to define the cycles. Initially, the memory is ready and
the processor starts with a read access. The next cycle is
a skip cycle, which is issued by the processor by making
Creq high. The demultiplexer transfers the rising edge from
Creq to Sreq and then the wait component delays the edge
until the memory has completed the read access. As soon as
Ready becomes high, Cack goes high implying that the pro-
cessor starts executing the skip cycle. The second skip cy-

Creq

Areq

Sreq

Ready

Cack

∆

skip writeskipread skip

Figure 5. Posted write accesses

cle is not delayed because the memory remains ready. The
fourth cycle is a posted write access, which implies that the
subsequent skip cycle is not delayed although the memory
is not ready.

5. One processor with several memories

It is straightforward to generalize the architecture pro-
posed in the previous section to one in which the processor
can access several memories. First the demultiplexer has to
be generalized to one having several access ports and one
skip port with the latter one being activated when all se-
lect signals are low. During a read access, the outputs of the
memories have to be multiplexed depending on the memory
being accessed. Control of that multiplexer can based on
the read flipflops that have been introduced for the posted
writes (this multiplexing may lead to delay matching in the
Cack signal).
For each active port of the demultiplexer a ReadRdy sig-

nal is generated (the ReadRdy signal of the skip port holds
by definition) and the handshake of each port is delayed (by
an AND-gate) until the ReadRdy signals of all other ports
hold. By delaying the acknowledge instead of the request
signals, we obtain maximum concurrency. This design al-
lows several memories to be active with a write access and
even two memories with a read access (must be the last two
accesses).
Fig. 6 shows the result of a simulation in which the pro-

cessor is copying information from a fast memory into a
slow one. For this purpose the processor starts by first read-
ing one data word and then executes a sequence of alternat-
ing read and write accesses. In each write access, it writes
the data read in the one but last read acces. The read mem-
ory is fast enough to handle a read access every processor
cycle (Rready is the ready signal of the fast read memory),
whereas the cycle time of the slow write memory is about
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Figure 6. Processor accessing two memories

three times the cycle time of the processor (seeWready sig-
nal). Since the design supports posted write accesses, the
processor is not held up during the first three accesses (read,
read and write). From signalWready we see that during the
third read access, both memories are active concurrently.
From this moment on, both a read and a write access take
about the time of a write cycle only. Note that the processor
could even perform an additional skip cycle without much
time penalty.

6. Several processors sharing one memory

In this section we design a system in which two proces-
sors share a memory. In order to allow this shared memory
to be easily incorporated in one of the previous designs, we
make the interface between the processor and the access cir-
cuitry equal to the interface between the processor and the
memory proper. But first we have to solve a problem in the
memory access protocol. At the end of a read access, the
memory – in one communication – delivers read data while
receiving access information for the next access. This fact
complicates sharing, since these two accesses may come
from different processors. We solve this problem bymaking
the memory passive, which means (by inversion) converting
the ready signal into an acknowledge signal Mack. In this
way the partitioning of the sequence of handshake events
into handshakes is shifted by one event. Sending access in-
formation (Mreq high) and receiving read data (Mack low)
then become events in the same handshake, which means
that accesses and handshakes now correspond. Note that in
this scheme (in [11] called the late data valid scheme for
pull channels) the read data is valid whenMack goes low.
Fig. 7 shows the design of a system in which two pro-

cessors share a memory. Since this design is more com-
plex than the previous ones, we present it at the level of
handshake modules. Basic components are represented by
circles and compound modules by boxes. We use the well-
known convention that bullets indicate active ports and open

Proc P Exch

Arb

Proc P Exch

Mem

Go

Go

Figure 7. Two processors sharing a memory
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Rdata

Go

Aack

Areq

Pack

Preq

Figure 8. Simple exchange module

circles passive ports. In the design we have two proces-
sors (Proc) each communicating with a so-called exchange
module (Exch) via a passivator (P ). Each exchange mod-
ule receives the access information from the processor, then
accesses the passive memory via the arbiter module (Arb)
and in the case of a read access transfers the read data to the
processor.
Fig. 8 shows the design of the exchange module, which

has two active bidirectional handshake ports: port P for the
processor and port A for the arbiter. The exchange mod-
ule consists of two handshake components: a repeater and
a two-way transferrer. On top we have the repeater, which
generates an infinite sequence of handshakes. In fact, the
repeater provides only the oscillation inverter with an addi-
tional input (Go) for initialization. The handshakes of the
repeater are sent to the transferrer, which for each hand-
shake from the repeater executes two overlapping hand-
shakes: first an upgoing phase via the P -port followed by
an upgoing phase via the A-port, then a downgoing phase
via the P -port followed by a downgoing phase via the A-
port. One would obtain a correctly functioning system by
directly connecting the passive memory to theA-port of the
exchange module. In that case, the latching registers are
not needed and compared to the design in section 4 we only
moved the activity-driving inverter from the memory to the
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Figure 9. Handshake memory arbiter

exchange module. Since the memory is shared, however,
the A-port of the exchange module is connected to one of
the two passive ports of the handshake arbiter (Arb) and
for that reason the latching registers are needed. The ac-
cess information has to be latched, since the upgoing phase
at the P -port may now take the time of a memory access
and during that time the processor may change the access
information. The read data has to be latched, since if the
memory is fast, it can be active serving the other processor
before the read data has been received. The read latches in
the exchange module make the latches at the output of the
memory in Fig. 2(a) superfluous (functionally they replace
these latches).

Fig. 9 shows the design of the memory arbiter, which
consists of two handshake components: a mutual exclusion
element and a multiplexer. In the multiplexer, delay match-
ing is needed in signal Mreq to deal with the setup time
of the memory as well as to compensate for the delay in-
troduced by the multiplexer in the Acc data path. The delay
matching requirements can be reduced by using the ungated
(before the AND-gates) grant signals in the mutual exclu-
sion element. The timing overhead of the memory arbiter is
0.88 ns.

The bullet/open-circle convention allows us to easily
identify the activity cycle paths. A module is called an ac-
tivity source if it has only active ports, an activity sink if it
has only passive ports, and otherwise it is called an activity
pipe. The activity sources contain the inverters making a
cycle path oscillate. Since the design contains four activity
sources, it also contains four cycle paths. Each Proc cycle
path is closed by a passivator (activity sink), whereas each
Exch cycle path is closed by two activity sinks: on one side
by a passivator and on the other side via the arbiter (activity
pipe) by the shared memory.

C

-
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Rdata

Go

Aack

Areq

Pack

Preq

(a) Design

( Preq "; [Pack]
; ( (Preq #; [:Pack ]) jj (Areq "; [Aack]) )
; Areq #; [:Aack]
)�

(b) Behaviour

Figure 10. Exchange module as pipeline
stage

6.1. Posted write accesses

Since the exchange module offers at its P -port a mem-
ory interface, we can insert in between the processor and the
passivator any of the conditional access modules of the pre-
vious two sections. However, if we insert the posted write
circuitry of section 4.2, it makes sense to also modify the
exchange module, since the exchange module in Fig. 8 will
always delay the processor when the memory is serving
the other processor. Such an unnecessary delay would be
avoided if the exchange module would behave as a pipeline
stage.
Fig. 10(a) shows the design of such an exchangemodule,

which consists of four handshake components: a repeater, a
sequencer (design based on a so-called T-element) and two
one-way transferrers. The handshakes of the repeater are
sent to the sequencer, which for each handshake from the
repeater executes two handshakes. Fig. 10(b) shows the be-
haviour of the exchangemodule (using the convention intro-
duced in [6]). The exchangemodule first executes the upgo-
ing phase of a handshake via the P -port. Subsequently the
module completes the handshake via the P -port while si-
multaneously performing the upgoing phase of a handshake
via the A-port. Finally it executes the downgoing phase of
the handshake via the A-port. Since the downgoing phase
of the handshake via the P -port is performed concurrently
with the upgoing phase of the handshake via the A-port,
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Figure 11. Shared memory with posted write
accesses

the processor can complete its handshake independently of
any delay introduced by the arbiter. Consequently, the ac-
cess information has to to remain valid after completion of
the handshake at the P -port, which makes the use of latches
that are transparent when Pack is low not safe. Therefore the
access information is stored in flipflops at the rising edges
in Pack (which complies with the processor interface). The
cycle time of this exchange module is 0.49 ns.
Fig. 11 shows the simulation results of a design combin-

ing memory sharing with posted writes. In this simulation
both processors start at the same time and they both execute
a read, skip, and write cycle followed by a series of skip
cycles. From the simulation results we see that the arbiter
decides to give Pr oc1 priority. Therefore Pr oc1 is already
executing its skip cycle when the memory is performing the
read access of Pr oc0.

7. Several processors sharing several memories

The handshake modules presented so far can be used
as plug-and-play building bricks to construct interconnect
networks connecting several processors with several mem-
ories. In this section we present both a crossbar and a
bus network connecting two processors with two memo-
ries. Fig. 12(a) shows the crossbar network in which the
two processors only compete if they access the same mem-
ory. Module PMM is the module connecting one processor
to two memories (section 5) and module PPM is the mod-
ule connecting two processors to one memory with posted
writes (section 6.1). Fig. 12(b) shows a timing simulation in
which the processors and memories all have different cycle
times (from a timing perspective a truly heterogeneous sys-
tem). In this simulation, the processors only perform read
accesses with read ij standing for a read access from pro-

Proc PMM PPM Mem

Proc PMM PPM Mem
P

P

P

P

(a) Design

read11 read11 skip skipread10

read00 read00 read10

read11 read11 read01

read00 read00 read01skip skip

Creq0

Cack0

Creq1

Cack1

Mack0

Mack1

(b) Simulation trace

Figure 12. Crossbar network

cessor i to memory j. There is only one collision: the third
access of processor 0 and the second access of processor 1
are both to memory 1. Since the access of processor 0 starts
later, it is delayed until the access of processor 1 has been
completed.

In the crossbar network, multiplexing is done before
sharing. If we do it the other way around, a bus network
is obtained. Fig. 13(a) shows the bus network, which at
the processor side of the common communication channel,
is the same as the design in which two processors share a
memory with posted write accesses (section 6.1). Module
Pwrt is the module supporting posted write access (section
4.2). Module PMM’ is a reduced version of PMM in that
it does not contain the circuitry supporting posted writes.
Moreover the fact that the module interfaces directly with
passive memories, can be used to simplify the control cir-
cuitry. Fig. 13(b) shows a timing simulation of the bus net-
work, in which everything –apart from the network– is the
same as in the simulation of Fig. 12(b). Note that all mem-
ory accesses are now mutually exclusive. Compared to a
crossbar a bus network needs less area, but it also offers
less performance, since the processors have to compete for
every memory cycle.
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Figure 13. Bus network

8. Concluding remarks

We have presented a clock synchronization scheme
that supports safe communication between independently
clocked submodules. The scheme is based on the well-
known technique of pausible clocks. However, instead of
including in each ring oscillator a standard element for
pausing the clock (such as for instance an arbiter), we pro-
pose a scheme in which each synchronous module has both
an incoming and an outgoing clock signal, which have been
obtained by opening the module’s ring oscillator. Since
these clock signals behave as handshake signals, handshake
circuits can be used to synchronize the clocks. The simplest
way of obtaining clock synchronization is then by means of
a C-element, which introduces only a small and predictable
timing overhead.
We have demonstrated the scheme for several proces-

sors/memory architectures. We constructed the interface
circuits from rather small handshake components. Local
transformations (based on global invariants) were later used
to optimize the designs. The circuits were designed in a
0.18 �m CMOS technology. Simulations –with back anno-
tation based on estimated wire loads– showed the circuits
to be correct. The measured timing overheads have been
presented. In many cases one can speed up the design by

subtracting the minimum timing overhead of the synchro-
nization circuitry from the delay line in the processor.

We used a conventional memory, which means a mem-
ory with a long setup and a short hold time, This is exactly
the behaviour that is needed by a synchronous environment.
However, in several of our designs (the memory sharing
ones) the long setup times led to a larger cycle overhead,
whereas on the other hand it was often required to extend
the data validity period of the read data. Therefore, for asyn-
chronous circuits, memories that store the read data instead
of the access information (no setup and long hold times) are
more appropriate.

Arbitration-free synchronization has a fundamental re-
striction: the clock of the synchronous module is paused
until the communication via the active port is completed (in
[9] called demand communication). A design, in which the
module’s clock is never held up, because a communication
(via a passive port) is only performed when the other side
has indicated its willingness to communicate (probed/poll
communication), would require arbitration. A simple ex-
ample may help to explain the difference between the two
types of communication. Assume the synchronous module
has to put a data item in a full buffer. In a demand commu-
nication the module’s clock is paused until the buffer has
a vacancy. This type of communication can easily be im-
plemented without an arbiter (in fact the exchange module
in fig. 10 can be simplified to a one-place buffer). How-
ever, if the clock should not be paused when the buffer is
full, a conditional communication via a probed passive port
is needed. In that case the synchronous module receives
each clock tick a boolean indicating whether the communi-
cation took place or not. Such conditional communications
require arbitration, but that would also have been the case
in a fully asynchronous implementation (choice on a probe).
Our conjecture is that the proposed synchronization scheme
only requires arbitration, if this would also have been the
case in a fully asynchronous design.

There are many processor/memory architectures that we
did not discuss, but for which the synchronization technique
is also useful. For instance memories with varying response
times, such as memories with caches. The scheme can also
be applied for the communication between processors and
peripheral units. We proposed the scheme for clock syn-
chronization of communicating synchronous modules. The
scheme can, of course, also directly be applied to com-
bine synchronous and asynchronous (handshake) modules.
In the asynchronous bus interface presented in [5] the pro-
cessor and the peripheral units communicate through vari-
ables using a nonput broadcast channel for synchronization.
With the proposed clock synchronization scheme, this de-
sign can easily be adapted to support the communication
between a synchronous/asynchronous processor and syn-
chronous/asynchronous peripheral units.
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We have not discussed the problem of initialization. In
[1, 11] a structural solution is presented for the initializa-
tion of handshake circuits, which is based on the so-called
initialization property of each handshake component. It
prescribes that if all handshake input signals are low, the
component is forced into its initial state, and in that state
all outgoing handshake signals are also low. We can apply
this solution at system level, if the processors and memo-
ries also have this initialization property, which means that
both modules also get an additional request signal Go indi-
cating that the module must perform its function (when low
the module should be reset and its handshake output signals
should become low as well). We can replace the inverter in
the ring oscillator by the repeater shown in the previous sec-
tion and in that way obtain a ring oscillator having the ini-
tialization property. In addition the synchronous finite state
machine should be reset when Go is low. For the memory
we have to force the outgoing control signal to low when
signal Go is low.
One may argue that systems based on ring oscillators are

not well suited to applications having to meet hard timing
requirements. There are, however, techniques for calibrat-
ing the delay lines on-the-fly using (low frequency) oscilla-
tors [8, 18, 17]. These techniques have even been applied in
products [13]. A second observation is that since both the
ring oscillator and the processor are CMOS circuits on the
same chip, timing variations due to external causes, such
as fluctuations in temperature, supply voltage etc, will have
the same effect on both circuits. Therefore, the processor
will automatically adapt its speed to these external condi-
tions. If the clock signal is derived from an external crys-
tal oscillator, its frequency is fixed and must therefore be
low enough to be able cope with the worst-case conditions.
Therefore, if synchronization with an external timing ref-
erence is required, it should be done at the external inter-
faces with the coarsest possible time grain. Note that the
proposed synchronization technique can also be applied for
this purpose.
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