Multiprocessors
2014/2015

Simple performance analysis for concurrent programs

Johan Lukkien
Overview

• Performance analysis
 – execution time, speedup, efficiency and scalability
 – communication
Performance metrics

• Different uses
 – problem complexity
 • to what extent does it make sense to search for a parallel solution anyway?
 – e.g., how fast can N numbers be added?
 • needs definition of basic computational step [PRAM / CREW]

 – algorithm complexity
 • is this algorithm parallelizable?
 – e.g., Gauss-Jordan does not have the best (sequential) performance but admits a simple, close to optimal parallel solution
 • depends on model of basic computational step [e.g. BSP-lib]

 – analysis program-machine combination
 • empirical, e.g. show problems with mapping; investigate reality level of algorithm complexity
 • basic computational step is implicit, in the used machine and languages
Empirical performance model

- Assume a given, fixed problem
- $T(P,N)$: time needed for a size N instance on P processors
 - each processor spends this time...
 - ... divided in three parts: communication, computation or being idle

- $T(P,N) = c_i(P,N) + b_i(P,N) + y_i(P,N)$, each processor i

- When used for prediction:
 - effect of topology etc. subsumed in c term
 - assumes a homogeneous processor architecture
Penalty

• $T_{seq}(N)$: the time that the fastest (or: a known, fast) algorithm takes for a size N instance
 – on same hardware

• $T_{seq}(N) / T(1,N)$: represents the penalty ρ for choosing this parallel algorithm
 – gives an idea how useful it is: the parallel algorithm on P processors must have an improvement of at least ρ

• Parallel algorithm may do more work
 – e.g. by evaluating $a*b + a*c$ instead of $a*(b+c)$
Speedup

• Speedup represents the improvement in speed

• \(S(P,N) = \frac{T(1,N)}{T(P,N)} \)

• Note:
 – speedup judges the quality of the parallel implementation
 – with respect to the question of usefulness of using parallelism, it should be scaled by \(\rho \)
Analysis

• Let
 – $B(P,N) = \sum b_i(P,N)$
 – $C(P,N) = \sum c_i(P,N)$
 – $Y(P,N) = \sum y_i(P,N)$

• Then,

• Assumption
 – $C(1,N) = Y(1,N) = 0$

• Then,
 – $S(P,N) = \frac{P \times T(1,N)}{P \times T(P,N)} = \frac{P \times B(1,N)}{B+C+Y}$

• Hence,
 – $S(P,N) \leq P$, if $B(1,N) \leq B(P,N)$
 – “super-linear speedup possible only if less work done in parallel case”

\[\leq 1 \]
Example

- Cubic computation term, quadratic communication term (e.g., matrix operations)

- For large enough problems, concurrency becomes useful

- For small problems only a limited number of machines can be used

- Graphs show fast and slow communication (compared to computation)
Granularity

- $g(N)$: represent the duration of the smallest sequential step
 - determined by the algorithm
 - e.g., an inner-product calculation
 - but with a “physical” lowerbound
 - cannot speedup scalar operation

- At least one processor spends this time, hence,
 - $S(P,N) \leq T(1,N) / g(N)$ [“Amdahl’s law”]
 - the number of processors that can be usefully employed to solve a given problem is limited

 - **notice**: independent of P
 - in many cases the actual sequential part is relatively large
 - scalable: $g(N)$ increases slower than $T(1,N)$
Efficiency

• Efficiency scales speedup to utilization
• $E(P,N) = \frac{S(P,N)}{P}$
Scaling

• Questions:
 – what relation do I need between processors and problem size to maintain a given efficiency?
 • \(E(ie(N), N) \) is constant
 – this relation is called the iso-efficiency
 • linear and faster: good
 • less than linear: bad
 – I want a given speedup for a given problem
 • how many processors do I need?
Minimizing communication overhead

• Latency hiding
 – do something useful while communicating
 • advance certain communication [look ahead]
 • use concurrent communication hardware
 – use multi-tasking
 • with another concurrent program
 – though this destroys absolute performance
 • increasing the “level of concurrency”
 – several similar processes
 – dedicated communication processes

• Balance (re-)computing, storage and communication
 – e.g caching

• Select an algorithm that
 – admits these techniques
 – has little communication
Overview

• Performance analysis
 – execution time, speedup, efficiency and scalability
 – communication
Simple communication model, no queueing

• Parameters
 – s: startup time (includes channel latency)
 – r: linkspeed in bytes/sec
 – n: message length

• Communication time between two nodes:
 – $t = s + n/r$

• Alternative, use $n_{1/2} = s \cdot r$ as parameter which represents the message length when half the link speed is obtained
 – $t = (n_{1/2} + n)/r$

• Derived parameters
 – effective speed ... $n \cdot r/(s \cdot r + n)$ bytes/sec
 – latency ... s seconds
Multiple hops: Store-and-forward

• Transmit message in \(m \) steps
 – each node receives the message completely
 – and then forwards it

• \(t = m \cdot (s+n/r) \) seconds
• Latency: \((m-1)(s+n/r) + s \)
Transmission techniques

- **Parameters**
 - message contains addressing info of size A
 - packets have size P
 - mapping tables need index size a

- **Message switched:**
 - complete s&f of message
 - $A + n$ bytes are sent

- **Packet switched:**
 - break message up into fixed sized packets
 - send each packet individually (destination oriented)
 - $P \cdot n/(P-A)$ bytes are sent
Transmission techniques (cnt’d)

• Cut-through
 – the first packet is used to store input/output link relations on all intermediate nodes
 – each packet contains an index in such a table as address information [path oriented]
 – this index is replaced on each hop
 – $P \cdot (A+n)/(P-a)$ bytes are sent

• Wormhole
 – as in cut-through but now the input-output link relation is preserved as a control state
 – links are reserved for the duration of the transmission
 – $A+n$ bytes are sent
Some expressions

• Message switched
 – $t = m \cdot (s + (A+n)/r)$
 – latency: $(m-1) \cdot (s + (A+n)/r) + s$

• Wormhole
 – $(m-1)(s+P/r) + (s+P/r)(A+n)/P$
 • $= (s+P/r)(m-1+(A+n)/P)$
 – latency: $(m-1)(s+P/r) + s$

• Notes:
 – improvement: $m \cdot n$ becomes $m+n$
 – can optimize choice of packet size by computing derivative
 • $d\text{time}/dP = 0$
 – in wormhole, the packet size can be very small
 • what happens if $P=1$?
Finding model parameters

• Start with the simple model
 – \(t = s + n/r \)

• Estimate parameters
 – vary \(n \)
 – least square fit

• Often, two regimes are found
 – small and large messages

• No fit
 – try a more detailed model
Layering

• Computer networks use layered communication
 – units are sent between entities in same layer
 • transmission relies on lower layer
 – entire unit is needed before the next step is made
 – final model is derived through composition

• Example
 – data link communication [frames]
 • use simple model
 – network layer communication [packets]
 • use simple model between pairs
 • results in store & forward at the router level
 – transport layer [segments]