Design of Real-Time Software
Part 1: Real-time Scheduling

Onno van Roosmalen
O.S.vanRoosmalen@chello.nl

© O.S. van Roosmalen, 2016
Content

• Introduction

• Static priority scheduling
 – RM scheduling without resource contention
 • Periodic tasks
 • Sporadic tasks
 • Aperiodic tasks
 – RM scheduling with resource contention
 – DM scheduling
Content

• Introduction
Recording external events

• The controlling software samples the external state with a certain frequency (time-driven)
 – typically: continuous external variables
 • temperature, humidity
 • water level
 • pressure
• The controlling software is informed about the external events (event-driven)
 – typically: changes in discrete environmental variables
 • a packet passes a sensor
 • a hazardous condition occurs
 • a frame must be placed on the screen
• The choice between these two approaches is made during design of the controlling system (SW and HW)
Tasks

• Task definition (again): *a sequence of actions that must be carried out to generate a response to an external event or a time event*

• Task types *(note: all cyclic)*:
 – Periodic (time driven; released with period exactly T_j)
 – Sparse (event driven; released with distance larger than a certain T_j)
 – Aperiodic (event driven; released arbitrarily)

• A task has
 – a name/index (the j^{th} task)
 – a (worst case) execution time (WCET)
 – a period (periodic and sporadic tasks)
 – a deadline within the period
Types of tasks

• Software is most often a mix of time-driven and event-driven tasks
 – depends on the choices on measuring environmental state
 – depends on the choice of HW implementation of sensors

• Both time-driven and event-driven tasks:
 – Tasks are cyclic
 • events recur
 – Cycles are started by
 • a clock (time driven)
 • an external event occurrence (event driven)
 – Each execution of the action-sequence is an instance of a task
Value after deadline

- **Soft**
 - A response is still valuable after the deadline, but value decreases steadily after that.
 - Example: interaction with human users. People get impatient.

- **Firm**
 - A response has no value after the deadline.
 - Example: a video frame that cannot be shown in time can be skipped.

- **Hard**
 - Damage is done if a response does not come in time.
Examples

• Dependable real-time systems
 – High cost of failure
 • Possibly loss of life on failure
 – Guaranteed dependability (especially timeliness)
 – Example: Industrial control

• High performance real-time systems
 – Low probability of failure
 • Constant quality of service
 – High regularity in performance
 – Example: Consumer electronics
Example: water vessel

• Requirements:
 – Vessel may not overflow
 – Pump may not run dry

• Properties
 – Water level has a maximum rate of change (up and down)
 – Sensor positions are chosen

• Derived SW requirements
 – Response deadline can be calculated
 • The state “pump is off and the water is high” may not persist longer than a time span td_1
 – only then risk of overflow
 • The state “pump is on and the water is low” may not persist longer than a time span td_2
 – only then risk of underflow
Example: water vessel

• Requirements:
 – Vessel may not overflow
 – Pump may not run dry

• Properties
 – Water level has a maximum rate of change (up and down)
 – Sensor positions are chosen

• Derived SW requirements
 – Response deadline can be calculated
 • The state “pump is off and the water is high”
 may not persist longer than a time span td_1
 – only then risk of overflow
 • The state “pump is on and the water is low”
 may not persist longer than a time span td_2
 – only then risk of underflow
Requirements on tasks

• Detection criterion: situations must be detected in which
 – the water is above (gets above) the high point
 – the water is below (gets below) the low point

• Response criterion: after detection the system must respond before
 – the water is above the high point for a time td_1 or longer
 – the water is below the low point for a time td_2 or longer

• These requirements can be met by a polling task (!)
 – Requirements like: “the system must respond when the water reaches the high point” can not be met by a polling task
 • Why?
Polling task

- Critical state c should not exist longer than a time span td without response that cancels this critical state

 - critical state c: water above/below sensor and pump off/on

- Periodic task is released with period T and satisfies deadline D within this period.

 - If water at low sensor: Task stops pump
 - If water at high sensor: Task starts pump

- Schedulability conditions (see diagram):

 \[T + D < td \]

 - If the task may finish anywhere within the period ($D = T$): $2T < td$
Predictable computation time

• Make sure that the task can finish within $D (\leq T)$
 – Worst case execution times C (WCET) should be calculable ($C \leq D$)
 – The load on the processor resource is not more than C per period T

• The predictability of this is endangered by
 – anomalies of the hardware and system software
 • use of DMA that locks the bus
 • cache behaviour
 • interrupts
 • memory management
 – constraints
 • finding required resources locked by other tasks
 • precedence constraints
 – absence of transparency in high level languages
 • dynamic variables, garbage collection (memory management)
 • repetition, recursion
Example: Video device

- **Device characteristics**
 - audio/video: perception is main concern
 - high volume turnover: cost constraints

- **Real-time**
 - high quality audio and video pose stringent real-time requirements
 - regularity is more important than latency

- **Quality of service**
 - “collective effect of service performances that determine the degree of satisfaction of the user of that service

Average case (⇐ concerns are Quality+Cost)
resource allocation is more important than

Worst case (⇐ concerns are Latency + Predictability)
Average case: why?

• Average case and worst case are far apart
 – worst case leads to over-dimensioning of resources
• High volumes: low bill of material is desired
• Also low power conflicts with over-dimensioning
Average case: how?

• Lesser picture quality often better than temporal incorrectness
 – deadline misses may lead to wrong picture
 – deadline misses tend to come in bursts

• Reducing quality of manipulating the video stream may reduce load in high load/overload situations
 – Quality fluctuations are perceived as non-quality
 – Regularly recurring errors are very visible and annoying

• Only video specialists can make trade-off
Quality of Service
Example of processing pipeline

• Various periodic tasks in a pipeline
• Some tasks can perform processing at various quality levels (green arrows)
• Buffers help to balance the load over time
• Periods can be different (compare audio with video decoding)
Structural and temporal load changes

MPEG decoding of DVD stream

- "worst-case" load
- structural load
- running average
- temporal load
Processing pipeline

\[P_{\text{Algorithm}} = \text{while true do} \]
\[\quad \text{receive}(i, \text{frame}); \]
\[\quad \text{process}(\text{frame}); \]
\[\quad \text{send}(o, \text{frame}); \]
\[\text{od} \]
Acceptable WCET’s

\[P_{\text{Algorithm}} = \text{while true do} \]
\[\quad \text{receive}(i, \text{frame}); \]
\[\quad \text{process}(\text{frame}); \]
\[\quad \text{send}(o, \text{frame}); \]
\[\text{od} \]

- Average execution time to process frame \(\bar{C} \)
- Period \(T \) is given by frame rate
- Assume Gaussian probability distribution of execution times:
 \[P(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-\bar{C})^2}{2\sigma^2}} \]
- Probability of exceeding \(C = \bar{C} + \Delta : Q(\Delta) \) Favors large \(\Delta \)
Buffering

Failures:
- Input buffer overflow
- Output buffer underflow

Algorithm:
\[P_{\text{Algorithm}} = \text{while true do} \]
\[\text{do } m \text{ times} \]
\[\text{receive}(i, \text{frame}); \]
\[\text{process}(\text{frame}); \]
\[\text{send}(o, \text{frame}); \]
\[\text{od} \]

- Buffer size \(\sim 2m \)
- Period \(: mT \)
- Latency \(: \sim 2mT \)
Buffer size

- Period of task instance is now m times the original period: mT
- Worst case fluctuations in actual start time of periodic process: $\sim mT$
- This requires both filled and empty buffer space of about m
- Total buffer size should be about $2m$
Processing m frames per task instance

$$P_{\text{Algorithm}} = \text{while true do}
\quad \text{do m times}
\quad \text{receive}(i, \text{frame});
\quad \text{process}(\text{frame});
\quad \text{send}(o, \text{frame});
\quad \text{od}
\quad \text{od}$$

- Probability of exceeding execution time $m(\bar{C} + \Delta)$: $Q_m(\Delta) \approx Q(\Delta)^m$
- With buffer $1 \rightarrow m$: failure probability e.g. $0.1 \rightarrow 0.1^m$
Correct Assumptions?

• Not statistical
 – Increased execution times come in bursts
 – Therefore: execution times are not Gaussian distributed
• Other measures
 – Different functions (e.g. audio decoding and sharpness enhancing) may be independent
 • Instead of m cycles of a single process combine m cycles of different processes

We have seen qualitative arguments to illustrate the issues
Guaranteeing Deadlines

• General approach:
 – Make hypothesis on behavior of environment.
 • E.g. water vessel:
 – The influx of water into the vessel will be less then x liter/second
 • E.g. video processing:
 – The frame processing time will be less than x milliseconds per frame
 – The correctness of the hypothesis may have a calculable probability
 • E.g. water vessel:
 – The influx on average may exceeds this value once in every 100 years.
 • E.g. video processing:
 – The probability distribution for frame processing times is $f(t)$
 – Within the hypothesis meeting deadlines is guaranteed
 – Failures that fall outside the hypothesis have a certain probability
 • E.g. water vessel:
 – The possibility of overflow is limited to once in every 100 years.
 • E.g. video processing:
 – The probability for missing a frame is 1×10^9
Scheduling theory

• Focus is on how we guarantee meeting deadlines

• Many conclusions are qualitative as well
 – What scheduling approach is optimal
 – Optimality depends on the boundary conditions
 – One can be optimal according to many criteria
Content

• Introduction

• Static priority scheduling
 – Rate Monotonic (RM) scheduling without resource contention
 • Periodic tasks
Rate-Monotonic Scheduling

• Rate monotonic=task priority proportional to rate (frequency)

• Basic assumptions:
 – One processor
 – Tasks are independent and periodically released (polling tasks)
 – Tasks have fixed individual priorities \((\tau_j \text{ has priority } p_j) \)
 – Preemption allowed
 • High priority tasks may preempt low priority tasks.
 – Tasks have fixed (maximal) execution duration \((\text{WCET}=C_j) \)

• For the moment
 – The processor is the only shared resource
 – Deadlines within periods are equal to periods \((D_j = T_j) \)

• Terminology:
 – “There is a correct schedule” or “There is a feasible schedule” means “There is a schedule that satisfies all timing constraints”
Critical Instant

- **Critical instant** of a task (fixed priority scheduling only!!) :
 - Definition: the situation that gives the largest response time

- **Lemma:**
 - The worst case response time of a task occurs when it is released at the same time with all higher priority tasks

- **Example:** shift blue task until critical instant is reached

```
t' - T2
```
```
t' + T2
```
```
t' + 2. T2
```
```
t - T2
```
```
t + T2
```
```
t + 2. T2
```
```
-T2
```
```
T2
```
```
2. T2
```
```
T1
```
```
0
```
```
0
```
```
0
```
```
0
```
```
0
```
Example

• Consider two tasks $\tau_1 = \langle C_1, T_1, p_1 \rangle$ and $\tau_2 = \langle C_2, T_2, p_2 \rangle$

• Assume:
 - $T_1 < T_2$
 - $C_1 + C_2 \leq T_1$

• Possible schedules:

• Conclusion:
 - If $C_1 + C_2 \leq T_1$ any priority assignment will lead to a correct schedule
Exercise: arbitrary priority assignments

- Task set:
 - \(\tau_1 \) : \(C_1 = 2 \), \(T_1 = 6 \)
 - \(\tau_2 \) : \(C_2 = 2 \), \(T_2 = 10 \)
 - \(\tau_3 \) : \(C_3 = 4 \), \(T_3 = 12 \)

- Draw the six schedules for each of the possible priority assignments
- Determine the worst case response time for each task in each case and check if it is smaller than the period (=deadline) for that task.
Optimality of RM Priorities

• Rate monotonic priority assignment
 – highest rate has highest priority

• If a priority assignment leads to a feasible schedule then the RM assignment leads to a feasible schedule as well.

• Example (two tasks):
Schedulability Condition: 2 Tasks

• Assume one period the larger of the two: \(T_1 < T_2 \)
• We can have two possible priority assignments
 – non-RM: \(p_2 > p_1 \)
 – RM: \(p_1 > p_2 \)

• non-RM:
 – At critical instant both tasks should finish in time:

Schedulable iff \(C_1 + C_2 \leq T_1 \)
Schedulability Condition: 2 Tasks

• RM:
 – More difficult case because τ_2 can be preempted by τ_1
 – Two situations depending on where period T_2 ends
 – RM: Case 1)
 \[T_2 \leq T_1 + C_1 \]
 – RM: Case 2)
 \[T_2 > T_1 + C_1 \]
RM: Case 1

- Assumption: $C_1 \leq T_2 - \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1$

- Time occupied by τ_1 in period T_2 is $\left\lceil \frac{T_2}{T_1} \right\rceil C_1$

- Maximally available for τ_2 in period T_2 is $T_2 - \left\lceil \frac{T_2}{T_1} \right\rceil C_1$

- Thus

Schedulable iff $C_2 \leq T_2 - \left\lceil \frac{T_2}{T_1} \right\rceil C_1$
RM: Case 2

- Assumption: \(C_1 > T_2 - \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 \)

- Time occupied by \(\tau_1 \) in period \(\left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 \) is \(\left\lfloor \frac{T_2}{T_1} \right\rfloor C_1 \)

- Maximally available for \(\tau_2 \) in period \(\left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 \) is \(\left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 - \left\lfloor \frac{T_2}{T_1} \right\rfloor C_1 \)

- Thus

Schedulable iff \(C_2 \leq \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 - \left\lfloor \frac{T_2}{T_1} \right\rfloor C_1 \)
Graphically

RM schedulable, value of C_2 is small enough

Not schedulable, C_2 is too large for given C_1

non-RM schedulable, value of C_2 is small enough

non-RM slope is -1

$$T_2 - \lfloor T_2 / T_1 \rfloor T_1$$
Slope Change

• Consider variations around magic point $C_1 = T_2 - \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1$

 – Increasing C_1 by Δ can be compensated by decreasing C_2 by $\left\lfloor \frac{T_2}{T_1} \right\rfloor \Delta$

 – Decreasing C_1 by Δ can be compensated by increasing C_2 by $\left\lceil \frac{T_2}{T_1} \right\rceil \Delta$
Utilization Bound for Schedulability

- Consider two tasks $\tau_1 = <C_1, T_1, p_1>$ and $\tau_2 = <C_2, T_2, p_2>$
 - Rate monotonic priorities: p_i depends on T_i
 - C_i/T_i is worst case time-fraction that τ_i requires processor
 - $C_i/T_i > 1$ cannot be guaranteed (no feasible schedule)

 C_i, T_i are all known: a precise schedulability criterion can be derived (see later)

- If only the utilization is known: $U = \sum_{i=1}^{m} \frac{C_i}{T_i}$

 We can look for a U_{min} for which:
 - $U \leq U_{\text{min}}$ the tasks always meet their deadlines
 - $U > U_{\text{min}}$ the tasks cannot be guaranteed to meet their deadlines
Determining U_{min} (two tasks)

• Terminology:
 – Tasks are **fully utilizing** the processor if no increase of C_1 or C_2 possible
 • Critical instant
 • At critical instant: tasks fully occupy the processor until T_2
 • Schedulable but increasing either C_1 or C_2 breaks schedulability
 – Note: this does not imply $U_{\text{full}} = 1$

• Approach
 – Consider free variables in utilization: C_1, C_2, T_1, T_2
 – Consider largest feasible value for C_2 given C_1, T_1, T_2
 • C_2 can be eliminated giving full utilization $U_{\text{full}}(C_1, T_1, T_2)$
 – Find C_1 for which full utilization is minimal, this is U_{min}
 – Then, for any C_1 and C_2 that yield a utilization below U_{min} schedule is feasible.
 – Minimize U_{min} with respect to T_1 and T_2 as well.
Determining U_{min}

- Consider same two cases as before
 - Case 1: maximal C_2 slopes at $-\left\lfloor \frac{T_2}{T_1} \right\rfloor C_1$
 - Case 2: maximal C_2 slopes at $-\left\lfloor \frac{T_2}{T_1} \right\rfloor C_1$
Case 1

- Assumption: $C_1 \leq T_2 - \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1$

- With full utilization: $C_2 = T_2 - \left[\frac{T_2}{T_1} \right] C_1$

- Thus

$$U_{\text{full}}^{(1)} \left(\frac{C_1}{T_1} \right) = \frac{C_1}{T_1} + \frac{T_2 - \left[\frac{T_2}{T_1} \right] C_1}{T_2} = 1 + \frac{C_1}{T_1} \cdot \left(1 - \frac{T_1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor \right)$$
Case 2

• Assumption: $C_1 > T_2 - \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1$

• With full utilization: $C_2 = \left\lfloor \frac{T_2}{T_1} \right\rfloor T_1 - \left\lfloor \frac{T_2}{T_1} \right\rfloor C_1$

• Thus

$$U_{full}^{(2)} \left(\frac{C_1}{T_1} \right) = \frac{C_1}{T_1} + \frac{(T_1 - C_1)}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor = \frac{T_1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor + \frac{C_1}{T_1} \cdot \left(1 - \frac{T_1}{T_2} \left\lfloor \frac{T_2}{T_1} \right\rfloor \right)$$

constant smaller 1

positive slope
Graphically

• Introduce: $f = C_1/T_1 \ (0 \leq f \leq 1)$

Given C_1, not schedulable. C_2 is too large.

Given U, schedulable depending on value of C_1. Given U, schedulable regardless of value of C_1.

$f_0 = T_2/T_1 - \lfloor T_2/T_1 \rfloor$
Minimal Value of Full Utilization varying T_2/T_1

$U_{\text{full min}}$

$T_2/T_1 = 7/5$
Result

• Combine: \(U_{\text{min}} = U_{\text{full}}^{(1)}(f_0) = U_{\text{full}}^{(2)}(f_0) = 1 + f_0 \left(1 - \frac{T_1}{T_2} \left\lceil \frac{T_2}{T_1} \right\rceil \right) \)

• With: \(f_0 = \frac{T_2}{T_1} - \left\lfloor \frac{T_2}{T_1} \right\rfloor \)

• Introduce: \(I = \begin{bmatrix} T_2 \\ T_1 \end{bmatrix} \quad (1 \leq I \leq \infty) \)

• Then: \(\frac{T_2}{T_1} = I + f_0 \quad (0 \leq f_0 \leq 1) \)

• And thus:

\[U_{\text{min}}(f, I) = 1 - f(1 - f)/(I + f) \]
Further simplification

- We can even eliminate f and I
 - Minimal value of U_{min} when $I = 1$
 - Minimize for values of $0 \leq f \leq 1$

\[
\frac{dU_{\text{min}}(f)}{df} \bigg|_{I=1} = 0 = \frac{d}{df} \frac{f(f-1)/(1+f)}{1+f} \rightarrow f = \sqrt{2} - 1
\]

\[
T_2/T_1 = \left\lfloor T_2/T_1 \right\rfloor + f = \sqrt{2}
\]

\[
U_{\text{min}} = 2(\sqrt{2} - 1) \approx 0.829
\]
Example: Full Utilization

- \(\tau_1: \ C_1 = 2 \), \(T_1 = 5 \)
- \(\tau_2: \ C_2 = 3 \), \(T_2 = 7 \) \((U_{full} \text{ minimal at } T_2 = \sqrt{2} \cdot \frac{T_1}{2} = 1.41 \cdot T_1) \)

\[U_{full} = \frac{2}{5} + \frac{3}{7} = \frac{29}{35} = 0.828 \]

Worst case response times:

\(\tau_1: \ r_1 = 2 \)
\(\tau_2: \ r_2 = 5 \)

Utilization

\[U_{full} = (\frac{2}{5} + \frac{3}{7}) = \frac{29}{35} = 0.828 \]
Example: Increase C_1 but keep Full Utilization

- $\tau_1 : C_1 = 2+1 = 3 , T_1 = 5$
- $\tau_2 : C_2 = 3–1 = 2 , T_2 = 7$

• Worst case response times:
 - $\tau_1 : r_1 = 3$
 - $\tau_2 : r_2 = 5$

• Utilization
 - $U_{full} = (3/5 + 2/7) = (31/35) = 0.89$
Example: Decrease C_1 but keep Full Utilization

- τ_1: $C_1 = 2-1 = 1$, $T_1 = 5$
- τ_2: $C_2 = 3+2 = 5$, $T_2 = 7$

- Worst case response times:
 - τ_1: $r_1 = 1$
 - τ_2: $r_2 = 7$
- Utilization
 \[U_{full} = (1/5 + 5/7) = (32/35) = 0.91 \]
Example: Full Utilization

- $\tau_1: C_1 = 2, \ T_1 = 4$
- $\tau_2: C_2 = 4, \ T_2 = 10 \ (U_{full} \ minimal \ at \ T_2 = 6^{1/2} \ T_1 = 2.45 \ T_1)$

Worst case response times:
- $\tau_1: r_1 = 2$
- $\tau_2: r_2 = 8$

Utilization
- $U_{full} = \frac{2}{4} + \frac{4}{10} = \frac{9}{10} = 0.90$
Minimal Value of Full Utilization varying T_2/T_1

$U_{\text{full min}}$

T_2/T_1

$T_2/T_1 = 10/4$
Arbitrarily many tasks

• Approach
 – Consider free variables in utilization: $U(C_1, T_1, \ldots, C_m, T_m)$
 – Eliminate C_m to obtain full utilization: $U_{\text{full}}(C_1, T_1, \ldots, C_{m-1}, T_{m-1}, T_m)$
 – Find the C_i’s for which the value of U_{full} is minimal.
 – Minimize also with respect to the T_i’s

• Result:

\[
U_{\text{min}} = m(2^{1/m} - 1)
\]

$U_{\text{min}}(3) \approx 0.780$

$U_{\text{min}}(\infty) \approx 0.696$
Example: Full Utilization for 3 Tasks

- $\tau_1: C_1 = 1, T_1 = 4$
- $\tau_2: C_2 = 1, T_2 = 5 \quad (U_{full} \text{ minimal at } T_2 = 2^{1/3} T_1 = 1.26 T_1)$
- $\tau_3: C_3 = 2, T_3 = 6 \quad (U_{full} \text{ minimal at } T_3 = 2^{2/3} T_1 = 1.59 T_1)$

Worst case response times:
- $\tau_1: r_1 = 1; \tau_2: r_2 = 2; \tau_3: r_3 = 4$

Utilization

$$U_{full} = (1/4 + 1/5 + 2/6) = (47/60) = 0.7833$$
Exercises

• Calculate RM schedulability of the following task sets
 • Use the utilization bound
 – Exercise 1. Task set:
 • $\tau_1: \ C_1 = 1 \quad T_1 = 3$
 • $\tau_2: \ C_2 = 1 \quad T_2 = 4$
 – Exercise 2. Task set:
 • $\tau_1: \ C_1 = 2 \quad T_1 = 5$
 • $\tau_2: \ C_2 = 4 \quad T_2 = 15$
 • $\tau_3: \ C_3 = 5 \quad T_3 = 20$
 – Exercise 3. Task set:
 • $\tau_1: \ C_1 = 1 \quad T_1 = 4$
 • $\tau_2: \ C_2 = 2 \quad T_2 = 6$
 • $\tau_3: \ C_3 = 3 \quad T_3 = 10$
Calculation of Response Times

• Utilization bound is sufficient but not necessary
 – Also task sets that do not satisfy the utilization bound may be schedulable even if $U > U_{\text{min}}$

• A more precise bound can be given for each specific task set

• This is done on the basis of response times.

• Note: we can simply draw a schedule and calculate worst case task response times.

• This calculation by construction can be formalized
Response-Time Approach

- The worst case response time r_i of a τ_i happens at the critical instant and satisfies

$$r_i = \sum_{j=1}^{i-1} C_j \left[\frac{r_i}{T_j} \right] + C_i$$

- Execution time of task itself
- Worst case waiting time for execution of higher priority tasks
- Maximum number of times higher priority task τ_j may be executed in period r_i
Schedulability of Task τ_i

- Consider:
 $$\frac{W_i(t)}{t} = \sum_{j=1}^{i} \frac{C_j}{t} \left\lfloor \frac{t}{T_j} \right\rfloor$$
 - Task τ_i can be scheduled if a solution for t in $W_i(t)/t = 1$ exists.
 - The response time r_i equals the smallest of such solution.

- Take:
 $$\min_{0 < t \leq T_i} \frac{W_i(t)}{t} \leq 1$$
 - Then there is a solution for r_i:
 - $\lim_{t \downarrow 0} W(t)/t = \infty$

- $W_i(t)/t$ is continuous and strictly decreasing.
- Except when t is a multiple of any of the T_i.
- Then $W_i(t)/t$ jumps up discontinuously.
Single Schedulability Criterion

• A solution r_i must exist for each task τ_i
• Therefore all tasks are schedulable iff

$$\max_{1 \leq i \leq m} \left[\min_{0 < t \leq T_i} \frac{W_i(t)}{t} \right] \leq 1$$

– Reason: $\max \leq 1$ only if each $\min_i \leq 1$

• We only need to consider $W_i(t)$ at integer multiples of the periods T_i (see graph)
Example

- Task set:
 - \(\tau_1 \): \(C_1 = 2 \) \(T_1 = 8 \)
 - \(\tau_2 \): \(C_2 = 2 \) \(T_2 = 10 \)
 - \(\tau_3 \): \(C_3 = 4 \) \(T_3 = 12 \)
 - \(\tau_4 \): \(C_4 = 1 \) \(T_4 = 20 \)

- Utilization bound: \(U = \frac{2}{8} + \frac{2}{10} + \frac{4}{12} + \frac{1}{20} \approx 0.8333 \)

- Consider: \(t = 8, 10, 12, 16, 20 \)
 - \(W_4(8) = C_1 + C_2 + C_3 + C_4 = 9 \) not ok (1 short: length of \(\tau_4 \))
 - \(W_4(10) = 2C_1 + C_2 + C_3 + C_4 = 11 \) not ok (still 1 short: length of \(\tau_4 \))
 - \(W_4(12) = 2C_1 + 2C_2 + C_3 + C_4 = 13 \) not ok (still 1 short: length of \(\tau_4 \))
 - \(W_4(16) = 2C_1 + 2C_2 + 2C_3 + C_4 = 17 \) not ok (still 1 short: length of \(\tau_4 \))
 - \(W_4(20) = 3C_1 + 2C_2 + 2C_3 + C_4 = 19 \) ok \(r_4 = 19 \)
Exercises

• Calculate RM schedulability of the following task sets
 • Use the response time formula
 – Exercise 1. Task set:
 • τ_1 : $C_1 = 1$ $T_1 = 3$
 • τ_2 : $C_2 = 1$ $T_2 = 4$
 – Exercise 2. Task set:
 • τ_1 : $C_1 = 2$ $T_1 = 5$
 • τ_2 : $C_2 = 4$ $T_2 = 15$
 • τ_3 : $C_3 = 5$ $T_3 = 20$
 – Exercise 3. Task set:
 • τ_1 : $C_1 = 1$ $T_1 = 4$
 • τ_2 : $C_2 = 2$ $T_2 = 6$
 • τ_3 : $C_3 = 3$ $T_3 = 10$
Content

• Introduction

• Static priority scheduling
 – RM scheduling without resource contention
 • Periodic tasks
 • Sporadic tasks
Sporadic tasks

- Sporadic tasks
 - Released irregularly
 - Have a maximum rate at which they are released
 - Thus assuming a minimum inter-arrival time T
- Sporadic tasks can be treated as periodic tasks with period T
Content

• Introduction

• Static priority scheduling
 – RM scheduling without resource contention
 • Periodic tasks
 • Sporadic tasks
 • Aperiodic tasks
Aperiodic Tasks

• True aperiodic tasks
 – Can be arbitrarily released
 – No guarantee can be given if released too often
 – Deal with them without spoiling schedulability of periodic and sporadic tasks

• Several approaches among which:
 – Run as background tasks
 – Reserving space with a high priority periodic task
 – Deferred server
 – Sporadic server
 – ...
Run at Background

• Run the aperiodic tasks at lowest priority.
 – Periodic and sporadic tasks experience no interference.
 – Aperiodic tasks may run when the processor is not allocated to the periodic/sporadic ones.
 – Possibly no timeliness of any of the aperiodic task-instances.
Run in High-Priority Task

• Introduce a fictitious high priority server task
 – Period T_s
 – Execution time C_s
 – Aperiodic tasks run in slots of this high priority one.
 – If no aperiodic task are released before or within this slot
 the processor is available
 – Outside these slots no running of the aperiodic tasks

• Schedulability of the periodic tasks is determined
 including the fictitious task

• If execution time of an aperiodic task is smaller C_s
 then such task can finish within time $T_s + C_s$
 – At least, if aperiodic tasks are not released too often
Deferred Server

- Slight modification
 - Avoid idle processor if no aperiodic tasks are released
 - Slot for server process starts every period T_d
 - If aperiodic processes have been released
 - Execute them for period C_d
 - If no aperiodic processes are released: defer server execution to moment such tasks are released
 - Preempt other tasks
 - Execute them for period C_d
 - Capacity reset to C_d at start of period T_d
 - Utilization bound
 - Aperiodic tasks handled by the deferred server have utilization U_d
 - Periodic tasks have utilization U_p

$$U_p + U_d < 0.652$$
Sporadic Server

- Slight modification
 - To avoid server to execute two periods back-to-back
 - Slot for server process starts every period T_s and has capacity C_s
 - When aperiodic processes are released
 - Execute them for requested period $C_c < C_s$
 - Capacity C_c is added to remaining capacity after T_s time from start of consumption of C_c
 - Sporadic server behaves like a sporadic task with period T_s
 - Utilization bound
 - Aperiodic tasks handled by the deferred server have utilization U_s
 - Periodic tasks have utilization U_p

$$U_p \leq \ln \left(\frac{2}{U_s + 1} \right)$$
Content

• Introduction

• Static priority scheduling
 – RM scheduling without resource contention
 • Periodic tasks
 • Sporadic tasks
 • Aperiodic tasks
 – RM scheduling with resource contention
Shared Resources

• Tasks may need other resources apart from processor
 – Typical example: mutual exclusive access to data

• Important instances
 – Reserve the resource: $R(a)$
 – Wait for the resource (blocked). Blocking period: B_i
 – Hold the resource
 – Release (de-reserve) the resource: $D(a)$
Problem: Priority Inversion

- Consider three tasks
 - Priorities $p_1 > p_2 > p_3$
 - Share a single resource a
 - Events
 - τ_3 holds resource
 - τ_1 reserves resource and waits
 - τ_2 starts, executes and finishes
 - τ_3 releases resource
 - τ_1 gets resource but executes after τ_2 !!!

![Diagram of task execution process with priority inversion](chart.png)
Solution: Priority Inheritance

• Blocking task inherits higher priority of blocked task

• Disadvantage:
 – Deadlocks remains possible
 • If tasks reserves resources while holding others (hold and block)
 • Creating a circular wait condition
Utilization bound

• A given task τ_i can be scheduled if

$$\sum_{j=1}^{i} \frac{C_j}{T_j} + \frac{B_i}{T_i} \leq i(2^{1/i} - 1)$$

• For m tasks:

$$\sum_{j=1}^{m} \frac{C_j}{T_j} + \max_{i=1}^{m-1} \frac{B_i}{T_i} \leq m(2^{1/m} - 1)$$
Response-Time Approach

• Assume a single resource shared by tasks τ_i
• Blocking delay B_i for task τ_i
 – Direct blocking
 – Push-through blocking
• The worst case response time r_i of a τ_i and should now include these blocking contributions

$$r_i = \sum_{j=1}^{i-1} C_j \left[\frac{r_i}{T_j} \right] + C_i + B_i$$

Blocking
Blocking Contribution

- Single resource a
- $C_{a,i}$ is execution time of resource a by task τ_i
 - Note: execution times C_i include such contributions!
- p_a is the highest priority among tasks possibly reserving a
- Two cases
 - $p_a \geq p_i > p_m$ then $B_i = \max_{j=i+1}^{m} C_{a,j}$
 - $p_a < p_i \lor i = m$ then $B_i = 0$

- Computation intensive for more resources due to chained blocking.
Schedulability of Task τ_i

- Consider:
 \[W_i(t) = \sum_{j=1}^{i} C_j \left\lfloor \frac{t}{T_j} \right\rfloor + B_i \]

 - Again task τ_i can be scheduled if a solution for t in $W_i(t)/t = 1$ exists

 - The response time r_i equals the smallest of such solution.

- We only need to consider $W_i(t)$ at integer multiples of the periods T_i
Example

• Task set:
 • τ_1: $C_1 = 40$ $T_1 = 100$ $B_1 = 40$
 • τ_2: $C_2 = 40$ $T_2 = 150$ $B_2 = 30$
 • τ_3: $C_3 = 100$ $T_3 = 350$ $B_3 = 0$

 – Consider: $t = 100, 150, 200, 300, 350$
 • $W_1(100) = C_1 + B_1$ = 80 ok
 • $W_2(100) = C_1 + C_2 + B_2$ = 110 not ok
 • $W_2(150) = 2C_1 + C_2 + B_2$ = 150 ok
 • $W_3(100) = C_1 + C_2 + C_3$ = 180 not ok
 • $W_3(150) = 2C_1 + C_2 + C_3$ = 220 not ok
 • $W_3(200) = 2C_1 + 2C_2 + C_3$ = 260 not ok
 • $W_3(300) = 3C_1 + 2C_2 + C_3$ = 300 ok
 • $W_3(350) = 4C_1 + 3C_2 + C_3$ = 380 not ok
Exercises

• Calculate RM schedulability of the following task sets
 – Exercise 4. Task set:
 • \(\tau_1 \) : \(C_1 = 4 \) \(T_1 = 10 \) \(B_1 = 3 \)
 • \(\tau_2 \) : \(C_2 = 3 \) \(T_2 = 15 \) \(B_2 = 2 \)
 • \(\tau_3 \) : \(C_3 = 4 \) \(T_3 = 20 \) \(B_3 = 0 \)
Problem: Chained Blocking

• Chained blocking when using multiple resources:

• Disadvantage:
 – Not just a single low-priority task can block the higher one.
Solution: Priority Ceiling

• To avoid chained blocking
 – Ceiling c_r of a resource r is highest priority found among the potentially reserving tasks
 – System ceiling c is highest ceiling of all currently held resources
 – A task τ_i may hold a resource r if $p_i > c$ or τ_i already holds a resource with $c_r = c$
 – Priority inheritance like before when tasks block because of resource usage by other tasks

\[
R(a) \quad p_1 \leq c \\
D(a) \\
R(b) \quad p_1 > c \\
D(b) \\
R(a) \quad c := c_a \\
D(a) \\
R(b) \quad p_2 \leq c \\
D(b)
\]
Priority Ceiling

- Also avoids deadlock
Blocking Contribution

- $C_{a,i}$ is execution time of resource a by task τ_i
- BR_i are the resources that can block τ_i
 \[BR_i = \{ r | c_r \geq p_i \} \]
- Blocking for task τ_i

\[
B_i = \max_{j=i+1}^{m} \left(\max_{r \in BR_i} C_{r,j} \right)
\]

τ_i only blocked by lower priority tasks
Content

• Introduction

• Static priority scheduling
 – RM scheduling without resource contention
 • Periodic tasks
 • Sporadic tasks
 • Aperiodic tasks
 – RM scheduling with resource contention
 – DM scheduling
Deadline ≠ Period

• Up to now the assumption with regard to deadline
 \[D_i = T_i \]

• If \(D_i < T_i \), two possibilities
 – DM assignment of priorities: \(D_i < D_j \iff p_i > p_j \)
 – RM assignment of priorities

• In either case, the response time formula is applicable
 – Modified use of the response time formula
 • Compute response time \(r_i \) for each task
 • Compare \(r_i \) with \(D_i \)