Design of Real-Time Software

Analysis of hard real-time tasks under fixed-priority pre-emptive scheduling

Reinder J. Bril
Technische Universiteit Eindhoven
Department of Mathematics and Computer Science
System Architecture and Networking Group
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
r.j.bril@tue.nl, http://www.win.tue.nl/~rbril

January 2014
Overview

• Context
• Schedulability conditions
• Basic response time analysis
• Jitter analysis for periodic tasks
• Resource sharing
• Practical factors
• Concluding remarks
• References
Overview

• Context
 – Basic scheduling model (Recap)
 – Motivation for FPPS

• Schedulability conditions

• Basic response time analysis

• Jitter analysis for periodic tasks

• Resource sharing

• Practical factors

• Concluding remarks

• References
A basic scheduling model – recap

- Model (of a system in general):
 - Abstraction (of that system)
 - leaving out details irrelevant to a given set of criteria
 - preserving the properties of interest
- Scheduling model (for Real-Time SW)
 - explicitly addresses relevant issues in real-time systems
 - ...but must be mapped eventually onto an execution environment
 - OS, hardware, run-time system, ...
A basic scheduling model – recap

• Event:
 – indicates a state change requiring a *timely* response, i.e. neither too early nor too late;
 – *external* (e.g. at RT(C)S boundary), *internal* (e.g. a task triggering another), or *timed*.

• Task: actions in response of event.

• Processor: executes a single task at the time.

• Schedule:
 – assignment of tasks to processor;
 – set \(\Gamma \) on \(n \) tasks \(\tau_1 \ldots \tau_n \);
 – \(\sigma: \mathbb{R} \rightarrow \{0, 1, \ldots, n\} \), where \(\sigma(t) = 0 \) means idle.
Schedule: example

Schedule $\sigma(t)$ of three independent periodic tasks τ_1, τ_2, τ_3, where τ_1 has highest priority and τ_3 lowest priority.

Legend:
- preemptions by higher priority tasks
- execution
- release
Initial basic assumptions

- Events: implicit
- Tasks:
 - released strictly periodically, elastically, or sporadically;
 - independent;
 - no self-suspension.
- Processor: only one
- Scheduling algorithm:
 - fixed-priority pre-emptive scheduling (FPPS),
 - i.e. processor is used to execute the highest priority task that has work pending;
 - non-idling;
 - tasks have unique priorities;
 - Overhead of scheduling and context switching is ignored.
Basic model for a task

- Task τ_i: sequence of jobs τ_{ik} with $k \in \mathbb{Z}$.
- Basic timing notions (taken from R) for τ_{ik}
 - activation time a_{ik};
 - start time s_{ik};
 - finalization time f_{ik};
- Derived timing notions
 - response (or active) interval $[a_{ik}, f_{ik})$;
 - response time $R_{ik} = f_{ik} - a_{ik}$;
 - phasing $\varphi_i = a_{i,0}$;
Basic model for a task – continued

- (Best-case and worst-case) characteristics:
 - deadline: $R_{ik} \in [BD_i, WD_i]$, where $BD_i \in R^+ \cup \{0\}$, $WD_i \in R^+$;
 - computation time $C_{ik} \in [BC_i, WC_i]$, where $BC_i, WC_i \in R^+$;
 - inter-arrival time (or period):
 - strictly periodic task (i.e. without activation jitter):
 - period $T_i \in R^+$;
 - elastic task:
 - best-case period BT_i and worst-case period WT_i, where $WT_i < BT_i$;
 - sporadic task:
 - worst-case period WT_i (best-case period $BT_i \rightarrow \infty$)
 - deadlines and inter-arrival times:
 - $0 \leq BD_i \leq WD_i \leq WT_i$

- Notation:
 - we will also use WT_i and BT_i for periodic tasks.
Deadlines

- **Relative deadlines:**
 - best-case BD_i (typically assumed to be zero);
 - worst-case WD_i;

- **Absolute deadlines:**
 - best-case $bd_{ik} = a_{ik} + BD_i$;
 - worst-case $wd_{ik} = a_{ik} + WD_i$;
Overview of basic assumptions

• Single processor;

• Set Γ on n tasks $\tau_1 \ldots \tau_n$:
 – (released strictly periodically: $a_{ik} = \varphi_i + kT_i$);
 – (independent: no resource sharing and no precedence relations);
 – arbitrary phasing;
 – `ready' to run upon activation;
 – no self-suspension;
 – a job does not start before previous job completed ($f_{i,k-1} \leq s_{ik}$);
 – hard deadlines (i.e. $BD_i \leq R_{ik} \leq WD_i$) and $WD_i \leq WT_i$.

• Scheduling:
 – (FPPS and unique priorities);
 – (instantaneous pre-emption and non-idling);
 – overhead of context switching and task scheduling is ignored;

• Notational convenience:
 – tasks are given in order of decreasing priority,
 • i.e. τ_1 has highest priority and τ_n has lowest priority.
Motivation for FPPS

- De-facto standard
- Supported by commercial RTOS
- Rate monotonic analysis (RMA):
 - Adopted by leading companies and institutions [Obenza 94]:
 - Boeing, Honeywell, IBM, McDonnell Douglas, NASA, …;
 - IBM research, CMU/SEI.
 - Usage:
 - From simple control applications …
 - to large defense and aero-space applications.
 - Documentation [Klein et al 93]:
 - Practitioner’s Handbook by CMU/SEI (KAP).
Overview

- Context
- Schedulability conditions
 - Exact, necessary, and sufficient conditions;
 - Recapitulation of [Liu and Layland 73].
- Basic response time analysis
- Jitter analysis for periodic tasks
- Resource sharing
- Practical factors
- Concluding remarks
- References
Schedulability conditions

• Requirement \textit{Req}:
 – all jobs of all tasks of \(\Gamma \) must meet their deadline constraints,
 • i.e. \(BD_i \leq R_{ik} \leq WD_i \) for all \(i \) and all \(k \).

• Derived notions for task \(\tau_i \)
 – \textit{worst-case} response time \(WR_i \)
 \[
 WR_i = \sup_{\phi, k} R_{ik}(\phi)
 \]
 where \(\phi \) is the phasing of the set \(\Gamma \);
 – \textit{critical} instant: a (hypothetical) instant that leads to \(WR_i \);
 – \textit{best-case} response time \(BR_i \)
 \[
 BR_i = \inf_{\phi, k} R_{ik}(\phi)
 \]
 – \textit{optimal} instant: a (hypothetical) instant that leads to \(BR_i \).
Schedulability conditions

- Re-phrased requirement Req:
 - $BD_i \leq BR_i \land WR_i \leq WD_i$ for all i and all k;
 - note:
 - a best-case part: $BReq = BD_i \leq BR_i$, and
 - a worst-case part: $WReq = WR_i \leq WD_i$.

- Types of conditions:
 - Exact condition EC: $EC \iff Req$
 - Sufficient condition SC: $SC \Rightarrow Req$
 - Necessary condition NC: $NC \Leftarrow Req$

- Specializations for best-case and worst-case, e.g.
 - best-case sufficient condition BSC: $BSC \Rightarrow BReq$

- Examples:
 - $BC_i \geq BD_i$: best-case sufficient condition;
 - $WC_i \leq WD_i$: worst-case necessary condition.
Recapitulation of [Liu and Layland 73]

- Assumptions (additional):
 - fixed computation time and inter-arrival time: i.e. $C_i = BC_i = WC_i$ and $T_i = BT_i = WT_i$;
 - best-case deadlines ignored: i.e. assume $BD_i = 0$;
 - worst-case deadlines equal to periods: i.e. $WD_i = T_i$.

- Utilization
 - $U_{i}^{\tau} = C_i / T_i$: utilization factor of task τ_i;
 - $U^{\Gamma} = \sum U_{i}^{\tau}$: (processor) utilization factor.

- Necessary condition: $U^{\Gamma} \leq 1$.

- Th. 1: A critical instant occurs upon a simultaneous release of a task with all its higher priority tasks.
Critical Instant

Task τ_2 is preempted by a single activation of the higher priority task τ_1.

The interference increases when the activation of task τ_1 is advanced.
Recapitulation of [Liu and Layland 73]

• Th. 2: rate monotonic priority assignment (RMA) is an optimal fixed priority assignment,
 – i.e. if a set Γ of tasks can be scheduled based on a fixed priority assignment, then Γ can be scheduled based on RMA.
• Note: Th. 2 only holds for arbitrary phasing; see [Goossens et al 97].
• Sufficient condition: $U^\Gamma \leq n(2^{1/n} - 1)$
 – also referred to as `Liu and Layland bound´ $LL(n)$;
 – adding tasks increases U^Γ and decreases `RHS´;
 – converges to $ln(2) (\approx 0.69)$ for $n \rightarrow \infty$;
 – for the proof, see [Devillers et al 00].
Alternative utilization bound

- **Sufficient condition**
 - `Hyperbolic bound` $HB(n)$ [Liu 00]*
 $$HB(n) : \prod_{i=1}^{n} (U_i^\tau + 1) \leq 2$$
 - improves $LL(n)$, i.e. $LL(n) \Rightarrow HB(n)$;
 - the bound is `tight`;
- **Note:**
 - adding tasks increases `LHS`.
 - * independently conceived by [Bini et al 01].
Exercises

• Consider the exercises C.1, C.2, and C.3 of the module “Implementing the real-time task model”.
 – Determine the utilization of the task-sets.
 – Determine whether or not the necessary condition $U^\Gamma \leq 1$ holds for the task-sets.
 – Determine whether or not the sufficient conditions for the task-sets holds:
 • LL-bound;
 • Hyperbolic bound.
An example (leading)

Task set Γ consisting of 3 tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>T</th>
<th>C</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>10</td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>τ_2</td>
<td>19</td>
<td>11</td>
<td>0.58</td>
</tr>
<tr>
<td>τ_3</td>
<td>56</td>
<td>5</td>
<td>0.09</td>
</tr>
</tbody>
</table>

• Notes:
 - RM priority assignment and $D_i = T_i$ (RMS);
 - Necessary condition:
 • $U_{1^\tau} + U_{2^\tau} + U_{3^\tau} = 0.97 \leq 1$, hence Γ could be schedulable;
 - Sufficient condition:
 • $LL(n)$: $U^\Gamma \leq n \left(2^{\frac{1}{n}} - 1\right)$: $U_{1^\tau} + U_{2^\tau} = 0.88 > \`LL(2)` \approx 0.83$, therefore $U_{1^\tau} + U_{2^\tau} + U_{3^\tau} > \`LL(3)`$, hence another test required;
 • $HB(n)$: $(U_{1^\tau} + 1)(U_{2^\tau} + 1) \approx 2.05 > 2$, therefore $\`HB(3)` > 2$, hence another test required.
Overview

• Context
• Schedulability conditions
• Basic response time analysis
 – Worst-case response time analysis
 – Best-case response time analysis
• Jitter analysis for periodic tasks
• Resource sharing
• Practical factors
• Concluding remarks
• References
Basic response time analysis

• Assumptions (‘reset’)
 – deadlines at most equal to periods: $WD_i \leq WT_i$;
 – worst-case and best-case characteristics;
 – arbitrary (but fixed and unique) priority assignments.

• Worst-case response time analysis
 – (Critical instant);
 – Techniques: timeline + calculation.

• Best-case response time analysis
 – Introduction;
 – Optimal instant;
 – Techniques: timeline + calculation.
Worst-case response time analysis

Critical instant for task τ_i: τ_i “assumes” its WR_i.

A critical instant for task τ_i:

- Task τ_i is released simultaneously with all tasks with a higher priority.
- The highest amount of pre-emption of a task is found after a simultaneous release of higher priority tasks.
- General for a set of tasks.

• Note: “A” rather than “the”, because there may be more instants for which τ_i “assumes” its WR_i.
WCRT – Techniques

Time line:

Task τ_1

Task τ_2

Task τ_3

$WR_1 = 3$

$WR_2 = 17$

$WR_3 = 56$
WCRT – Techniques

Calculation:

– Recursive equation for task τ_i:

$$x = WC_i + \sum_{j<i} \left\lfloor \frac{x}{WT_j} \right\rfloor WC_j$$

WR_i is the smallest positive solution

– Assume a task τ_j with a higher priority than τ_i;

 • $\left\lfloor \frac{x}{WT_j} \right\rfloor$ denotes the maximum number of preemptions of task τ_i in an interval $[0, x)$ by task τ_j;
 • $\left\lfloor \frac{x}{WT_j} \right\rfloor WC_j$ denotes the maximal preemption time of task τ_i in an interval $[0, x)$ by task τ_j.

– Intuition:

 • LHS: amount of time available (or provided) in $[0, x)$;
 • RHS: max. amount of time requested in $[0, x)$ by τ_i and $\forall j < i \tau_j$.
WCRT – Techniques

Calculation:

– Iterative procedure:

\[WR_i^{(0)} = WC_i + \sum_{j<i} WC_j \]

\[WR_i^{(k+1)} = WC_i + \sum_{j<i} \left[\frac{WR_i^{(k)}}{WT_j} \right] WC_j \]

– Stopped when either:
 • the same value is found for two successive iterations; or
 • the deadline \(WD_i \) is exceeded (hence, not schedulable).

– All intermediate values are at most equal to \(WR_i \);

– Terminates when \(\sum_{j<i} U_j^\tau < 1 \).

– See [Harter 84], [Joseph et al 86] or [Audsley et al 91].
WCRT – Techniques

• Example for task τ_3:

- $WR_3^{(0)} = C_3 + \Sigma_{j < 3} C_j = 5 + 3 + 11 = 19$
- $WR_3^{(1)} = C_3 + \Sigma_{j < 3} \left\lceil \frac{WR_3^{(0)}}{T_j} \right\rceil C_j = 5 + \left\lceil \frac{19}{10} \right\rceil \cdot 3 + \left\lceil \frac{19}{19} \right\rceil \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22$
- $WR_3^{(2)} = 5 + \left\lceil \frac{22}{10} \right\rceil \cdot 3 + \left\lceil \frac{22}{19} \right\rceil \cdot 11 = 5 + 3 \cdot 3 + 2 \cdot 11 = 36$
- $WR_3^{(3)} = 5 + \left\lceil \frac{36}{10} \right\rceil \cdot 3 + \left\lceil \frac{36}{19} \right\rceil \cdot 11 = 5 + 4 \cdot 3 + 2 \cdot 11 = 39$
- $WR_3^{(4)} = 5 + \left\lceil \frac{39}{10} \right\rceil \cdot 3 + \left\lceil \frac{39}{19} \right\rceil \cdot 11 = 5 + 4 \cdot 3 + 3 \cdot 11 = 50$
- $WR_3^{(5)} = 5 + \left\lceil \frac{50}{10} \right\rceil \cdot 3 + \left\lceil \frac{50}{19} \right\rceil \cdot 11 = 5 + 5 \cdot 3 + 3 \cdot 11 = 53$
- $WR_3^{(6)} = 5 + \left\lceil \frac{53}{10} \right\rceil \cdot 3 + \left\lceil \frac{53}{19} \right\rceil \cdot 11 = 5 + 6 \cdot 3 + 3 \cdot 11 = 56$
- $WR_3^{(7)} = 5 + \left\lceil \frac{56}{10} \right\rceil \cdot 3 + \left\lceil \frac{56}{19} \right\rceil \cdot 11 = 5 + 6 \cdot 3 + 3 \cdot 11 = 56$

- Because $WR_3^{(6)} = WR_3^{(7)} = 56 \leq D_3 = T_3$, $WR_3 = 56$.
WCRT – Techniques

Calculation (visualization):

\[
WR_3^{(6)} = WR_3^{(7)} = 5 + 6 \cdot 3 + 3 \cdot 11 = 56
\]
WCRT - Techniques

• Note:
 – The number of iterations can be reduced by using
 • \(WR_3^{(0)} = \frac{c_i}{1-U_{i-1}} \),
 • where \(U_{i-1} = \sum_{1 \leq j < i} \frac{c_j}{T_j} \).
 – We now get
 • \(WR_3^{(0)} = \frac{5}{1 - (\frac{3}{10} + \frac{11}{19})} \approx 41 \)
 • \(WR_3^{(1)} = 5 + \left\lceil \frac{41}{10} \right\rceil \cdot 3 + \left\lceil \frac{41}{19} \right\rceil \cdot 11 = 5 + 5 \cdot 3 + 3 \cdot 11 = 53 \)
 • \(WR_3^{(2)} = 5 + \left\lceil \frac{53}{10} \right\rceil \cdot 3 + \left\lceil \frac{53}{19} \right\rceil \cdot 11 = 5 + 6 \cdot 3 + 3 \cdot 11 = 56 \)
 • \(WR_3^{(3)} = 5 + \left\lceil \frac{56}{10} \right\rceil \cdot 3 + \left\lceil \frac{56}{19} \right\rceil \cdot 11 = 5 + 6 \cdot 3 + 3 \cdot 11 = 56 \)
 • Hence, only 3 instead of 7 iterations.
WCRT – Exercises

• Consider the exercises C.1, C.2, and C.3 of the module “Implementing the real-time task model”.
 – Determine the worst-case response times of the tasks under FPPS.
WCRT – Exercise*

- Task set Γ^\prime consisting of 3 tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>$WT = WD$</th>
<th>WC</th>
<th>WU</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>5</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>3</td>
<td>0.43</td>
</tr>
<tr>
<td>τ_3</td>
<td>29</td>
<td>3</td>
<td>0.10</td>
</tr>
</tbody>
</table>

- Determine `worst-case schedulability´ of Γ^\prime.
- Draw a time line with a critical instant for Γ^\prime.
- Explain, using the time line, why 25 and 27 are also solutions for the recursive equation for WR_3.
Best-case response time analysis

Motivation

– Best-case and worst-case notions are duals:
 • Best-case: earliest, shortest, or minimal;
 • Worst-case: latest, longest, or maximal;

– Best-case deadline:
 • response no earlier than BD

– May simplify design and reduce cost:
 • No need to “delay” (i.e. buffer) output artificially;

– Desirable for analysis in distributed systems:
 • but also applies to single-processor systems;
 • examples: airbag, engine control.

See [Redell et al 02] or [Bril et al 04].
BCRT – Optimal instant

Optimal instant for task \(\tau_i \): \(\tau_i \) “assumes” its \(BR_i \).

An optimal (or *favourable*) instant:

- Job \(\nu_{ik} \) *ends* simultaneously with the *release* of all tasks with a higher priority, and \(\nu_{ik} \)’s release time is equal to its start time, i.e. \(a_{ik} = s_{ik} \).
- The *lowest* amount of pre-emption of a task is found *before* a simultaneous release of higher priority tasks.
- Specific for each task!

Note: “An” rather than “the”, because there may be more instants for which \(\tau_i \) “assumes” its \(BR_i \).
BCRT – Techniques

Time line: optimal instant for τ_2

Task τ_1

Task τ_2

$BR_2 = 14$

T_2

$f_{2,k}$

$time$
BCRT – Techniques

Time line: optimal instant for τ_3

- Task τ_1
- Task τ_2
- Task τ_3

T_3 and $BR_3 = 22$

τ_3
BCRT – Techniques

Calculation:

– Recursive equation for task τ_i:

\[
x = BC_i + \sum_{j<i} \left(\left\lfloor \frac{x}{BT_j} \right\rfloor - 1 \right) BC_j
\]

BR_i is the largest positive solution

– Assume a task τ_j with a higher priority than τ_i;

 • $\left\lfloor \frac{x}{BT_j} \right\rfloor - 1$ denotes the minimal number of preemptions of task τ_i in an interval $(0, x)$ by task τ_j;
 • $(\left\lfloor \frac{x}{BT_j} \right\rfloor - 1)BC_j$ denotes the minimal preemption time of task τ_i in an interval $(0, x)$ by task τ_j.

– Intuition:

 • LHS: amount of time available (or provided) in $(0, x)$;
 • RHS: min. amount of time requested in $(0, x)$ by τ_i and $\forall j < i \tau_j$.
BCRT – Techniques

Calculation:

- **Iterative procedure:**
 \[BR_i^{(0)} = WR_i \]

 \[BR_i^{(k+1)} = BC_i + \sum_{j<i} \left(\left[\frac{BR_i^{(k)}}{BT_j} \right] - 1 \right) BC_j \]

- **Stopped when:**
 - the same value is found for two successive iterations; or
 - the deadline \(BD_i \) is exceeded (hence, not schedulable).

- **All intermediate values are at least equal to** \(BR_i \).
BCRT – Techniques

- Example for task τ_3:
 - Assume $BD_i = 0$.
 - $BR_3^{(0)} = WR_3 = 56$
 - $BR_3^{(1)} = C_3 + \sum_{j < 3} \left(\left\lceil BR_3^{(0)}/T_j \right\rceil - 1 \right)C_j = 5 + (\left\lceil 56/10 \right\rceil - 1) \cdot 3 + (\left\lceil 56/19 \right\rceil - 1) \cdot 11 = 5 + 5 \cdot 3 + 2 \cdot 11 = 42$
 - $BR_3^{(2)} = 5 + (\left\lceil 42/10 \right\rceil - 1) \cdot 3 + (\left\lceil 42/19 \right\rceil - 1) \cdot 11 = 5 + 4 \cdot 3 + 2 \cdot 11 = 39$
 - $BR_3^{(3)} = 5 + (\left\lceil 39/10 \right\rceil - 1) \cdot 3 + (\left\lceil 39/19 \right\rceil - 1) \cdot 11 = 5 + 3 \cdot 3 + 2 \cdot 11 = 36$
 - $BR_3^{(4)} = 5 + (\left\lceil 36/10 \right\rceil - 1) \cdot 3 + (\left\lceil 36/19 \right\rceil - 1) \cdot 11 = 5 + 3 \cdot 3 + 1 \cdot 11 = 25$
 - $BR_3^{(5)} = 5 + (\left\lceil 25/10 \right\rceil - 1) \cdot 3 + (\left\lceil 25/19 \right\rceil - 1) \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22$
 - $BR_3^{(6)} = 5 + (\left\lceil 22/10 \right\rceil - 1) \cdot 3 + (\left\lceil 22/19 \right\rceil - 1) \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22$
 - Because $BR_3^{(5)} = BR_3^{(6)} = 22 \geq BD_3 = 0$, $BR_3 = 22$.
BCRT – Techniques

Calculation (visualization):

\[
BR_3^{(5)} = BR_3^{(6)} = 5 + 2 \cdot 3 + 1 \cdot 11 = 22
\]
BCRT - Techniques

• Note:
 – The number of iterations can be reduced by using
 • \(BR_3^{(0)} = \frac{c_i}{1-U_{i-1}} \),
 • where \(U_{i-1} = \sum_{1 \leq j < i} \frac{c_j}{T_j} \).

 – We now get
 • \(BR_3^{(0)} = 5/(1 - (\frac{3}{10} + \frac{11}{19})) \approx 41 \)
 • \(BR_3^{(1)} = 5 + (\lceil \frac{41}{10} \rceil - 1) \cdot 3 + (\lceil \frac{41}{19} \rceil - 1) \cdot 11 = 5 + 4 \cdot 3 + 2 \cdot 11 = 39 \)
 • \(BR_3^{(2)} = 5 + (\lceil \frac{39}{10} \rceil - 1) \cdot 3 + (\lceil \frac{39}{19} \rceil - 1) \cdot 11 = 5 + 3 \cdot 3 + 2 \cdot 11 = 36 \)
 • \(BR_3^{(3)} = 5 + (\lceil \frac{36}{10} \rceil - 1) \cdot 3 + (\lceil \frac{36}{19} \rceil - 1) \cdot 11 = 5 + 3 \cdot 3 + 1 \cdot 11 = 25 \)
 • \(BR_3^{(4)} = 5 + (\lceil \frac{25}{10} \rceil - 1) \cdot 3 + (\lceil \frac{25}{19} \rceil - 1) \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22 \)
 • \(BR_3^{(5)} = 5 + (\lceil \frac{22}{10} \rceil - 1) \cdot 3 + (\lceil \frac{22}{19} \rceil - 1) \cdot 11 = 5 + 2 \cdot 3 + 1 \cdot 11 = 22 \)
 • Hence, only 5 instead of 6 iterations.
BCRT – Exercises

- Consider the exercises C.1, C.2, and C.3 of the module “Implementing the real-time task model”.
 - Determine the best-case response times of the tasks under FPPS.
 - Can all tasks assume their best-case response times for a “single” phasing?
BCRT – Exercise*

- Task set Γ' consisting of 3 tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>BT</th>
<th>$BC = BD$</th>
<th>BU</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>5</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>3</td>
<td>0.43</td>
</tr>
<tr>
<td>τ_3</td>
<td>29</td>
<td>3</td>
<td>0.10</td>
</tr>
</tbody>
</table>

- Determine the best-case response times BR_i for all three tasks of Γ'.
- Draw a time line with an optimal instant for τ_3.
- Explain, using the time line, why 3 is also a solution for the recursive equation for BR_3.
Overview

- Context
- Schedulability conditions
- Basic response time analysis
- Jitter analysis for periodic tasks
 - Distributed systems analysis
 - Response jitter
 - Activation jitter
 - Finalization and activation jitter
- Resource sharing
- Practical factors
- Concluding remarks
- References
Distributed systems analysis

Finalization of a task τ_f on one processor activates a task τ_a on another processor:

- **Periodic tasks:**
 - *Finalization jitter FJ: *variation in finalization times;
 - *Activation jitter AJ: *variation in activation times (e.g. output of one task triggers a next task);
 - Example: multimedia in a networked environment.

- **Elastic tasks:**
 - *Minimal inter-finalization time* of τ_f determines WT_a of task τ_a.
 - *Maximal inter-finalization time* of τ_f determines BT_a of task τ_a.

- **Sporadic tasks:**
 - *Minimal inter-finalization time* of τ_f determines WT_a of task τ_a.
Distributed systems analysis

– Example:

\[
\begin{align*}
\tau_f & \quad \tau_a, \tau_k \\
\text{CPU-1} & \quad \text{CPU-2}
\end{align*}
\]

\(\tau_f\) triggers \(\tau_a\)

\(FJ_f\) causes \(AJ_a\), which influences response times of both \(\tau_a\) and \(\tau_k\)

– Goal jitter analysis:
 • Determine schedulability in the context of jitter,
 • hence, determine response (or finalization) times.

– Note: strictly spoken, the variations in the delay of the messages on the bus should be taken into account as well...
Advanced exercises

• Proof that the “type” of τ_a is determined by τ_f, e.g. τ_a is an elastic task if τ_f is an elastic task.
• For both an elastic and a sporadic task τ_f, express WT_a in terms of WT_f, WR_f, and BR_f.
• For an elastic task, express BT_a in terms of BT_f, WR_f, and BR_f.
• How about BT_a for a sporadic task?
Jitter analysis for periodic tasks

Types of (absolute) jitter (recap):

- **Response jitter** RJ_i:
 - variations in *response* times;

- **Activation (or release) jitter** AJ_i:
 - variation in *release* times (e.g. output of one task triggers a next task);

- **Finalization (or end) jitter** FJ_i:
 - variation in *end* times;
Response jitter

Response jitter RJ_i of a task τ_i:

$$RJ_i = \sup_{\varphi,k,l}(R_{ik}(\varphi) - R_{il}(\varphi))$$

- A bound on response jitter

$$RJ_i \leq WR_i - BR_i$$

- “≤” because WR_i and BR_i are not necessarily assumed for the same phasing
Response jitter

Example (leading):
- \(WR_2 = 17, BR_2 = 14; \)
- \(WR_2 \) and \(BR_2 \) both assumed for a single phasing,
- hence, \(FJ_2 = WR_2 - BR_2 = 3, \)
- and the bound for \(RJ_2 \) is therefore *tight*.

![Diagram showing tasks and response times](chart.png)
Activation jitter of periodic tasks

Assumptions:
- revised assumption: \(WD_i \leq WT_i - AJ_i \).
- lifted restrictive assumption:
 \[
 \sup_{k,l} (a_{ik} - a_{il} - (k - l)T_i) \leq AJ_i
 \]

Worst-case response times:
- See [Audsley et al 93] or [Tindell et al 94];
- Critical instant revisited:
 - Task \(\tau_i \) is released simultaneously with all tasks with a higher priority and
 - all tasks with a higher priority experience
 - a maximal release delay at that simultaneous release, and
 - a minimal release delay at subsequent releases.
 - Hence, a maximal pre-emption of \(\tau_i \) occurs.
Activation jitter of periodic tasks

New example:

<table>
<thead>
<tr>
<th>Task</th>
<th>T</th>
<th>C</th>
<th>AJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>τ_2</td>
<td>38</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
- WR_2 is independent of AJ_2;
- WR_2 increases 3 due to AJ_1.
Activation jitter of periodic tasks

Worst-case response times:

- Recursive equation for task τ_i:

$$x = WC_i + \sum_{j<i} \left[\frac{x + AJ_j}{WT_j} \right] WC_j$$

- Where AJ_j is the activation jitter of τ_j.
- WR_i is the smallest positive solution of the equation.

- Iterative procedure:
 - Similar to the case without jitter.

- Note: equation also holds for elastic and sporadic tasks!
 - Because $AJ_j = 0$ for those tasks.
Activation jitter of periodic tasks

Best-case response times:

- Optimal instant revisited:
 - Job τ_{ik} ends simultaneously with the release of all tasks with a higher priority, and τ_{ik}’s release time is equal to its start time, and
 - all tasks with a higher priority experience
 - a maximal release delay at that simultaneous release, and
 - a minimal release delay at previous releases.
 - Hence, a minimal pre-emption of τ_i occurs.
Activation jitter of periodic tasks

Same (new) example:

<table>
<thead>
<tr>
<th>Task</th>
<th>T</th>
<th>C</th>
<th>AJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>τ_2</td>
<td>38</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Notes:
- BR_2 is independent of AJ_2;
- BR_2 does not change here.
Activation jitter of periodic tasks

Best-case response times:

- Recursive equation for task τ_i:

$$ x = BC_i + \sum_{j<i} \left(\left\lceil \frac{x - AJ_j}{BT_j} \right\rceil - 1 \right)^+ BC_j $$

- Where AJ_j is the activation jitter of τ_j, and $w^+ = \max\{w,0\}$.
- BR_i is the largest positive solution of the equation.

- Iterative procedure:
 - Similar to the case without jitter.

- Note: equation also holds for elastic and sporadic tasks!
 - Because $AJ_j = 0$ for those tasks.
Finalization and activation jitter

Finalization jitter FJ_i of a periodic task τ_i:

\[
FJ_i = \sup_{\varphi,k,l} (f_{ik}(\varphi) - f_{il}(\varphi) - (k - l)T_i)
\]

- A bound on finalization jitter:

\[
FJ_i \leq AJ_i + WR_i - BR_i
\]

- “≤” because WR_i and BR_i are not necessarily assumed for the same phasing.

- Exercise: derive this latter bound
Response, finalization and activation jitter

Example:

\[RJ_2 = WR_2 - BR_2 = 20 - 14 = 6 \]
\[FJ_2 = AJ_2 + WR_2 - BR_2 = 7 + 20 - 14 = 13 \]

\[RJ_1 = WR_1 - BR_1 = 0 \]
\[FJ_1 = AJ_1 = 4 \]
Advanced exercise

• Define worst-case processor utilization WU in the context of periodic tasks with activation jitter.
 – Can you describe a (worst-case) necessary condition using WU?
 – What about the analysis?

• This lecture considered elastic, periodic, and sporadic tasks.
 – What is the effect of modeling
 • a periodic task with jitter as an elastic task?
 • a periodic task with jitter as a sporadic task?
Overview

- Context
- Schedulability conditions
- Basic response time analysis
- Jitter analysis for periodic tasks
- Resource sharing
- Practical factors
- Concluding remarks
- References
Response-time analysis

Worst-case response time analysis:

- **Blocking time** B_i:
 - Longest time τ_i can be blocked by a task with a lower priority.
 - Depends on the resource access protocol.
 - *Includes* blocking due to non-interrupt-able code of system-calls.

- **Recursive equation for task** τ_i:
 \[
 x = B_i + WC_i + \sum_{j<i} \left[\frac{x + AJ_j}{WT_j} \right] WC_j
 \]

 WR_i is the *smallest* positive solution

- **Best-case response time analysis**:
 - Yet unknown.
Overview

• Context
• Schedulability conditions
• Basic response time analysis
• Jitter analysis for periodic tasks
• Resource sharing
• Practical factors
 – From event to task activation
 – Context switches
 – Interrupts
• Concluding remarks
• References
From external event to task activation

- **Steps:**
 - External event occurs;
 - Detection by sensor;
 - Interrupt generated by sensor
 - may take some time before the bus is free
 - Interrupt arrival at CPU
 - may take some time before the interrupt is handled
 - Immediate interrupt service
 - may be pre-empted by higher priority interrupts
 - Activation of the scheduler
 - may be delayed to the next clock-tick
 - Activation of the task

- hence, both a *delay* and potential *jitter* between the arrival of the external event and activation of the task!
Context switches

• **Question**: how many *running* jobs can a job pre-empt?
• **Answer**: at most 1 (…but beware or resource sharing)!

Let CS denote the **context-switch time of the system**, i.e.

- max time the system spends on a context switch;
- optionally including time of the scheduler to service the event interrupt that triggered the context switch
Context switches

- Extending the analysis:
 - Replace C_j by $C_j + 2CS$;
 - Replace C_i by $C_i + 2CS$;

- Questions:
 - Can these extensions be applied for the necessary condition, sufficient condition, and response-time analysis? Motivate your answer.
 - Can you ignore the context switch out-of-a task for the response time analysis of that task, i.e. use $C_i + CS$ rather than $C_i + 2CS$? Motivate your answer.
External interrupts

- The *immediate interrupt service*
 - will pre-empt a running task τ;
 - even when the sporadic task handling the interrupt has a lower priority than τ.

- Let
 - T_k: the minimum inter-arrival time of the interrupt corresponding with sporadic task τ_k;
 - Γ_s: the set of sporadic tasks;
 - IH_k: the cost of handling that interrupt.

- Extension of the recursive equation
 $$\sum_{\tau_k \in \Gamma_s} \left\lceil \frac{x}{T_k} \right\rceil IH_k$$
Clock interrupt

• Simple (basic) approach:
 – similar to external interrupts, i.e.
 – extension of the recursive equation

\[
\begin{bmatrix}
 \frac{x}{T_{clk}} \\
 IH_{clk}
\end{bmatrix}
\]

• Refinement:
 – distinguish between
 • a *fixed* cost to serve the clock interrupt;
 • *additional* costs to “move” tasks from the waiting queue to the ready queue

• Question: How to model the *additional* costs?
Exercises

- Measure the overhead of the “tick” interrupt handler.
Overview

- Context
- Schedulability conditions
- Basic response time analysis
- Jitter analysis for periodic tasks
- Resource sharing
- Practical factors
- Concluding remarks
- References
Concluding remarks

- Many of the restrictive assumptions have been lifted, e.g.
 - other dependencies between tasks
 - e.g. precedence relations;
 - tasks with varying priorities [Harbour et al 91];
 - arbitrary deadlines [Klein et al 93];
 - tasks with offsets;
 - tasks that suspend themselves;
 - limited-pre-emptive scheduling [Regher 02], [Bril et al 07].

- Unlike worst-case response time analysis, best-case response time analysis has not been addressed yet for any of these lifted assumptions!

- Further elaboration falls outside the scope of this lecture, however.
Concluding remarks

• Be aware:
 – The analysis presented has the explicitly stated assumptions as *preconditions*!
 – For many situations, only looking at the first job upon a critical instant is *not* sufficient, even when deadlines are at most equal to periods. Instead, the response times of all jobs in a so-called *busy* (or *level-i active*) *period* have to be examined!

Examples:
 • tasks with varying priorities [Harbour et al 91].
 • preemption thresholds [Regehr 02];
 • Controller Area Network (CAN), see [Davis et al 07];
 • fixed-priority scheduling with deferred preemption (FPDS), see [Bril et al 07].
References - I

References - II

References - III