
31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

1

Networked components
(the architecture of ambient intelligence)

Johan Lukkien

(thanks to Johan Muskens, TU/e and
Jan Nesvadba, Philips Research)

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

2

SAN @ TU/e
• System Architecture & Networking

– one of eight research groups of Computer
Science

• as off 2002

• Staff: 7 full-time, 4 part-time
• Temporary: 12

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

3

General research area of SAN
• Networked, resource-constrained embedded systems

– techniques, concepts, approaches, results, prototypes

• Corresponding research fields
– distributed systems, networking, parallel computing
– architecture, in particular, software

• compositional systems
• non-functional requirements

– real-time techniques
• resource sharing (QoS), resource allocation (budgets)
• performance analysis

– embedded VLSI techniques

• Strong participation in (inter)national projects

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

4

Agenda
• Ambient Intelligence
• System and software aspects from AmI
• ITEA projects ROBOCOP/Space4U
• ITEA project CANDELA

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

5

Ambient Intelligence by aspect
IST Advisary Group, 2001

pictures from the Philips site in 2001
• Ambient Intelligence implies a seamless environment

– of computing,
– advanced networking technology
– and specific interfaces.

• It is aware
– of the specific characteristics of human presence
– and personalities,

• takes care of needs
• and is capable

– of responding intelligently to spoken or gestured indications of desire,
– and even can engage in intelligent dialogue.

• Ambient Intelligence should also be
– unobtrusive,
– often invisible:

• everywhere and yet in our consciousness – nowhere unless we need it.
• Interaction should be

– relaxing and enjoyable for the citizen,
– and not involve a steep learning curve.

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

6

Ambient Intelligence by aspect
IST Advisary Group, 2001

pictures from the Philips site in 2001

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

7

Do we want this?
• Only the nice part

– not the hassle
– not the danger
– imposes additional challenge

• must be able to tranparently control this environment

• Moore’s and Metcalf’s laws indicate this direction
– something like this is happening anyway
– so let’s steer it

• Excellent as a ‘man on the moon’ concept
– just imagine the steps that must be taken to make it

happen

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

8

Yet, what do we have now?
• a seamless environment

– of computing,
– advanced networking technology
– and specific interfaces ???

• We have this environment, except the ‘seamless’
and perhaps the specific interfaces
– bits and pieces exist
– but without the ‘seamless’, forget about the other AmI stuff

• The ‘intelligence’ is still sub-optimal

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

9

Computing
• Typical AI technologies for adaptivity and

intelligence
– data mining
– neural networks, genetic algorithms

• Context awareness
– models of user and environment

• interpretation context for information
• knowledge base for determining responses

• Distributed systems technology
– global tasks through cooperation

• no complete information, low resources locally

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

10

Advanced networking technology
• What for?

– ambient intelligence is not going to be centralized!
• at least terminals will be distributed

– though a centralized computer (in the cupboard is conceivable)....
– the combination of computing/storage/interaction are deployed

everywhere (embedded systems)
• AmI requires these to become part of the ambient environment
• users cannot configure and control this increasing number of systems

• Then, what technology?
– Wireless technology

• general, packet switched
• specific, e.g. extreme low power

– wireless sensors, smart dus, smart paint
– Intelligence in the network

• adaptive protocols for content delivery
• QoS control

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

11

Evolution of embedded networking

time

standalone fully networked

network aware

network connected

network central

standalone fully networked

network aware

network connected

network central

Ambient Intelligence

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

12

Network central
• Devices have a stand-alone function

– PDA, TV set
• In addition, they serve as ‘platform’ for

networked applications
– specific device capabilities available on the

network
• display, internal hardware, internal memory

– support for hosting (networked) applications
• components that can be down- and re-loaded routinely

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

13

Consequence
• Highly distributed applications

– composed of the cooperation of small services

• Highly mobile code
– services and applications realized in independent

components that can be down- and re-loaded routinely

• Embedded knowledge
– decisions taken without direct user involvement

• at most some steering
– need a reference that separates good from bad decisions

• model, learning, feedback-control loops
– intelligence at many levels

• protocols, algorithms, system

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

14

Fully networked
• No stand-alone function

– dedicated, single function components
• e.g. networked storage, internet radio

– cheap devices, elementary behavior
• sensing, actuating, computing, communicating (sensor

networks)

• Applications arise from cooperation

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

15

Specific interfaces
• Move interfaces from the

computer domain to the
domain of the user
– sensing and actuating replaces

keyboard and mouse
• metaphores, analogies

– screens and displays replaced
by other types of feedback

• natural interaction

– media content analysis
• speech recognition
• video segmentation

Marble answering machine by Durrell Bishop

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

16

Missing: integration
• How come?

– consumer products are bought over a long period
• diversity!
• must be designed to integrate in an evolving environment
• we’re better at designing complete systems (“solutions”) than

in “design for evolution”
– this may be expensive

– fixed decisions must be replaced by policies
• the key is postponing decisions, seeing a device or function

as part of a whole – software not prepared
• towards humans/application << 1

– applications involving several devices are complicated
• particularly, real-time, reliability and other extra-functional

properties

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

17

Example: simple AmI scenario
• Person enters house

– visual recognition
• Light is switched on by speaking

– speech recognition
– preferences of person remembered

• TV is switched on by speaking
– speech recognition, different control target

• Relevant messages pop up
– TV-on event is recognized; TV-display is used for

messages
• Someone rings – picture on screen, name spoken

– visual recognition – found place where to display
– speech synthesis

GG

GG

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

18

Scenario thinking
• We can realize such a scenario

– given enough time and money we can make just about
anything

• But:

Can we make system components such that future,
as yet unforeseen, cooperations and adaptations
are simply realizable, and actually work?

• Note:
– need to re-think the role networking / distribution plays in

system design
– do not only look at typical end-user functionality, but also at

hidden aspects

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

19

Example: classical embedded real-time
system

Embedded Real-time System

Sensors

Actuators
Controlling system

User Interface

Controlled
System

RT-OS

TCP/IP stack
Internet

I

II

III

• Network options
– I : just a connected device/system
– II : remote sensing/control (could combine with e.g. fieldbus

technology in practice)
– III : remote monitoring and control
– IV:

• Making the protocols open increases the possible applications

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

20

Requirements on software architecture

• Interoperability (who would not want this....)

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

21

Interoperability views

Hide network details
by extending platform
services
Binding mostly through
libraries

Interoperability focussed
on protocol; no language or platform
binding besides message structure
and semantics

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

22

Requirements on software architecture
• Interoperability (who would not want this....)
• Loose coupling

– clear interfaces and dependencies
– late binding

• even at run-time:
– advertisement, discovery
– based on descriptions

– avoidance of language, OS, ISA binding
• Composability

– including extra-functional properties
• Software upgrade

– routinely: context aware updates
– trading

• Location transparency

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

23

Concluding
• Inside devices: component framework

– routine updates
– dynamic composition

• determine resource requirements and performance
– maintain integrity

• On the network: “service oriented approach”
– devices expose services: “information faces”

• discoverable
• control and eventing through open protocols
• basic, orthogonal functionality is exposed

– applications coordinate services

Separation of components and coordination

+

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

24

Agenda
• System aspects following from Ambient

Intelligence
• ITEA projects ROBOCOP/Space4U

– component model & runtime environment
– download framework
– context aware configuration
– system integrity management

• ITEA project CANDELA

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

25

Background

Research is part of the following projects

• Robocop (2001 - 2003)
– Define an open, component-based framework for

the middle-ware layer in high-volume consumer
devices (robustness/reliability,
upgrading/extension, and trading)

• Space4U (2003 - 2005)
– Extend and validate the Architecture

• Fault Management
• Power Management
• Terminal Managment

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

26

The Robocop Project

• Project timeline: 2 years
– July 2001 through June 2003

• Partners
– 5 Countries

• Finland, France, Netherlands, Spain, Switzerland
– Categorization

• 5 Industrial (Philips, Nokia, CSEM, IKERLAN, FAGOR)
• 2 SME (SAIA Burgess, Visual Tools)
• 2 Universities (Univ. Madrid, TU/e)

• Financials
– 111 FTE, 21.5 M Euro

Space4U

• Same Partners
• 86 FTE

Space4U

• Same Partners
• 86 FTE

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

27

ROBOCOP: Runtime Architecture
• Run-time view of a terminal

– Application Layer
• Applications

– Middleware Layer
• Run Time Environment
• Executable Components

– Platform Layer
• OS Abstraction
• Device & HW drivers

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

28

Component Packaging
• A Robocop component is a set of related

models

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

29

Component Packaging (Motivation)
• Trading

– Different views for different stakeholders
• Executable for consumer
• Source code, documentation for developer
• ...

– Desirable to trade more than binaries
• Analysis

– During Development
• Simulations / Analysis for feasibility tests

– At Run Time
• Admission tests during downloading of components

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

30

Component Packaging (Vision: Tool Based
Composition)

Robocop Component 1

Resource Model

Simulation Model

Documentation

Executable Component

Functional Model

Source Code

…

Robocop Component N

Resource Model

Simulation Model

Documentation

Executable Component

Functional Model

Source Code

…

…

Composition

Resource Model

Composition

Simulation Model

Composition

Functional Model

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

31

Component Packaging (Example)

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

32

Component Life-cycle

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

33

Executable Component (or model)
• Executable Components implement a number of

Services
• Executable Components are instantiated in OS terms

– Static in process (LIB)
– Dynamic in process (DLL)
– Dynamic out process (EXE)

• Executable Components have a fixed entry point for
– Registration to Run Time
– Retrieving Service Manager

• Service Manager is used for instantiating services

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

34

Executable Component (Example)

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

35

Services
• Services offer their functionality through a set of ports

(named interfaces)
• Services have explicit dependencies: required ports

(named interfaces)
• An Interface is a set of operations
• Services are instantiated at Run Time

– Service ≈ Class in object oriented programming
• Service Instance is an entity with its own data and a

unique identity
– Service Instance ≈ Object in object oriented

programming

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

36

Run-time Environment
• Responsibility

– Registration of components and services
– Handle requests for services instances (and

services managers)
– Offer support for QoS (Optional)

• Implementation
– Three tables

• Association between Component (ID) and Location
• Association between Component (ID) and Service (ID)
• Complies relation between Services (IDs)

Registry

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

37

Run Time Environment (Example Registry
Content)

Component Location

component guid component url

CScreenGUID file://CScreen.so

CLaserPrinterGUID file://CLaserPrinter

Component-Service Rel.

component guid service guid

CScreenGUID SCharScreenGUID

CScreenGUID SPixelScreenGUID

CLaserPrinterGUID SPlotterGUID

Complies Rel.

service guid complies with

SCharScreenGUID SOutputGUID

SPixelScreenGUID SCharScreenGUID

SPrinterGUID SCharScreenGUID

SPlotterGUID SPrinterGUID

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

38

Run Time Environment (Example Registry
Content)

CScreen

CLaserPrinter

SPixelScreen SCharScreen SOutput

SPlotter SPrinter Components are underlined
Services are not underlined

C1 S1: C1 implements S1
S1 S2: S1 complies with S2

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

39

Run-time Environment (Service
Instantiation)

• Client can do 2 things:
– Implicit Service Instantiation

• Request for Service Instance
• RRE will return reference to Service Instance

– Explicit Service Instantiation
• Request Service Manager
• RRE will return reference to Service Manager
• Use Service Manager to create Service Instance
• Service Manager will return reference to Service

Instance

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

40

Download Framework
• Responsibility

– Transfer Robocop components from repository to a
target terminal.

• Implementation
– 5 roles together accomplish the download

• Initiator
• Locator
• Decider
• Repository
• Target (needs to be on the terminal)

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

41

Download Framework (Key Features)

• Low Resource Footprint on Target
– Only the target role needs to be resident on the

target terminal
• Supports external initiation of download

– Initiator can be resident on a external server
• Supports decision on suitability of a

component for a specific target
– Decider role

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

42

Download Framework (Procedure)

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

43

Context Aware Configuration
• Goal

– Run-time adaptation of the software configuration
of the terminal based on the context in which it is
used.

• Approach
– Adapt configuration by using a number of

knowledge sources that verify a specific condition
and know what to do if this condition is TRUE.

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

44

Context Aware Configuration (Basic
Idea)

Approach: Update configuration based on context using 3 roles !

Responsibilities: of the individual roles …

Knowledge
Sources

Terminal
Runs context aware blackboard

Control

••Maintain context Maintain context
informationinformation
••Facilities for updatingFacilities for updating

•• Control Knowledge Control Knowledge
SourcesSources

•• Detect context changesDetect context changes
•• Adapt configuration Adapt configuration
based on rulesbased on rules

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

45

Context Aware Configuration (In
Practice)

AirportBT
Source

Terminal
Runs context aware blackboard

Control

Scenario

Terminal is used at
the airport.

Terminal is used at
the airport.

Control triggers a
Number of knowledge
sources

Control triggers a
Number of knowledge
sources

The AirportBT Source
verifies a condition:
Am I at the Airport?

The AirportBT Source
verifies a condition:
Am I at the Airport?

Bluetooth beacons
can be used

If the condition is true, the AirportBT Source
Executes the corresponding action:
Download airplane arrival application & update blackboard

If the condition is true, the AirportBT Source
Executes the corresponding action:
Download airplane arrival application & update blackboard

AirplaneApp

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

46

System Integrity Management (Basic
Idea)

Approach: Maintaining software integrity using 3 roles !
Responsibilities: of the individual roles …

Terminal
Manager

Terminal Database

•• Externalize Model of Externalize Model of
Current ConfigurationCurrent Configuration
•• Offer Basic Offer Basic
Configuration FacilitiesConfiguration Facilities

•• Provide rulesProvide rules
•• Provide solutionsProvide solutions

•• MonitoringMonitoring
•• DiagnosisDiagnosis
•• RepairingRepairing

•• Script generationScript generation
•• Script executionScript execution

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

47

System Integrity Management (In
Practice)

Terminal
Manager

Terminal Database

Scenario

Terminal is
not working
properly

modelmodel

Self Model is
retrieved by
Terminal Manager

Periodically
or

due to Notification

Terminal Manager will do a number
of checks. These checks might
require knowledge from the database

V
V
X
V
X

V
V
X
V
X

Rules

Terminal Manager will generate a repair
script based on the outcome of the
checks . This might require some
knowledge from the database.

Solutions

Terminal Manager will execute
repair script using the basic
configuration facilities offered by
the terminal.

update
configuration

update
configuration

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

48

Agenda
• System aspects following from Ambient

Intelligence
• ITEA projects ROBOCOP/Space4U
• ITEA project CANDELA

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

49

Remember
• Inside devices: component framework

– routine updates
– dynamic composition

• determine resource requirements and performance
– maintain integrity

• On the network: “service oriented approach”
– devices expose services: “information faces”

• discoverable
• control and eventing through open protocols
• basic, orthogonal functionality is exposed

– applications coordinate services

Separation of components and coordination

+

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

50

CANDELA

meta-
datadata

::
Acquire VideoAcquire Video

CompressCompress

Search & RetrieveSearch & Retrieve

DeliverDeliver

PresentPresent

AnalyseAnalyse

• Content Analysis and
Networked Delivery
Architectures

• Scope
– “understand” video

• improve display
• improve delivery
• use as system input

digital video

query result

mp4 mp7

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

51

CANDELA – TU/e

meta-
datadata

::
Acquire VideoAcquire Video

CompressCompress

Search & RetrieveSearch & Retrieve

DeliverDeliver

PresentPresent

AnalyseAnalyse

• Context: home network
• Focus:

– System architecture for Distributed
Video Content Analysis processing

• devices expose video processing and
other capabilities as service units

• video applications (e.g. VCA, viewing,
storing) through compositions of these

– Online processing, flexibility, reliability
• Connections:

– embedded within CASSANDRA project
in Philips Research

– project MultimediaN, iShare

digital video

query result

mp4 mp7

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

52

Sharing services
• Devices share

– functionality
• e.g. media processing functions

– resources
• e.g. database, computational platform

– content
• e.g. video

• Accesssible as networked services (“service
units”)

• Applications (“use cases”) are compositions
of services

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

53

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

54

Architecture: deployment view

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

55

Focus: reliability
• Applications rely on the cooperation of

several devices
– devices may disappear
– more points of failures

• Considered errors
– Service units

• Logical (catchable by a service unit itself)
• Physical (failstop of process running the service)

– Host (device) breakdown
– Communication (network) failure

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

56

Error detection: method
• External (watchdog): external observer
• Internal: adjust the component model such that

malfunctioning can be determined
– Interfaces for communication are equipped with detection

capabilities
• Data
• Control

– Components become stoppable
– Each component defines the error collection that it

• Can catch itself
• Cannot handle itself
• Can report on

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

57

Error detection: diagram

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

58

Conclusion
• Typical AmI functions requires a service-

oriented software architecture
– both inside and outside terminals

• Service composition must include extra-
functional properties

• Functionality (services) and coordination
(compositions) should be decoupled

31-Jan-06 Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Computer Science, System Architecture and Networking

59

Some conclusions
• Ambient intelligence requires open, flexible

systems
– cooperation beyond the protocol level

• New perspectives in design
– service orientation
– component based

• Embedded intelligence plays at multiple
levels
– intelligence ‘stack’

• Embedded intelligence raises strong issues
of privacy

	Networked components(the architecture of ambient intelligence)
	SAN @ TU/e
	General research area of SAN
	Agenda
	Ambient Intelligence by aspect
	Ambient Intelligence by aspect
	Do we want this?
	Yet, what do we have now?
	Computing
	Advanced networking technology
	Evolution of embedded networking
	Network central
	Consequence
	Fully networked
	Specific interfaces
	Missing: integration
	Example: simple AmI scenario
	Scenario thinking
	Example: classical embedded real-time system
	Requirements on software architecture
	Interoperability views
	Requirements on software architecture
	Concluding
	Agenda
	Background
	The Robocop Project
	ROBOCOP: Runtime Architecture
	Component Packaging
	Component Packaging (Motivation)
	Component Packaging (Vision: Tool Based Composition)
	Component Packaging (Example)
	Component Life-cycle
	Executable Component (or model)
	Executable Component (Example)
	Services
	Run-time Environment
	Run Time Environment (Example Registry Content)
	Run Time Environment (Example Registry Content)
	Run-time Environment (Service Instantiation)
	Download Framework
	Download Framework (Key Features)
	Download Framework (Procedure)
	Context Aware Configuration
	Context Aware Configuration (Basic Idea)
	Context Aware Configuration (In Practice)
	System Integrity Management (Basic Idea)
	System Integrity Management (In Practice)
	Agenda
	Remember
	CANDELA
	CANDELA – TU/e
	Sharing services
	Architecture: deployment view
	Focus: reliability
	Error detection: method
	Error detection: diagram
	Conclusion
	Some conclusions

