Geometric Algorithms

Lecture 5: Delaunay Triangulations
Motivation: Terrains

- A terrain is the graph of a function $f : A \subset \mathbb{R}^2 \rightarrow \mathbb{R}$.
Motivation: Terrains

- a terrain is the graph of a function \(f : A \subset \mathbb{R}^2 \rightarrow \mathbb{R} \)
- we know only height values for a set of measurement points
Motivation: Terrains

- A terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$.
- We know only height values for a set of measurement points.
- How can we interpolate the height at other points?
a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \to \mathbb{R}$

we know only height values for a set of measurement points

how can we interpolate the height at other points?

using a triangulation
Motivation: Terrains

- a terrain is the graph of a function $f : A \subset \mathbb{R}^2 \rightarrow \mathbb{R}$
- we know only height values for a set of measurement points
- how can we interpolate the height at other points?
- using a triangulation – but which?

Interpolated height

- q with interpolated height = 985
- q with interpolated height = 23
Let $P = \{p_1, \ldots, p_n\}$ be a point set. A **triangulation** of P is a maximal planar subdivision with vertex set P.
Let $P = \{p_1, \ldots, p_n\}$ be a point set. A triangulation of P is a maximal planar subdivision with vertex set P.

Complexity:

- $2n - 2 - k$ triangles
- $3n - 3 - k$ edges

Euler’s formula for connected plane graphs:

$\# \text{faces} - \# \text{edges} + \# \text{vertices} = 2$, also counting the outer face.
Let \mathcal{T} be a triangulation of P with m triangles and $3m$ vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ where $\alpha_1, \ldots, \alpha_{3m}$ are the angles of \mathcal{T} sorted by increasing value.
Let \mathcal{T} be a triangulation of P with m triangles and $3m$ vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ where $\alpha_1, \ldots, \alpha_{3m}$ are the angles of \mathcal{T} sorted by increasing value.

Let \mathcal{T}' be another triangulation of P. We define $A(\mathcal{T}) > A(\mathcal{T}')$ if $A(\mathcal{T})$ is lexicographically larger than $A(\mathcal{T}')$.

$A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_6)$
Let \mathcal{T} be a triangulation of P with m triangles and $3m$ vertices. Its angle vector is $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ where $\alpha_1, \ldots, \alpha_{3m}$ are the angles of \mathcal{T} sorted by increasing value.

Let \mathcal{T}' be another triangulation of P. We define $A(\mathcal{T}) > A(\mathcal{T}')$ if $A(\mathcal{T})$ is lexicographically larger than $A(\mathcal{T}')$.

\mathcal{T} is angle optimal if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

\[A(T) = (\alpha_1, \ldots, \alpha_6) \]
Edge Flipping

Geometric Algorithms Lecture 5: Delaunay Triangulations
Edge Flipping

- Change in angle vector:
 \(\alpha_1, \ldots, \alpha_6 \) are replaced by \(\alpha'_1, \ldots, \alpha'_6 \).
Edge Flipping

- Change in angle vector:
 $\alpha_1, \ldots, \alpha_6$ are replaced by $\alpha'_1, \ldots, \alpha'_6$.

- The edge $e = p_i p_j$ is illegal if $\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i$.
Edge Flipping

- Change in angle vector: \(\alpha_1, \ldots, \alpha_6\) are replaced by \(\alpha'_1, \ldots, \alpha'_6\).
- The edge \(e = p_i p_j\) is illegal if \(\min_{1 \leq i \leq 6} \alpha_i < \min_{1 \leq i \leq 6} \alpha'_i\).
- Flipping an illegal edge increases the angle vector.
How do we determine if an edge is illegal?
How do we determine if an edge is illegal?

Lemma: The edge p_ip_j is illegal if and only if p_l lies in the interior of the circle C.
Thales Theorem

Theorem: Let C be a circle, ℓ a line intersecting C in points a and b, and p, q, r, s points lying on the same side of ℓ. Suppose that p, q lie on C, r lies inside C, and s lies outside C. Then

$$\angle arb > \angle apb = \angle aqb > \angle asb,$$

where $\angle abc$ denotes the smaller angle defined by three points a, b, c.
Theorem: Let C be a circle, ℓ a line intersecting C in points a and b, and p, q, r, s points lying on the same side of ℓ. Suppose that p, q lie on C, r lies inside C, and s lies outside C. Then

$$\angle arb > \angle apb = \angle aqb > \angle asb,$$

where $\angle abc$ denotes the smaller angle defined by three points a, b, c.
Theorem: Let C be a circle, ℓ a line intersecting C in points a and b, and p, q, r, s points lying on the same side of ℓ. Suppose that p, q lie on C, r lies inside C, and s lies outside C. Then

$$\angle arb > \angle apb = \angle aqb > \angle asb,$$

where $\angle abc$ denotes the smaller angle defined by three points a, b, c.
Legal Triangulations

A **legal triangulation** is a triangulation that does not contain any illegal edge.

Algorithm

```
LegalTriangulation(T)
```

Input. A triangulation \(T \) of a point set \(P \).

Output. A legal triangulation of \(P \).

1. while \(T \) contains an illegal edge
2. do (\(\star \) Flip \(p_i p_j \) \(\star \))
3. Let \(p_i p_j p_k \) and \(p_i p_j p_l \) be the two triangles adjacent to \(p_i p_j \).
4. Remove \(p_i p_j \) from \(T \), and add \(p_k p_l \) instead.
5. return \(T \)

Question: Why does this algorithm terminate?
A **legal triangulation** is a triangulation that does not contain any illegal edge.

Algorithm \textsc{LegalTriangulation}(\mathcal{T})

Input. A triangulation \mathcal{T} of a point set P.

Output. A legal triangulation of P.

1. **while** \mathcal{T} contains an illegal edge \overline{pipj}
2. **do** (* Flip \overline{pipj} *)
3. Let $\overline{pijp_k}$ and $\overline{pijp_l}$ be the two triangles adjacent to \overline{pipj}.
4. Remove \overline{pipj} from \mathcal{T}, and add \overline{pkpl} instead.
5. **return** \mathcal{T}
A **legal triangulation** is a triangulation that does not contain any illegal edge.

Algorithm \textsc{LegalTriangulation}(\mathcal{T})

Input. A triangulation \mathcal{T} of a point set \textit{P}.

Output. A legal triangulation of \textit{P}.

1. \textbf{while} \ \mathcal{T} \ contains an illegal edge \overline{p_ip_j}
2. \textbf{do} \ (* \text{Flip} \overline{p_ip_j} *)
3. \textbf{let} \overline{p_ip_jp_k} \ and \overline{p_ip_jp_l} \ be the two triangles adjacent to \overline{p_ip_j}.
4. \textbf{remove} \overline{p_ip_j} \ from \mathcal{T}, \ and \ add \overline{p_kp_l} \ instead.
5. \textbf{return} \mathcal{T}

Question: Why does this algorithm terminate?
Let P be a set of n sites (points) in the plane.
Let P be a set of n sites (points) in the plane.

The Voronoi cell $V(p)$ for a site $p \in P$ is the set of all points in the plane that have p as nearest site.
Let P be a set of n sites (points) in the plane.

The Voronoi cell $\mathcal{V}(p)$ for a site $p \in P$ is the set of all points in the plane that have p as nearest site.

The Voronoi diagram $\text{Vor}(P)$ is the subdivision of the plane into Voronoi cells $\mathcal{V}(p)$ for all $p \in P$.
Let P be a set of n sites (points) in the plane.

The Voronoi cell $V(p)$ for a site $p \in P$ is the set of all points in the plane that have p as nearest site.

The Voronoi diagram $\text{Vor}(P)$ is the subdivision of the plane into Voronoi cells $V(p)$ for all $p \in P$.

Let G be the dual graph of $\text{Vor}(P)$.
Let P be a set of n sites (points) in the plane.

The Voronoi cell $\mathcal{V}(p)$ for a site $p \in P$ is the set of all points in the plane that have p as nearest site.

The Voronoi diagram $\text{Vor}(P)$ is the subdivision of the plane into Voronoi cells $\mathcal{V}(p)$ for all $p \in P$.

Let \mathcal{G} be the dual graph of $\text{Vor}(P)$.

The Delaunay graph $\mathcal{D}\mathcal{G}(P)$ is the straight line embedding of \mathcal{G}.
Theorem: The Delaunay graph of a planar point set is a plane graph.
If the point set P is in *general position* then the Delaunay graph is a triangulation.
Empty Circle Property

Theorem: Let P be a set of points in the plane, and let \mathcal{T} be a triangulation of P. Then \mathcal{T} is a Delaunay triangulation of P if and only if the circumcircle of any triangle of \mathcal{T} does not contain a point of P in its interior.
Theorem: Let P be a set of points in the plane. A triangulation \mathcal{T} of P is legal if and only if \mathcal{T} is a Delaunay triangulation.
Theorem: Let P be a set of points in the plane. Any angle-optimal triangulation of P is a Delaunay triangulation of P. Furthermore, any Delaunay triangulation of P maximizes the minimum angle over all triangulations of P.
Algorithm DelaunayTriangulation(P)

Input. A set P of n points in the plane.

Output. A Delaunay triangulation of P.

1. Initialize \mathcal{T} as the triangulation consisting of an outer triangle $p_{-2}p_{-1}p_0$ containing points of P.
2. Compute a random permutation p_1, p_2, \ldots, p_n of P.
3. for $r \leftarrow 1$ to n
4. do
5. LOCATE(p_r, \mathcal{T})
6. INSERT(p_r, \mathcal{T})
7. Discard p_0, p_{-1} and p_{-2} with all their incident edges from \mathcal{T}.
8. return \mathcal{T}
p_r lies in the interior of a triangle

pr falls on an edge
Randomized Incremental Construction

\[\text{INSERT}(p_r, T) \]

1. **if** \(p_r \) lies in the interior of the triangle \(p_i p_j p_k \)
2. **then** Add edges from \(p_r \) to the three vertices of \(p_i p_j p_k \), thereby splitting \(p_i p_j p_k \) into three triangles.
3. \text{LEGALIZEEDGE}(p_r, \overline{p_i p_j}, T)
4. \text{LEGALIZEEDGE}(p_r, \overline{p_j p_k}, T)
5. \text{LEGALIZEEDGE}(p_r, \overline{p_k p_i}, T)
6. **else** (* \(p_r \) lies on an edge of \(p_i p_j p_k \), say the edge \(\overline{p_i p_j} \) *)
7. Add edges from \(p_r \) to \(p_k \) and to the third vertex \(p_l \) of the other triangle that is incident to \(\overline{p_i p_j} \), thereby splitting the two triangles incident to \(\overline{p_i p_j} \) into four triangles.
8. \text{LEGALIZEEDGE}(p_r, \overline{p_i p_l}, T)
9. \text{LEGALIZEEDGE}(p_r, \overline{p_i p_j}, T)
10. \text{LEGALIZEEDGE}(p_r, \overline{p_j p_k}, T)
11. \text{LEGALIZEEDGE}(p_r, \overline{p_k p_l}, T)
LEGALIZEEDGE(p_r, \overline{pij}; $\cal T$)

1. (* The point being inserted is p_r, and
 \overline{pij} is the edge of $\cal T$ that may need to
 be flipped. *)

2. if \overline{pij} is illegal

3. then Let $pijp_k$ be the triangle
 adjacent to p_rpij along \overline{pij}.

4. (* Flip \overline{pij}: *) Replace \overline{pij}
 with $\overline{prp_k}$.

5. LEGALIZEEDGE(p_r, \overline{pik}; $\cal T$)

6. LEGALIZEEDGE(p_r, \overline{pkg}; $\cal T$)
Randomized Incremental Construction

All edges created are incident to p_r.
Randomized Incremental Construction

All edges created are incident to p_r.

Correctness: Are new edges legal?
Correctness:
For any new edge there is an empty circle through endpoints. New edges are legal.
Randomized Incremental Construction

Initializing triangulation: treat p_{-1} and p_{-2} symbolically. No actual coordinates. Modify tests for point location and illegal edges to work as if far away.

Point location: search data structure. Point visits triangles of previous triangulations that contain it.
Randomized Incremental Construction

- Split Δ_1
- Flip $p_i p_j$
- Flip $p_i p_k$

Geometric Algorithms Lecture 5: Delaunay Triangulations
1. Expected total number of triangles created in $O(n)$
2. Expected total number of triangles visited while search point location data structure: $O(n \log n)$

We will only consider the first (see book for second)
How many triangles are created?
Lemma: Expected total number of triangles created is at most $9n + 1$.

How many triangles are created when inserting p_r?
Lemma: Expected total number of triangles created is at most $9n + 1$.

- How many triangles are created when inserting p_r?
- Backwards analysis: Any point of p_1, \ldots, p_r has the same probability $1/r$ to be p_r.
Lemma: Expected total number of triangles created is at most $9n + 1$.

- How many triangles are created when inserting p_r?
- Backwards analysis: Any point of p_1, \ldots, p_r has the same probability $1/r$ to be p_r.
- Expected degree of $p_r \leq 6$.
Analysis

Lemma: Expected total number of triangles created is at most $9n + 1$.

- How many triangles are created when inserting p_r?
- Backwards analysis: Any point of p_1, \ldots, p_r has the same probability $1/r$ to be p_r.
- Expected degree of $p_r \leq 6$.
- Number of triangles created $\leq 2\text{degree}(p_r) - 3$ (Why? Count flips.)
Lemma: Expected total number of triangles created is at most $9n + 1$.

- How many triangles are created when inserting p_r?

- Backwards analysis: Any point of p_1, \ldots, p_r has the same probability $1/r$ to be p_r.

- Expected degree of $p_r \leq 6$.

- Number of triangles created $\leq 2\text{degree}(p_r) - 3$
 (Why? Count flips.)

- $2 \cdot 6 - 3 = 9$
Lemma: Expected total number of triangles created is at most $9n + 1$.

- How many triangles are created when inserting p_r?
- Backwards analysis: Any point of p_1, \ldots, p_r has the same probability $1/r$ to be p_r.
- Expected degree of $p_r \leq 6$.
- Number of triangles created $\leq 2\text{degree}(p_r) - 3$ (Why? Count flips.)
- $2 \cdot 6 - 3 = 9$
- + outer triangle
Theorem: The Delaunay triangulation of n points can be computed in $O(n \log n)$ expected time.