Geometric Algorithms

Lecture: Arrangements and Duality
Question: In a set of n points, are there 3 points on a line?
Question: What is the smallest area triangle with vertices from a given set of n points?
Question: For a set of n points compute for each point the angular sequences of the other points?
Question: For a set of n points compute for each point the angular sequences of the other points?

Faster algorithms: use duality and arrangements
Question: Alice and Bob want to share a Pizza Hawaii. Can they cut it by one straight cut such that each slice has half of the pineapple and half of the ham?

Faster algorithms: use duality and arrangements
Duality

\[\ell : y = mx + b \]

\[p = (px, py) \]

Note:

Geometric Algorithms Lecture: Arrangements and Duality
Duality

Primal Plane

\[\ell: y = mx + b \]

- \(p = (p_x, p_y) \)

Dual Plane

\[p^*: y = p_x x - p_y \]

- \(\ell^* = (m, -b) \)

Notes:

- Point \(p = (p_x, p_y) \) maps to line \(p^*: y = p_x x - p_y \)
- Line \(\ell: y = mx + b \) maps to point \(\ell^* = (mx, -b) \)
Duality

primal plane

\[\ell : y = mx + b \]

dual plane

\[p^* : y = p_x x - p_y \]

\[p = (p_x, p_y) \quad \rightarrow \quad \ell^* = (m, -b) \]

Note: self inverse \((p^*)^* = p\), \((\ell^*)^* = \ell\)
Duality

primal plane

\[\ell : y = mx + b \]

- \(p = (p_x, p_y) \)

dual plane

\[p^* : y = p_x x - p_y \]

- \(\ell^* = (m, -b) \)

Point \(p = (p_x, p_y) \) \(
\mapsto\) line \(p^* : y = p_x x - p_y \)

Line \(\ell : y = mx + b \) \(
\mapsto\) point \(\ell^* = (mx, -b) \)

Note: does not handle vertical lines
Duality

primal plane

\[\ell : y = mx + b \]

\[mp_x + b - p_y \]

\[p = (p_x, p_y) \]

dual plane

\[p^* : y = px x - p_y \]

\[pxm - p_y + b \]

\[\ell^* = (m, -b) \]

duality preserves vertical distances
Duality

primal plane

\(\ell : y = mx + b \)

\[mp_x + b - p_y \]

\(p = (p_x, p_y) \)

dual plane

\(p^* : y = p_xx - p_y \)

\[pxm - py + b \]

\(\ell^* = (m, -b) \)

duality preserves vertical distances

\[\Rightarrow \] incidence preserving: \(p \in \ell \) if and only if \(\ell^* \in p^* \)
Duality

primal plane

\[\ell : y = mx + b \]

\[p = (px, py) \]

\[mp_x + b - py \]

duality preserves vertical distances

\[\Rightarrow \text{incidence preserving: } p \in \ell \text{ if and only if } \ell^* \in p^* \]

\[\Rightarrow \text{order preserving: } p \text{ lies above } \ell \text{ if and only if } \ell^* \text{ lies above } p^* \]

dual plane

\[p^* : y = px x - py \]

\[\ell^* \]

\[pxm - py + b \]

\[\ell^* = (m, -b) \]
Duality

can be applied to other objects, e.g. segments

primal plane
can be applied to other objects, e.g. segments

dual of a segment is a double wedge
Duality

A geometric interpretation:

- parabola $\mathcal{U} : y = x^2 / 2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2 / 2)$
- $\Rightarrow p^*$ is tangent line at p
A geometric interpretation:

- parabola $\mathcal{U} : y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- \Rightarrow p^* is tangent line at p
A geometric interpretation:

- parabola \(U : y = x^2 / 2 \)
- point \(p = (p_x, p_y) \) on \(U \)
- derivative of \(U \) at \(p \) is \(p_x \), i.e., \(p^* \) has same slope as tangent line
- tangent line intersects \(y \)-axis at \((0, -p_x^2 / 2)\)
- \(\Rightarrow p^* \) is tangent line at \(p \)
A geometric interpretation:

- parabola $\mathcal{U} : y = x^2 / 2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2 / 2)$

$\Rightarrow p^*$ is tangent line at p
A geometric interpretation:

- parabola $\mathcal{U} : y = x^2/2$
- point $p = (p_x, p_y)$ on \mathcal{U}
- derivative of \mathcal{U} at p is p_x, i.e., p^* has same slope as tangent line
- tangent line intersects y-axis at $(0, -p_x^2/2)$
- $\Rightarrow p^*$ is tangent line at p
Why use Duality?

It gives a new perspective!

E.g. Half-plane intersection

- upper envelope of lines L
- assume ℓ appears as pq
- p and q on or above all lines in L
- p^* and q^* are on or below all points in L^*
- ℓ^* point on lower hull of L^*
- \Rightarrow Compute half-plane intersections in $O(n \log n)$ time
Why use Duality?

It gives a new perspective!

E.g. Half-plane intersection

- upper envelope of lines L
- assume ℓ appears as \overline{pq}
- p and q on or above all lines in L
- p^* and q^* are on or below all points in L^*
- ℓ^* point on lower hull of L^*
- \Rightarrow Compute half-plane intersections in $O(n \log n)$ time
Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point

\[
\begin{align*}
\text{primal plane} & \quad \text{dual plane} \\
\ell & \quad \ell^* \\
p_1 & \quad p_1^* \\
p_2 & \quad p_2^* \\
p_3 & \quad p_3^* \\
p_4 & \quad p_4^*
\end{align*}
\]
Why use Duality?

It gives a new perspective!

E.g. 3 points on a line dualize to 3 lines intersecting in a point

next we use arrangements
Arrangement $\mathcal{A}(L)$: subdivision induced by a set of lines L.

- consists of \textit{faces}, \textit{edges} and \textit{vertices} (some unbounded)
- also arrangements of other geometric objects, e.g., segments, circles, higher-dimensional objects
Arrangement $A(L)$: subdivision induced by a set of lines L.

- consists of *faces*, *edges* and *vertices* (some unbounded)
- also arrangements of other geometric objects, e.g., segments, circles, higher-dimensional objects
Combinatorial Complexity:

- \(\leq n(n - 1)/2 \) vertices
- \(\leq n^2 \) edges
- \(\leq n^2/2 + n/2 + 1 \) faces: add lines incrementally
 \[1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1 \]
- equality holds in simple arrangements
Arrangements of Lines

Combinatorial Complexity:
- $\leq n(n - 1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces:
 - add lines incrementally
 - $1 + \sum_{i=1}^{n} i = n(n + 1)/2 + 1$
- equality holds in simple arrangements
Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n - 1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces:
 add lines incrementally
 $1 + \sum_{i=1}^{n} i = n(n + 1)/2 + 1$

- equality holds in simple arrangements
Arrangements of Lines

Combinatorial Complexity:

- $\leq n(n-1)/2$ vertices
- $\leq n^2$ edges
- $\leq n^2/2 + n/2 + 1$ faces:

 add lines incrementally

 \[1 + \sum_{i=1}^{n} i = n(n+1)/2 + 1 \]

- equality holds in simple arrangements
Arrangements of Lines

Combinatorial Complexity:
- \(\leq n(n - 1)/2 \) vertices
- \(\leq n^2 \) edges
- \(\leq n^2/2 + n/2 + 1 \) faces:
 - add lines incrementally
 - \(1 + \sum_{i=1}^{n} i = n(n + 1)/2 + 1 \)
- equality holds in simple arrangements

Overall \(O(n^2) \) complexity
Goal: Compute $\mathcal{A}(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 $O((n+k)\log n) = O(n^2 \log n)$
- faster: incremental construction
Goal: Compute $A(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 \[O((n + k) \log n) = O(n^2 \log n) \]
- faster: incremental construction
Constructing Arrangements

Goal: Compute $A(L)$ in bounding box in DCEL representation

- plane sweep for line segment intersection:
 \[O((n + k) \log n) = O(n^2 \log n) \]
- faster: incremental construction
Algorithm \textsc{ConstructArrangement}(L)

\textit{Input.} Set L of n lines.
\textit{Output.} DCEL for $A(L)$ in $B(L)$.

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. for $i \leftarrow 1$ to n
4. \hspace{1em} do insert ℓ_i.

\textbf{Introduction} \\
\textbf{Duality} \\
\textbf{Arrangements} \\
\textbf{Incremental Construction} \\
\textbf{Motion Planning} \\
\textbf{k-Levels}
Algorithm `CONSTRUCT_ARRANGEMENT(L)`

Input. A set L of n lines in the plane.

Output. DCEL for subdivision induced by $B(L)$ and the part of $A(L)$ inside $B(L)$, where $B(L)$ is a suitable bounding box.

1. Compute a bounding box $B(L)$ that contains all vertices of $A(L)$ in its interior.
2. Construct DCEL for the subdivision induced by $B(L)$.
3. for $i ← 1$ to n
4. do Find the edge e on $B(L)$ that contains the leftmost intersection point of ℓ_i and A_i.
5. $f ←$ the bounded face incident to e
6. while f is not the unbounded face, that is, the face outside $B(L)$
7. do Split f, and set f to be the next intersected face.
Face split:

\[f \rightarrow \ell_i \]
Algorithm \textsc{ConstructArrangement}(L)

\textit{Input}. Set \(L \) of \(n \) lines.

\textit{Output}. DCEL for \(A(L) \) in \(B(L) \).

1. Compute bounding box \(B(L) \).
2. Construct DCEL for subdivision induced by \(B(L) \).
3. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \)
4. \hspace{1em} \textbf{do} insert \(\ell_i \).
Incremental Construction

Runtime analysis:

1. $O(n^2)$

Algorithm \text{ConstructArrangement}(L)

\text{Input.} \ Set L of n lines.
\text{Output.} \ DCEL for \ A(L) \ in \ B(L).

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. \textbf{for} $i \leftarrow 1$ \textbf{to} n
4. \textbf{do} insert ℓ_i. \

Geometric Algorithms
Lecture: Arrangements and Duality
Incremental Construction

Runtime analysis:

1. $O(n^2)$
2. constant

Algorithm \textsc{ConstructArrangement}(L)

\textit{Input.} Set L of n lines.

\textit{Output.} DCEL for $A(L)$ in $B(L)$.

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. \textbf{for} $i \leftarrow 1$ \textbf{to} n
4. \textbf{do} insert ℓ_i.

Geometric Algorithms Lecture: Arrangements and Duality
Incremental Construction

Runtime analysis:

1. $O(n^2)$
2. constant
3. ?

Algorithm \textsc{constructArrangement}(L)

\textit{Input.} Set L of n lines.

\textit{Output.} DCEL for $A(L)$ in $B(L)$.

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. \textbf{for} $i \leftarrow 1$ \textbf{to} n
4. \textbf{do} insert ℓ_i.
Zone Theorem

The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ.
The zone of a line ℓ in an arrangement $\mathcal{A}(L)$ is the set of faces of $\mathcal{A}(L)$ whose closure intersects ℓ.

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.
Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:
- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on m that this at most $5m$:
 - $m = 1$: trivially true.
 - $m > 1$: only at most 3 new edges if ℓ is unique.
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \).

Proof:

- We can assume \(\ell \) horizontal and no other line horizontal.
- We count number of left-bounding edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true
 - \(m > 1 \): only at most 3 new edges if \(\ell \) is unique,
Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \).

Proof:

- We can assume \(\ell \) horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true
 - \(m > 1 \): only at most 3 new edges if \(\ell_1 \) is unique,
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of \(m \) lines is \(O(m) \).

Proof:

- We can assume \(\ell \) horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on \(m \) that this at most \(5m \):
 - \(m = 1 \): trivially true
 - \(m > 1 \): only at most 3 new edges if \(\ell_1 \) is unique,
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:

- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on m that this at most $5m$:
 - $m = 1$: trivially true
 - $m > 1$: only at most 3 new edges if ℓ_1 is unique,
Zone Theorem

Theorem: The complexity of the zone of a line in an arrangement of m lines is $O(m)$.

Proof:
- We can assume ℓ horizontal and no other line horizontal.
- We count number of *left-bounding* edges.
- We show by induction on m that this at most $5m$:
 - $m = 1$: trivially true
 - $m > 1$: only at most 3 new edges if ℓ_1 is unique, at most 5 if ℓ_1 is not unique.

$$5(m - 1) + 5 = 5m$$
Incremental Construction

Run time analysis:

Algorithm \textsc{ConstructArrangement}(L)

Input. Set \(L \) of \(n \) lines.

Output. DCEL for \(\mathcal{A}(L) \) in \(\mathcal{B}(L) \).

1. Compute bounding box \(\mathcal{B}(L) \).
2. Construct DCEL for subdivision induced by \(\mathcal{B}(L) \).
3. \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(n \)
4. \hspace{1em} \textbf{do} insert \(l_i \).
Algorithm \textsc{ConstructArrangement}(L)

\textit{Input.} Set \(L\) of \(n\) lines.
\textit{Output.} DCEL for \(\mathcal{A}(L)\) in \(\mathcal{B}(L)\).

1. Compute bounding box \(\mathcal{B}(L)\).
2. Construct DCEL for subdivision induced by \(\mathcal{B}(L)\).
3. \textbf{for} \(i \leftarrow 1\) \textbf{to} \(n\)
4. \textbf{do} insert \(l_i\).
Incremental Construction

Run time analysis:

1. $O(n^2)$
2. constant

Algorithm \textsc{ConstructArrangement}(L)

\textit{Input.} Set L of n lines.
\textit{Output.} DCEL for $\mathcal{A}(L)$ in $\mathcal{B}(L)$.

1. Compute bounding box $\mathcal{B}(L)$.
2. Construct DCEL for subdivision induced by $\mathcal{B}(L)$.
3. \texttt{for } $i \leftarrow 1$ \texttt{ to } n
4. \hspace{1em} \texttt{do} insert ℓ_i.
Incremental Construction

Run time analysis:

1. $O(n^2)$
2. constant
3. $\sum_{i=1}^{n} O(i) = O(n^2)$

Algorithm \textsc{ConstructArrangement}(L)

Input. Set L of n lines.
Output. DCEL for $A(L)$ in $B(L)$.

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. for $i \leftarrow 1$ to n
4. \hspace{1em} do insert l_i.
Incremental Construction

Run time analysis:

1. $O(n^2)$
2. constant
3. $\sum_{i=1}^{n} O(i) = O(n^2)$

in total $O(n^2)$

Algorithm $\text{ConstructArrangement}(L)$

Input. Set L of n lines.
Output. DCEL for $A(L)$ in $B(L)$.

1. Compute bounding box $B(L)$.
2. Construct DCEL for subdivision induced by $B(L)$.
3. for $i \leftarrow 1$ to n
4. do insert l_i.
3 Points on a Line

Algorithm:
run incremental construction algorithm for dual problem
stop when 3 lines pass through a point

Run time:
$O(n^2)$
Algorithm:
- run incremental construction algorithm for dual problem
- stop when 3 lines pass through a point

Run time: $O(n^2)$
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a **reference point**: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of **semi-free placements**
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a **reference point**: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of **semi-free placements**
- reachable configurations: cell of initial configuration in arrangement of line segments
Where can the rod move by translation (no rotations) while avoiding obstacles?

- **pick a reference point:** lower end-point of rod
- **shrink rod to a point,** expand obstacles accordingly: locus of **semi-free placements**
- **reachable configurations:** cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a **reference point**: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of **semi-free placements**
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a reference point: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of semi-free placements
- reachable configurations: cell of initial configuration in arrangement of line segments
Example: Motion Planning

Where can the rod move by translation (no rotations) while avoiding obstacles?

- pick a **reference point**: lower end-point of rod
- shrink rod to a point, expand obstacles accordingly: locus of **semi-free placements**
- reachable configurations: cell of initial configuration in arrangement of line segments

What about a moving disc among discs?
The level of a point in an arrangement of lines is the number of lines strictly above it.
k-levels in Arrangements

The **level** of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?
The *level* of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the complexity k-sets in a point set?
The level of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the complexity k-sets in a point set?

Known bounds:
- Erdös et al. ’73: \(\Omega(n \log k) \) and \(O(nk^{1/2}) \)
- Dey ’97: \(O(nk^{1/3}) \)
k-levels in Arrangements

The level of a point in an arrangement of lines is the number of lines strictly above it.

Open problem: What is the complexity of k-levels?

Dual problem: What is the complexity k-sets in a point set?

Known bounds:
- Erdös et al. ’73: $\Omega(n \log k)$ and $O(nk^{1/2})$
- Dey ’97: $O(nk^{1/3})$