Recursion: algebraic approach

Let E be a recursive specification over signature Σ and set of variables V_R.

Furthermore, let A be a Σ-algebra and ι the associated interpretation.

Solution

A solution of E in A is an extension κ of ι with interpretations of the recursion variables in V_R as elements of A such that $A, \kappa \models X = t_X$ for every equation $X = t_X$ in E. If κ is a solution of E and $X \in V_R$, then we shall call $\kappa(X)$ a solution of X in E.

NB: a solution of E in an algebra of transition systems modulo bisimilarity is an assignment of closed terms to recursion variables such that the recursion equations are true up to bisimilarity.

Solutions: examples

1. The recursive specification $E_1 = \{ X = a.1 \}$ has a solution both in $P(BSP(A))/\leftrightarrow$ and in $P(BSP(A)+E_1)/\leftrightarrow$.

2. The recursive specification $E_2 = \{ X = a.X \}$ has a solution in $P(BSP(A)+E_2)/\leftrightarrow$, but not in $P(BSP(A))/\leftrightarrow$.

3. The recursive specification $E_3 = \{ X = X \}$ has many solutions, both in $P(BSP(A))/\leftrightarrow$ and in $P(BSP(A)+E_3)/\leftrightarrow$.

Recursive Definition Principle

RDP

Let Σ be a signature; we say that Σ-algebra A satisfies the Recursive Definition Principle if every recursive specification E over Σ and some set V_R of variables has at least one solution.

Does $P(BSP(A))/\leftrightarrow$ satisfy RDP? No!

Let's construct a model of $BSP(A)$ that does satisfy RDP! (see next slide)
Term model (1)

Denote by Rec the collection of all recursive specifications. We denote by $\text{BSP}_{\text{rec}}(A)$ the extension of $\text{BSP}(A)$ with, for every recursive specification E over $\text{BSP}(A)$ and for every recursion variable X defined in E, a constant symbol $\mu X.E$, which will stand for the transition system assigned to X in the solution of E as defined by the operational semantics.

The term algebra $\mathbb{P}(\text{BSP}_{\text{rec}}(A))$ for $\text{BSP}_{\text{rec}}(A)$ is the algebra

$(\mathcal{C}(\text{BSP}_{\text{rec}}(A)), +, (a)_a A, 0, 1, (\mu X.E)_{E \in \text{Rec}, X \in V(R)}(E))$

Term model (2)

[It is convenient to generalise the notation $\mu X.E$ to arbitrary terms, writing $\mu t.E$ for the term t in the occurrences of recursion variables are interpreted in E (see book for an inductive definition).]

\[a.x \xrightarrow{a} x \quad x + y \xrightarrow{a} x' \]
\[y \xrightarrow{a} y' \]
\[\frac{1}{x} \quad \frac{x + y}{x + y} \]
\[\frac{\mu t.X.E}{\mu X.E} \xrightarrow{t_X} \quad \frac{\mu t.X.E}{\mu X.E} \xrightarrow{t_X} \]

Bisimilarity is a congruence on $\mathbb{P}(\text{BSP}_{\text{rec}}(A))$, and $\mathbb{P}(\text{BSP}_{\text{rec}}(A))/\equiv$ is a model for the equational theory $\text{BSP}(A)$.

Term model (3)

The algebra $\mathbb{P}(\text{BSP}_{\text{rec}}(A))/\equiv$ is generally referred to as the term model for $\text{BSP}(A)$.

Theorem

The term model for $\text{BSP}(A)$ satisfies RDP (notation: $\mathbb{P}(\text{BSP}_{\text{rec}}(A))/\equiv \models \text{RDP}$).

Proof.
Let E be a recursive specification. Define κ as the extension of ι such that, for every recursion variable X in E,

$\kappa(X) = [\mu X.E]_{\equiv}$.

Then $\kappa(X) = \kappa(t_X)$ for every recursion variable X in E (verify!), so κ is indeed a solution of E in $\mathbb{P}(\text{BSP}_{\text{rec}}(A))/\equiv$. □

Example: equivalence of rec. vars.

Consider the recursive specification

\[\{ \begin{array}{l} X = a.X, \\ Y = a.a.Y \end{array} \} \]

Note that we can argue that every solution of X is a solution of Y too:

$X = a.X = a.a.X$.

Hence, any solution κ of E in some algebra A satisfies

$\kappa(X) = \kappa(a.a.X) = \iota(a.)\iota(a.)\kappa(X)$,

so $\kappa(X)$ is a solution of Y in E.
Example: equivalence of rec. vars.

Consider the recursive specification
\[
\begin{align*}
X &= a.X \\
Y &= a.a.Y
\end{align*}
\]

The reasoning on the previous slide allows us to conclude that every solution of \(X \) in whatever algebra (!) must also be a solution of \(Y \) in that algebra.

The converse, however, need not hold:

Exercise: construct a model of \(\text{BSP}(A) \) in which \(Y \) has a solution that is not also a solution of \(X \).

Perhaps if we exclude some models (e.g., the answers to the exercise on the previous slide), then we may be able to say more about the equivalence of \(X \) and \(Y \) in the above recursive specification.

Note that, for models in which \(X \) and \(Y \) both have a unique solution, the reasoning on slide 17 would suffice to conclude that \(X \) and \(Y \) indeed denote the same process!

Guardedness

Definition

An occurrence of a recursion variable \(X \) in a \(\text{BSP}_{\text{rec}}(A) \)-term \(s \) is guarded if it occurs in the scope of an action prefix.

A \(\text{BSP}_{\text{rec}}(A) \)-term \(s \) is completely guarded if all occurrences of all recursion variables in \(s \) are guarded.

A recursive specification \(E \) is completely guarded if all right-hand sides of all equations in \(E \) are completely guarded.

Exercise 5.5.1

Determine whether, in the following terms, the occurrences of the recursion variables \(X \) and \(Y \) are guarded, unguarded, or both:

\[a.X , \quad Y + b.X , \quad b.(X + Y) , \quad a.Y + X \]
Guardedness

Definition
A recursive specification E is guarded if there exists a completely guarded recursive specification F with $\mathcal{V}_R(E) = \mathcal{V}_R(F)$ and $\text{BSP}(A) + E \vdash X = t$ for all $X = t \in F$.

Example
Although the recursive specification $E_2 = \{ X_1 = a.X_1, Y_1 = X_1 \}$ is not completely guarded, it is guarded.

Recursive Specification Principle

RSP
Let Σ be a signature; we say that Σ-algebra A satisfies the Recursive Specification Principle (RSP) if every guarded recursive specification E over Σ and some set \mathcal{V}_R of variables has at most one solution.

Theorem
The term model $\mathcal{P}(\text{BSP}_{\text{rec}}(A))/\equiv$ satisfies RSP (notation: $\mathcal{P}(\text{BSP}_{\text{rec}}(A))/\equiv \models \text{RSP}$).

Proof.
[Postponed.]

RSP as a proof principle

Example
Consider rec. spec. E consisting of the following equations:

\[
\begin{align*}
X &= a.X + b.X, \\
Y &= a.Y + b.Z, \text{ and} \\
Z &= a.Z + b.Y.
\end{align*}
\]

We can prove that $X = Y$ in the context of E as follows:

Define two sequences of terms $\vec{t} = t_X, t_Y, t_Z$ and $\vec{u} = u_X, u_Y, u_Z$ by $t_X \equiv X$, $t_Y \equiv Y$, $t_Z \equiv Z$, and $u_X \equiv X$, $u_Y \equiv X$, $u_Z \equiv X$.

Then both \vec{t} and \vec{u} denote solutions of E (verify!).

Since E is guarded, by RSP, $\vec{t} = \vec{u}$, so $X \equiv u_Y = t_y \equiv Y$.
We extend BSP(A) with unary projection operators π_n ($n \in \mathbb{N}$):

The process $\pi_n(p)$ executes the behaviour of p up to depth n (i.e., it executes the first n actions of p).

Examples

- $\pi_0(a.0 + b.c.1) = 0$;
- $\pi_1(a.0 + b.c.1) = a.0 + b.0$;
- $\pi_n(a.0 + b.c.1) = a.0 + b.c.1$ if $n \geq 2$.

Projection: operational semantics

\[
\begin{align*}
& x \quad a \to x' \\
\pi_{n+1}(x) & \quad a \to \pi_n(x') \\
\pi_n(x) & \downarrow
\end{align*}
\]

Exercise 5.5.8

Prove that for all closed (BSP + PR)$_{rec}(A)$-terms p and q and every $n \in \mathbb{N}$, $\pi_{n+1}(p) \iff \pi_n(q)$ implies $\pi_n(p) \iff \pi_n(q)$.

Projection: axioms

To get the equational theory BSP+PR(A) we extend the equational theory BSP(A) with the following axioms:

- $\pi_n(1) = 1$ PR1
- $\pi_n(0) = 0$ PR2
- $\pi_0(a.x) = 0$ PR3
- $\pi_{n+1}(a.x) = a.\pi_n(x)$ PR4
- $\pi_n(x + y) = \pi_n(x) + \pi_n(y)$ PR5

Exercise 5.5.4

Consider the recursive specification $\{X = a.X + b.c.X\}$. Calculate $\pi_0(X)$, $\pi_1(X)$, and $\pi_2(X)$.

Exercise 5.5.6

Consider the recursive specification $\{X = a.X + b.X\}$. Determine $\pi_n(X)$ for every $n \in \mathbb{N}$.

Approximation Induction Principle

AIP

Let Σ be a signature including projection operators π_n ($n \in \mathbb{N}$); we say that Σ-algebra A satisfies the Approximation Induction Principle (AIP) if, for arbitrary Σ-terms s and t, $A \models \pi_n(s) = \pi_n(t)$ for all $n \in \mathbb{N}$ implies $A \models s = t$.

Example 5.5.18 + Exercise 5.5.5

Consider the recursive specifications $\{X_1 = a.X_1\}$ and $\{X_2 = a.a.X_2\}$. Prove that $\pi_n(X_1) = a^n.0 = \pi_n(X_2)$ for every $n \in \mathbb{N}$, and conclude, using AIP, that $X_1 = X_2$.

(See Notation 4.6.6 on p. 105 of the book for the definition of $a^n.p$.)
Read Sections 4.5–5.5.

Do Exercises 5.5.1, 5.5.2, 5.5.3, 5.5.7, 4.5.1, 4.5.2, 4.5.5, 4.5.6, 5.5.4, 5.5.5, 5.5.6