TCP_{\tau}(A, \gamma): basis

TCP_{\tau}(A, \gamma) includes:
- deadlock (0)
- successful termination (1)
- action prefix (a., a \in A_{\tau})
- choice (+)
- sequential composition (-)

\begin{align*}
x + y &= y + x & \text{A1} \\
(x + y) + z &= x + (y + z) & \text{A2} \\
x + x &= x & \text{A3} \\
(x + y) \cdot z &= x \cdot (y + z) & \text{A4} \\
(x \cdot y) \cdot z &= x \cdot (y \cdot z) & \text{A5} \\
x + 0 &= x & \text{A6} \\
0 \cdot x &= 0 & \text{A7} \\
x \cdot 1 &= x & \text{A8} \\
1 \cdot x &= x & \text{A9} \\
a \cdot x \cdot y &= a \cdot (x \cdot y) & \text{A10}
\end{align*}

TCP_{\tau}(A, \gamma): abstraction

To abstract from internal activity, TCP_{\tau}(A, \gamma) includes unary operations \(\tau_I (I \subseteq A) \).

\begin{align*}
\tau_I(1) &= 1 & \text{TI1} \\
\tau_I(0) &= 0 & \text{TI2} \\
\tau_I(a \cdot x) &= a \cdot \tau_I(x) & \text{if } a \not\in I & \text{TI3} \\
\tau_I(a \cdot x) &= \tau_I(x) & \text{if } a \in I & \text{TI4} \\
\tau_I(x + y) &= \tau_I(x) + \tau_I(y) & \text{TI5}
\end{align*}

The idea that \(\tau \) is considered unobservable is reflected by the axiom for rooted branching bisimilarity:

\[a \cdot (\tau \cdot (x + y) + x) = a \cdot (x + y) \quad \text{B} \]

TCP_{\tau}(A, \gamma): parallelism

TCP_{\tau}(A, \gamma) includes:
- merge (\|)
- left merge (\|)
- comm. merge (\|)

\begin{align*}
x \| y &= x \| y + y \| x + x \| y & \text{M} \\
0 \| x &= 0 & \text{LM1} \\
1 \| x &= 0 & \text{LM2} \\
a \cdot x \| y &= a \cdot (x \| y) & \text{LM3} \\
(x + y) \| z &= x \| z + y \| z & \text{LM4}
\end{align*}

\begin{align*}
0 | x &= 0 & \text{CM1} \\
(x + y) | z &= x | z + y | z & \text{CM2} \\
1 | 1 &= 1 & \text{CM3} \\
a \cdot x | 1 &= 0 & \text{CM4} \\
a \cdot x | b \cdot y &= c \cdot (x \| y) & \text{if } \gamma(a, b) = c & \text{CM5} \\
a \cdot x | b \cdot y &= 0 & \text{if } \gamma(a, b) \text{ is not defined} & \text{CM6}
\end{align*}
TCP\(_\tau(A, \gamma)\): standard concurrency

\[
x \parallel y = y \parallel x \quad \text{SC1}
\]
\[
x \parallel 1 = x \quad \text{SC2}
\]
\[
1 \parallel x + 1 = 1 \quad \text{SC3}
\]
\[
(x \parallel y) \parallel z = x \parallel (y \parallel z) \quad \text{SC4}
\]
\[
(x \parallel y) \parallel z = x \parallel (y \parallel z) \quad \text{SC5}
\]
\[
(x \parallel y) \parallel z = x \parallel (y \parallel z) \quad \text{SC6}
\]
\[
x \parallel \tau.y = x \parallel y \quad \text{SC7}
\]
\[
x \parallel \tau.y = 0 \quad \text{SC10}
\]

Exercise 8.6.4

Derive \(x \parallel (\tau.(y + z) + y) = x \parallel (y + z)\).

Exercise 8.6.3

Derive SC9 and SC10 for closed TCP\(_\tau(A, \gamma)\)-terms.

TCP\(_\tau(A, \gamma)\): encapsulation

Example

Consider the term \(\partial_{\{\tau\}}(a.\tau.1)\).

Then
\[
\partial_{\{\tau\}}(a.\tau.1) = a.\partial_{\{\tau\}}(\tau.1) = a.0
\]

and
\[
\partial_{\{\tau\}}(a.\tau.1) = \partial_{\{\tau\}}(a.1) = a.1
\]

From the above, it follows that
\[
a.1 = \partial_{\{\tau\}}(a.\tau.1) = a.0
\]

Conclusion: we must not allow \(\tau\) to be an element of \(H\) in \(\partial_H\).

TCP\(_\tau(A, \gamma)\): recursion

Exercise

Give two distinct solutions in \(P(BSP_{\tau}(A))/\sim_{rb}\) for \(X\) in \(\{X = \tau.X\}\).

Conclusion: we should not allow \(\tau\) as a guard.

Example

Suppose that \(i \in I\), and consider the recursive specification
\[
X = \tau_I(i.X)
\]

Then, for distinct actions \(a\) and \(b\), \([\tau.a.1] \sim_{rb}\) and \([\tau.b.1] \sim_{rb}\) are both solutions for \(X\) in \(P(BSP_{\tau}(A))/\sim_{rb}\).

Conclusion: we should revise the definition of guardedness.
TCP\(_\tau(A, \gamma)\): recursion

Definition
An occurrence of a variable \(X \) is guarded if and only if it is not in the scope of an abstraction operator and occurs in a subterm of the form \(a.t \) for some \(a \in A \) (so \(a \neq \tau \)) and term \(t \).

Theorem
RDP and RSP are valid in \(\mathbb{P}(TCP_{\tau, rec}(A, \gamma)) \leftrightarrow rb; AIP \) is valid in the extension of \(\mathbb{P}(TCP_{\tau, rec}(A, \gamma)) \leftrightarrow rb \) with projection operators.

TCP\(_\tau(A, \gamma)\): definability and abstraction

We cannot use \(\tau \) in guarded recursive specifications. This does not, however, entirely preclude the use of abstraction.

Definition
A process is (finitely) definable with abstraction over \(TCP_{\tau}(A, \gamma) \) if it is obtained by applying an abstraction operator to a process that is (finitely) definable over \(TCP_{\tau}(A, \gamma) \).

If time permits, at the end of this lecture we will give evidence for the following theorem:

Theorem
Every executable process is definable with abstraction over \(TCP_{\tau}(A, \gamma) \).

[See the book for details]

Queue

Consider the behaviour of a queue over a (finite) set of data \(D \):

\[
\begin{align*}
\text{Queue} & = Q_e, \\
Q_e & = 1 + \sum_{d \in D} i?d.Q_d, \\
Q_{\sigma d} & = o!d.Q_{\sigma} + \sum_{e \in D} i?e.Q_{\sigma e d} \quad (d \in D, \ \sigma \in D^*) .
\end{align*}
\]

The behaviour of a queue is not finitely definable in BSP\((A)\), TSP\((A)\) and BCP\((A, \gamma)\).

Theorem
The behaviour of a queue is
1. finitely definable in \(TCP\(A, \gamma\)\) using an unbounded communication function;
2. finitely definable with abstraction in \(TCP_{\tau}(A, \gamma)\).

Alternating-Bit Protocol

High-level requirements
- Sender \(S \) receives data along its input port \(i \), and is supposed to transmit these data through an unreliable channel to receiver \(R \).
- The channel may corrupt data, but the assumption is that this can be recognised (e.g., by means of a checksum).
- If data is not correctly transmitted, it should be sent again.
Alternating-Bit Protocol

Implementation details

- To inform S of correct transmission of a datum, R sends acknowledgement.
- If S receives a correct acknowledgement, it sends the next datum; if S receives a corrupted acknowledgement, it sends the current datum.
- But how does R know whether it receives a new datum or a datum that is re-sent?
- Solution: transmit data with appended alternating bit.

The unreliable channels

$$K = 1 + \sum_{x \in F} sk?x.(t.kr!x.K + t.kr!⊥.K)$$
$$L = 1 + \sum_{n \in \{0,1\}} rl?n.(t.ls!n.L + t.ls!⊥.L)$$

The sender

$$S = 1 + S_0 \cdot S_1 \cdot S$$
$$S_n = 1 + \sum_{d \in D} i?d.Sdn \quad (n \in \{0,1\})$$
$$S_{dn} = sk!dn.T_{dn} \quad (d \in D, \ n \in \{0,1\})$$
$$T_{dn} = ls?(1-n).S_{dn} + ls?⊥.S_{dn} + ls?n.1 \quad (d \in D, \ n \in \{0,1\})$$

The receiver

$$R = 1 + R_1 \cdot R_0 \cdot R$$
$$R_n = 1 + kr?⊥.r!n.R_n + \sum_{d \in D} kr?dn.r!n.R_n +$$
$$\sum_{d \in D} kr?d(1-n).o!d.r!(1-n).1 \quad (n \in \{0,1\})$$
Alternating-Bit Protocol

The behaviour of the protocol is now specified as

\[\partial_H(S \parallel K \parallel L \parallel R) , \]

with

\[H = \{ p?x, p!x \mid x \in F \cup \{0, 1, \perp\}, \ p \in \{ sk, kr, rl, ls \} \} \]

and

\[\gamma(p?x, x!) = \gamma(p!x, p?x) = p\overline{x} \]

for all \(x \in F \cup \{0, 1, \perp\} \) and \(p \in \{ sk, kr, rl, ls \} \), and undefined otherwise.

Alternating-Bit Protocol (verification)

Theorem

The Alternating-Bit Protocol is a correct communication protocol, i.e.,

\[(\text{TCP}_r + \text{HA})_{\text{rec}} + \text{CFAR}^b + \text{RSP}(A, \gamma) \vdash \tau_I(\partial_H(S \parallel K \parallel L \parallel R)) = \text{Buf1}_{io} . \]

where \(\gamma(p?x, x!) = \gamma(p!x, p?x) = p\overline{x} \) for all \(x \in F \cup \{0, 1, \perp\} \) and \(p \in \{ sk, kr, rl, ls \} \), and undefined otherwise, and

\[H = \{ p?x, p!x \mid x \in F \cup \{0, 1, \perp\}, \ p \in \{ sk, kr, rl, ls \} \} , \quad \text{and} \]

\[I = \{ p\overline{x} \mid x \in F \cup \{0, 1, \perp\}, \ p \in \{ sk, kr, rl, ls \} \} . \]

[Only CFAR^b has not been discussed in this course.]

Reactive Turing Machines (definition)

A: set of actions (intuitively, \(a \in A \) denotes an observable event);
\(\tau \): a special action (\(\not\in A \)) denoting unobservable event.

Definition

A reactive Turing machine (RTM) is a classical Turing machine with an additional action from \(A \cup \{\tau\} \) associated with every transition.

So, RTMs have two types of transitions:

\[s \xrightarrow{a[d/e]M} t : \text{externally observable as the execution of action } a; \]

\[s \xrightarrow{\tau[d/e]M} t : \text{not externally observable (internal computation step).} \]

RTMs (formal definition)

\(A_r \): a finite set of actions, including \(\tau \)
\(D_\square \): a finite set of tape symbols, including \(\square \)

Definition

An RTM is a quadruple \(M = (S, \rightarrow, \uparrow, \downarrow) \), with \(S \) a finite set of states,
\(\uparrow \in S \) a distinguished initial state, \(\downarrow \subseteq S \) a set of distinguished final states and

\[\rightarrow \subseteq S \times D_\square \times A_r \times D_\square \times \{ L, R \} \times S . \]
Operational Semantics of RTMs

A configuration of an RTM M is a pair of a state of M and a description of tape contents.

Definition

With every RTM M we associate a labeled transition system $T(M)$ that represents its behaviour:

- the states of $T(M)$ are the configurations of M;
- the initial state of $T(M)$ is the configuration of M consisting of the initial state of M and the empty tape;
- the transitions of $T(M)$ are determined by the transitions of M and are labeled with actions in $A \cup \{\tau\}$;
- the terminating states of $T(M)$ are those configurations of M involving a terminating state of M.

Example: transition system of RTM

Executability and Behavioural Equivalence

A transition system is called executable if it is behaviourally equivalent to the transition system of an RTM.

As behavioural equivalence we shall use

rooted branching bisimilarity

(the finest equivalence in van Glabbeek's linear time - branching time spectrum of behavioural equivalences.)

Expressiveness result

A transition system is computable if there exists computable function that associates with every state its set of outgoing transitions, and determines if the state is final or not.

Theorem

Every computable transition system is executable (i.e., rooted branching bisimilar to a transition system associated with an RTM).

For details see:

[BLT13] Jos Baeten, Bas Luttik, and Paul van Tilburg. Reactive Turing Machines. Information and Computation 231:244–166, 2013. (The paper is not part of the course material.)
TCP_\tau(A, \gamma) and executability

To prove that every executable transition system is finitely definable with abstraction in TCP_\tau(A, \gamma), it suffices to show that RTMs can be simulated in TCP_\tau(A, \gamma) up to rooted branching bisimilarity.

Let M = (S, \to, \uparrow, \downarrow).

We will specify the behaviour of the finite control and the behaviour of the tape memory separately, abstracting from the (enforced) communication between Control and Tape:

Goal: define Control and Tape such that

\[T(M) \cong_{rb} \tau_1(\partial_H(Control \parallel Tape)) \]

Tape

A infinite specification of Tape:

\[Tape = T_\parallel \]
\[T_{\lambda\rho} = r!d.T_{\lambda\rho} + \sum_{e \in D_\square} w?e.T_{\lambda\rho} + m?L.T_{\lambda\rho} + m?R.T_{\lambda\rho} \]

To get a finite specification of Tape, we use the (finitely definable) process Queue as follows:

\[Q_{\rho\bot\lambda} \]

(See [BLT13] for the specification.)

Control

Tape interface

\begin{align*}
\text{w!e} & : \text{write e at the position of the tape head} \\
\text{m!M} & : \text{instruct the tape head to move in direction M} \\
\text{r?f} & : \text{read the symbol at the position of the tape head}
\end{align*}

Finite control

\[Control = C_{\uparrow, \square} \]
\[C_{s,d} = \sum_{s \in [d,e]_M} \left(a.w!e.m!M. \sum_{f \in D_\square} r?f.C_{t,f} \right) [+1]_{s\downarrow} \]

Homework for Thursday

Read Section 7.7, 7.8, 8.6, 8.8, 8.9

Do Exercises 7.8.1, 8.6.1, 8.6.2, 8.6.3, 8.6.4, 8.8.1, 8.8.2