
Exercises 2IN60.3

Today we will gain experience with running programs on the Freescale EVB9S12XF512E
board and the µC-OS-II real-time operating system.

3.1 Running a program on the board

In this exercise you will run your project from last week’s Exercise 2.3 on the phys-
ical board. It is important that you follow these steps in the given order, to prevent
damaging the board!

1. Make sure the switch SW4 is in STAND ALONE mode.

2. Connect the light sensor to the board, as indicated in Figure 1. Make sure to
attach:

• GND wire on the sensor to ground on pin TP1 on the board

• +5V wire on the sensor to +5V on pin TP5 on the board

• AIN wire on the sensor to pin PAD14 on the board

Double-check with your partner that the wires are correctly connected, to prevent
destroying the board!

3. Connect the programmer to the board making sure that the cable is facing
outwards.

4. Connect the programmer to your computer via a USB port.

5. Connect the board to the power.

6. In the CodeWarrior window select the the P&E USB BDB Multilink target.

7. Build and run the project. You will notice that a very similar debugger window
appears to when you ran the program in the simulator.

8. Start the program.

9. Observe the leds to verify that your program works.

If you are experiencing problems with your code, or if you want to verify that it is
working correctly, you can run the project in the exercise2 3 solution directory.

Important
I. Do not disconnect the board from power while the

programmer is updating the code on the board!
II. Always disconnect the board from power before

connecting or disconnecting the light sensor!
III. Always disconnect the board from power before

connecting or disconnecting the USB connector!
IV. Do not touch the components on the board!
V. When disconnecting the board, make sure to follow

steps 2 to 5 in reverse order!

1



Figure 1: Connecting the light sensor to the EVB9S12XF512E board.

2



3.2 Dealing with preemption

In this exercise you will get acquainted with the µC-OS-II real-time operating system.
We will be using µC-OS-II more often during the upcoming weeks. The CodeWarrior
project for this exercise is in the directory exercise3 2.

1. You can register a periodic task with the OSTaskCreatePeriodic() function
declared in os periodic task.h. It takes five arguments:

• function is a pointer to the task function which specifies the work to be
done by a job of the task,

• period is the task period,

• offset is the task phasing (or offset),

• ptos is the beginning of the task’s stack (stack will be discussed later during
the course, in these exercises the ptos argument will be given),

• prio is the task priority.

2. The main.c file contains two tasks. Register these tasks with the fol-
lowing parameters:

Phasing Period Function Priority
1ms 500ms Task1 Task1Prio

0ms 500ms Task2 Task2Prio

3. Before running the program, take a look at the implementation of
the two tasks, and write down how you expect the leds to behave.
Motivate your answer.

4. Run the program on the board and verify your prediction in the previous step.

5. Explain the problem with the current setup and propose a solution.

Hint: take a look at the implementation of the ATDReadChannel() function,
and keep in mind that a conversion from analog to digital (as implemented by
ATDReadChannel()) takes longer than one tick.

Note: In this exercise the period and phasing task parameters are fixed and
cannot be modified.

6. Implement your solution and copy the relevant code into your report.

7. Run the program on the board and verify your solution.

8. Measure the execution time of ATDReadChannel().

9. What are the consequences of having critical sections? Describe one
example where a critical section may result in undesired behavior.
Hint: think how a critical section in a lower priority task may impact a higher
priority task.

3


	Running a program on the board
	Dealing with preemption

