Introduction to Data Mining

Instructors: Mykola Pechenizkiy & Sami Äyrämö
Contact: mpechen@cs.jyu.fi samiayr@mit.jyu.fi
Mailing list: ties443@korppi.jyu.fi
Course webpage: http://www.cs.jyu.fi/~mpechen/TIES443

November 1 – December 12, 2006
Department of Mathematical Information Technology
University of Jyväskylä

Objectives of the Course

• Provide basic introduction into key areas such as
 – OLAP (that stands for On Line Analytical Processing) Design,
 – Data Warehousing (DW), and
 – Data Mining (DM)
• Provide an overview of most common tasks and application areas of DM
 – Prediction and knowledge discovery
• Provide an overview of most common techniques used in DM
 – Building and evaluating predictive and descriptive models
• Ensure that students of the course will gain the necessary background and skills
 – to turn available data into valuable and useful information
Course overview

• Lectures 15*2 = 30 hours
 - Wed 8:15 – 10:00, Thu 12:15 – 14:00, Fri 10:15 – 12:00
 - all in Ag Beeta
 - Nov 17, 12.00 – 14.00 Sami’s public examination of PhD (after the lecture)

• Tutorial followed by an assignment 5*2 = 10 hours
 - Tue 14.15 – 16.00, Ag B212.2 (Mountains),
 - but week 50: Wed 8:15 – 10:00

• Seminar 2 hours
 - Ag B212.2 (Mountains)
 - 5-10 min presentation by each student about the final assignment

• Final assignment (no final exam)
 - to be sent to mpechen@cs.jyu.fi and samiayr@mit.jyu.fi by the end of Jan’07 (always use TIES443 keyword in the subject field)

Credits, Passing the Course/Grading

• Credits
 - 5 ECTS (3 ov),

• Grading
 - Five assignments + final assignment = 5*5 + 3*5 = 40 points as max
 - 1-2 pages report for each of five assignments should be submitted by e-mail to mpechen@cs.jyu.fi and samiayr@mit.jyu.fi within a week of the day of the assignment
 - Report on final assignment should be submitted by the end of Jan’07
 - I will tell you more during the first lab

• Communication outside the classes
 - ties443@korppi.jyu.fi
 - Appointment by sending a request to mpechen@cs.jyu.fi or samiayr@mit.jyu.fi
Course Contents: BI & DW Part

- **Introduction to introduction:**
 - Basic definitions
 - DM and KDD
 - History of DM
 - Motivation for DM, reference disciplines, DM community
 - Major DM tasks and application
 - Prediction, knowledge discovery
 - Major issues in DM
- **Introduction to Business Intelligence**
 - DM in BI context
 - DM myths, OLAP vs DM
- **Introduction to Data Warehousing**
 - DW architecture, design, implementation
 - Data cubes, OLAP operations

Course Contents: DM Part

- **DM: Input and Output**
 - Input: Concepts, instances, attributes
 - What is a concept, an example an attribute?
 - Output: Knowledge Representation
 - Decision tables, trees, and rules; relations, CBR

- **DM: Techniques**
 - Data preparation
 - Cleaning, missing values; transformation, Curse of dimensionality
 - Clustering, Classification, Associations, Visualization
 - The largest part of the course

- **DM: Evaluation and Credibility**
 - Predicting Performance
 - Train, test, and validation sets, cross-validation; unbalanced data
 - Comparing Data Mining Schemes
 - ROC; cost-sensitive learning; Occam’s razor; parameters tuning

- **DM: KDD process**
 - Iterative, interactive

- **DM: Miscellaneous issues**
 - Privacy, ethics, distributed DM
Course Contents: Tutorials

- Prototyping DM techniques and solutions
 - WEKA and YALE open-source software
 - MATLAB environment
- Mining time-series data
 - Review of basic techniques
- Mining image data
 - Review of basic techniques
- Mining text data
 - Review of basic techniques
 - ExtMiner (Miika Nurminen)
- An assignment will follow each tutorial
 - Application of DM to benchmark/real world data

Resources

- Data Mining: A Practitioner’s Approach, ELCA Informatique SA, 2001
- CRISP-DM 1.0: Step-by-step data mining guide, SPSS Inc.
- Check TIES443 homepage for more. It will be updated regularly
More on DM and KDD

KDnuggets.com

- News, Publications
- Software, Solutions
- Courses, Meetings, Education
- Publications, Websites, Datasets
- Companies, Jobs
- ...

Special Acknowledgments

for many adopted/adapted ppt slides used in the lectures:

- Piatetski-Shapiro (KDnuggets)
- Witten & Frank’s book
- Eamon Keogh http://www.cs.ucr.edu/~eamonn/
- Han’s DM book http://www.cs.sfu.ca/~han/dmbook
- and many many DM-related courses available in www
Topics for this week

- Introduction to the DM field:
 - definitions, motivation, brief history
 - DM tasks and application examples
- Business Intelligence
 - DM in BI context
 - DM myths, OLAP vs DM
- Data Warehousing (DW)
 - DW architecture, design, implementation
 - Data cubes, OLAP operations

Topics for today

- What is Data Mining?
 - Basic definitions
 - DM and KDD
 - History of DM
 - Motivation for DM, reference disciplines, DM community
 - Major DM tasks and application
 - Prediction, knowledge discovery
 - Major issues in DM
What Is Data Mining?

- Data mining (knowledge discovery in databases):
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) information or patterns from data in large databases (Fayyad)
 - the process of selecting, exploring, and modeling large amounts of data to uncover previously unknown patterns for a business advantage (SAS Institute)
 - Data mining is an area in the intersection of machine learning, statistics, and databases. (Holsheimer et al.)

- Alternative names and their “inside stories”:
 - Data mining: a misnomer?
 - Knowledge discovery (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

- What is not data mining?
 - (Deductive) query processing.
 - Expert systems or small ML/statistical programs

Data Mining in the BI Context

- Data Mining is a business-driven process, supported by adequate tools, aimed at the discovery and consistent use of meaningful, profitable knowledge from corporate data
- A kind of operationalization of Machine Learning with emphasis on process and actions

- Hand (2000), *Data Mining is the process of seeking interesting or valuable information in large data bases*
- Large commercial data bases could be used to increase profitability by pinpointing target classes of clients and pointing clients toward desirable options.
- The result – large data mining programs sold by SAS, SPSS, etc.
Motivation for DM

Motivation: “Necessity is the Mother of Invention”

• Data explosion problem
 - Automated data collection tools and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories

• We are drowning in data, but starving for knowledge!

• Solution: Data warehousing and data mining
 - Data warehousing and on-line analytical processing
 - Extraction of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases
Trends leading to Data Flood

- More data is generated:
 - Bank, telecom, other business transactions ...
 - Scientific data: astronomy, biology, etc
 - Web, text, and e-commerce

Big Data Examples

- Europe’s Very Long Baseline Interferometry (VLBI) has 16 telescopes, each of which produces 1 Gigabit/second of astronomical data over a 25-day observation session
 - storage and analysis a big problem
- AT&T handles billions of calls per day
 - so much data, it cannot be all stored -- analysis has to be done “on the fly”, on streaming data
Largest databases in 2003

- Commercial databases:
 - Winter Corp. 2003 Survey: France Telecom has largest decision-support DB, ~30TB; AT&T ~ 26 TB
- Web
 - Alexa internet archive: 7 years of data, 500 TB
 - Google searches 4+ Billion pages, many hundreds TB
 - Internet Archive (www.archive.org), ~ 300 TB

Growth Trends

- Moore’s law
 - computer speed doubles every 18 months
- Storage law
 - total storage doubles every 9 months
 - exabytes (million terabytes) of new data are created every year
 - huge DBs (telecom, AT&T, astronomy, …)
- Consequence
 - very little data will ever be looked at by a human
 - data flood / information overload
- DM/KDD is needed to make sense and use of data.
Largest Database Data-Mined (June 2006)

Poll

<table>
<thead>
<tr>
<th>Database Size</th>
<th>Votes</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 1 MB</td>
<td>5</td>
<td>3%</td>
</tr>
<tr>
<td>1.1 to 10 MB</td>
<td>11</td>
<td>3%</td>
</tr>
<tr>
<td>11 to 100 MB</td>
<td>27</td>
<td>15%</td>
</tr>
<tr>
<td>101 MB to 1 GB</td>
<td>22</td>
<td>12%</td>
</tr>
<tr>
<td>1.1 to 10 GB</td>
<td>45</td>
<td>25%</td>
</tr>
<tr>
<td>11 to 100 GB</td>
<td>22</td>
<td>12%</td>
</tr>
<tr>
<td>101 GB to 1 Terabyte</td>
<td>28</td>
<td>15%</td>
</tr>
<tr>
<td>over 1 Terabyte</td>
<td>21</td>
<td>12%</td>
</tr>
</tbody>
</table>

"Data miners are tackling much larger databases in 2006. The median value for the largest database size is between 1.1 and 10 Gigabytes, and 12% report mining terabyte size databases."

http://www.kdnuggets.com/polls/2006/largest_database_mined.htm

Data Mining: Reference Disciplines
Brief History of Time …

Brief History

• 1800 Statistics starts
• Benjamin Disraeli, later quoted by Mark Twain, said, “There are three kinds of lies: lies, damned lies, and statistics.”
 – And now comes … Data Mining

• 1985 machine learning starts
• 1990 data mining starts
False Positives in Astronomy

Many great discoveries were due to Professor McDowell's shortsightedness.

Evolution of Database Technology

- **1960s:**
 - Data collection, database creation, IMS and network DBMS
- **1970s:**
 - Relational data model, relational DBMS implementation
- **1980s:**
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.) and application-oriented DBMS (spatial, scientific, engineering, etc.)
- **1990s—2000s:**
 - Data mining and data warehousing, multimedia databases, and Web databases
Many Names of Data Mining

- Data Fishing, Data Dredging: 1960-
 - used by Statistician (as bad name)
- Data Mining :1990 --
 - used DB, business
 - in 2003 – bad image because of TIA
- Knowledge Discovery in Databases (1989-)
 - used by AI, Machine Learning Community
- also Data Archaeology, Information Harvesting,
 Information Discovery, Knowledge Extraction, ...

Currently: Data Mining and Knowledge Discovery are used interchangeably

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on KDD (Piatetsky-Shapiro)
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on KDD
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- 1998 ACM SIGKDD, SIGKDD’1999-2001 conferences, and SIGKDD Explorations
- More conferences on data mining
 - PAKDD, PKDD, SIAM-Data Mining, (IEEE) ICDM, etc.
Statistics vs. Machine Learning

- **Answering different questions**
 - Inside nature associates the predictor variables with the response variables
- **Statistics**
 - Infer the mechanism of the inside of the box.
- **Machine Learning**
 - Find $f(x)$ that is a good predictor of the outputs y.
 - Don't worry about the inside of the box.
 - Look at what's outside—the inputs and outputs.
 - The function $f(x)$ is an algorithm—lines of code that direct the computer how to operate on x to produce $f(x)$.

A common goal—construct accurate prediction algorithms.

Statistics, Machine Learning and Data Mining

- **Statistics:**
 - more theory-based
 - more focused on testing hypotheses
- **Machine learning**
 - more heuristic
 - focused on improving performance of a learning agent
 - also looks at real-time learning and robotics—areas not part of data mining
- **Data Mining and Knowledge Discovery**
 - integrates theory and heuristics
 - focus on the entire process of knowledge discovery, including data cleaning, learning, and integration and visualization of results
- **Distinctions are fuzzy**
Potential Data Mining Applications

Data Mining Application Areas

• Science
 – astronomy, bioinformatics, drug discovery, …

• Business
 – advertising, CRM (Customer Relationship management), investments, manufacturing, sports/entertainment, telecom, e-Commerce, targeted marketing, health care, …

• Web:
 – search engines, bots, …

• Government
 – law enforcement, profiling tax cheaters, anti-terror
Assessing Credit Risk

- **Situation:**
 - Person applies for a loan

- **Task:**
 - Should a bank approve the loan?
 - Note: People who have the best credit don’t need the loans, and people with worst credit are not likely to repay. Bank’s best customers are in the middle

- **DM solution:**
 - Banks develop credit models using variety of machine learning methods.
 - Mortgage and credit card proliferation are the results of being able to successfully predict if a person is likely to default on a loan

- **Widely deployed in many countries**

e-Commerce

- A person buys a book (product) at Amazon.com.

- **Task:** Recommend other books (products) this person is likely to buy

- Amazon does clustering based on books bought:
 - customers who bought “Advances in Knowledge Discovery and Data Mining”, also bought “Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations”

- **Recommendation program is quite successful**
Link Analysis

Can find unusual patterns in the network structure

Discovering interdependencies

s=smoker
x=sex
a=age
h=health
r= resistance
d=live/death

What influences what and to which extent?
Bayesian networks produce graphical models of knowledge
Microarray (an example)

Graphical Representation of Microarray Data
Biology: Molecular Diagnostics

- 38 training cases, 34 test, ~ 7,000 genes
- 2 Classes: Acute Lymphoblastic Leukemia (ALL) vs Acute Myeloid Leukemia (AML)
- Use train data to build diagnostic model

\[
\begin{align*}
\text{ALL} & \quad & \text{AML} \\
\end{align*}
\]

Results on test data:
33/34 correct, 1 error may be mislabeled

Security and Fraud Detection

- Credit Card Fraud Detection
- Money laundering
 - FAIS (US Treasury)
- Securities Fraud
 - NASDAQ Sonar system
- Phone fraud
 - AT&T, Bell Atlantic, British Telecom/MCI
- Bio-terrorism detection at Salt Lake Olympics 2002
Fraud Detection and Management

• Detecting inappropriate medical treatment
 - Australian Health Insurance Commission identifies that in many cases blanket screening tests were requested (save Australian $1m/yr).

• Detecting telephone fraud
 - Telephone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm.
 - British Telecom identified discrete groups of callers with frequent intra-group calls, especially mobile phones, and broke a multimillion dollar fraud.

• Retail
 - Analysts estimate that 38% of retail shrink is due to dishonest employees.

Other Applications

• Sports
 - IBM Advanced Scout analyzed NBA game statistics (shots blocked, assists, and fouls) to gain competitive advantage for New York Knicks and Miami Heat

• Astronomy
 - JPL and the Palomar Observatory discovered 22 quasars with the help of data mining

• Internet Web Surf-Aid
 - IBM Surf-Aid applies data mining algorithms to Web access logs for market-related pages to discover customer preference and behavior pages, analyzing effectiveness of Web marketing, improving Web site organization, etc.
Problems Suitable for Data-Mining

- require knowledge-based decisions
- have a changing environment
- have sub-optimal current methods
- have accessible, sufficient, and relevant data
- provides high payoff for the right decisions!

Privacy considerations important if personal data is involved

Examples of Problems Suitable for DM: Summary

- Medical diagnosis: soft or hard contact lenses
- Credit application scoring: grant a loan or not?
- Fraud detection: is the transaction suspicious or not?
- Direct mailing: who should be offered a given product?
- CPU-performance: how to configure computers?
- Remote sensing: determine water pollution from spectral images
- Load forecasting: predict future demand for electric power
- Intelligent ATM’s: how much cash will be there tomorrow?
- identify groups of similar credit card users
- automatically organize incoming e-mails
- characterize interests of an Internet user
Knowledge Discovery Process

Integration

Data Mining

Patterns and Rules

Interpretation & Evaluation

Knowledge

Understanding

Raw Data

Transformation

Selection & Cleaning

Target Data

Transformed Data

Knowledge Discovery Process

Data Warehouse

Data Mining

Patterns and Rules

Interpretation & Evaluation

Knowledge

Understanding

Raw Data

Selection & Cleaning

Target Data

Transformed Data

Integration

Knowledge Discovery Process

Data Warehouse

Data Mining

Patterns and Rules

Interpretation & Evaluation

Knowledge

Understanding

Raw Data

Selection & Cleaning

Target Data

Transformed Data

Integration

CRISP-DM

see www.crisp-dm.org for more information
Data Mining: On What Kind of Data?

- Relational databases
- Data warehouses
- Transactional databases
- Advanced DB and information repositories
 - Object-oriented and object-relational databases
 - Spatial databases
 - Time-series data and temporal data
 - Text databases and multimedia databases
 - Heterogeneous and legacy databases
 - WWW

Major DM Tasks
Major Data Mining Tasks

- Classification: predicting an item class
- Clustering: finding clusters in data
- Associations: e.g., A & B & C occur frequently
- Visualization: to facilitate human discovery
- Estimation: predicting a continuous value
- Outlier analysis
- Deviation Detection: finding changes
- Link Analysis: finding relationships
- Sequential pattern mining, periodicity analysis
- …

Interestingness of “Discovered” Patterns

- A DM system/query may generate thousands of patterns, not all of them are interesting.
 - Suggested approach: Human-centered, query-based, focused mining

- **Interestingness measures:**
 - A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm

- **Objective vs. subjective interestingness measures:**
 - **Objective:** based on statistics and structures of patterns, e.g., support, confidence, etc.
 - **Subjective:** based on user’s belief in the data, e.g., unexpectedness, novelty, actionability, etc.
Finding All and Only Interesting Patterns

- Find all the interesting patterns: Completeness
 - Can a data mining system find all the interesting patterns?
 - Association vs. classification vs. clustering
- Search for only interesting patterns: Optimization
 - Can a data mining system find only the interesting patterns?
 - Approaches
 - First general all the patterns and then filter out the uninteresting ones.
 - Generate only the interesting patterns—mining query optimization

DM Facets

- Databases to be mined
 - Relational, transactional, object-oriented, object-relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW, etc.
- Knowledge to be mined
 - Characterization, discrimination, association, classification, clustering, trend, deviation and outlier analysis, etc.
 - Multiple/integrated functions and mining at multiple levels
- Techniques utilized
 - Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, neural network, etc.
- Applications adapted
 - Retail, telecommunication, banking, fraud analysis, DNA mining, stock market analysis, Web mining, Weblog analysis, etc.
Major Issues in Data Mining (1)

- **Mining methodology and user interaction**
 - Mining different kinds of knowledge in databases
 - Interactive mining of knowledge at multiple levels of abstraction
 - Incorporation of background knowledge
 - Data mining query languages and ad-hoc data mining
 - Expression and visualization of data mining results
 - Handling noise and incomplete data
 - Pattern evaluation: the interestingness problem

- **Performance and scalability**
 - Efficiency and scalability of data mining algorithms
 - Parallel, distributed and incremental mining methods

Major Issues in Data Mining (2)

- **Issues relating to the diversity of data types**
 - Handling relational and complex types of data
 - Mining information from heterogeneous databases and global information systems (WWW)

- **Issues related to applications and social impacts**
 - Application of discovered knowledge
 - Domain-specific data mining tools
 - Intelligent query answering
 - Process control and decision making
 - Integration of the discovered knowledge with existing knowledge: A knowledge fusion problem
 - Protection of data security, integrity, and privacy
Summary

- Data mining: discovering interesting patterns from large amounts of data
- A natural evolution of database technology, statistics and AI, - in great demand, with wide applications
- DM is a process
- Mining can be performed in a variety of information repositories
- DM functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
- Classification of data mining systems
- Major issues in data mining

What should you get from this lecture?

- Course contents
 - BI & DW part
 - DM part
 - Tutorials and assignments
 - Seminar and final assignment
- Idea of what DM is
 - Motivation
 - Where DM can be used
 - Major tasks and applications
 - Reference disciplines
 - Distinctive characteristics of DM
 - DM facets and major issues
- What did you remember?