Exercises Evolution Equations (2WA13) 2014-5, Week 1

Let X, Y, Z be Banach spaces.

1. Prove Lemma 1.2 in the notes.

2. Prove that
 \begin{enumerate}
 \item Bounded linear operators $(A, D(A)) : X \rightarrow Y$ are closable with $D(\overline{A}) = \overline{D(A)}$.
 \item In particular, bounded operators are closed if and only if their domain of definition is closed.
 \end{enumerate}

3. Let $(A, D(A)) : X \rightarrow Y$ be a closed injective linear operator. Show that A^{-1} is closed.

4. Let $(A, D(A)) : X \rightarrow Y$ be a linear operator. Assume that for any sequence (x_n) in $D(A)$ that satisfies $x_n \rightarrow 0$ in X and $Ax_n \rightarrow y$ in Y, we have $y = 0$. Show that A is closable.

5. Let $(A, D(A)) : X \rightarrow Y$ be a closed linear operator and $B \in \mathcal{L}(X, Y)$. Show that $(A + B, D(A))$ is closed.

6. Let $(A, D(A)) : L^2(\mathbb{R}) \rightarrow \mathbb{R}$ be given by
 \[
 D(A) = C_0^\infty(\mathbb{R}), \quad Af = f(0)
 \]
 (in the sense of the continuous representative). Show that A is not closable.