MRI course

Variational and Topological Methods for PDEs

Exercises 2

1. Consider the problem in \mathbb{R},

$$
a x=\sin x,
$$

with $a>0$. Note that $x=0$ is a solution of this problem; but for the sake of the argument we now assume that we don't already know this.
a) Apply each of the fixed-point theorems of Schauder I, Schauder II, and Schäfer to the question of existence.
b) For which a can you apply the Banach fixed-point theorem? Can you show that this range is sharp?
2. In this exercise we study the differential equation

$$
-u^{\prime \prime}+u=f \quad \text { on }(0,1)
$$

with boundary data

$$
u(0)=u(1)=0,
$$

and $f \in L^{2}(0,1)$.
a) By integrating the equation twice and applying partial integration, one can convert the differential equation into an integral equation of the form

$$
u(x)=\int_{0}^{1} k(x, y)(u(y)-f(y)) d y
$$

b) Show that the operator

$$
T: L^{2}(0,1) \rightarrow L^{2}(0,1)
$$

given by

$$
T(u)(x):=\int_{0}^{1} k(x, y)(u(y)-f(y)) d y
$$

is continuous and compact.
c) Show that there exists a solution of the differential equation.

