MRI course Variational and Topological Methods for PDEs

Exercises 4

- **1.** Show that weak (i.e. $\sigma(X, X')$) limits are unique.
- 2. Do exercise 8.6.1 of Evans.
- **3.** Give an example of a sequence of functions $u_n : (0, 1) \rightarrow \mathbb{R}$ such that
 - $u_n \rightharpoonup u$ in $L^2(0, 1)$
 - $u_n^2 \rightarrow v \text{ in } L^1(0,1)$

and $v \neq u^2$.

4. Prove the following statement (known as the weak-strong convergence property):

If *H* is a Hilbert space, and $x_n \rightarrow x$, $y_n \rightarrow y$ in *H*, then $(x_n, y_n) \rightarrow (x, y)$.

- **5.** Generalize the previous statement to the duality $\langle \cdot, \cdot \rangle$ between *X* and *X*'. Think carefully about the roles of *X* and *X*'.
- **6.** Apply the previous result to $L^{p}(\Omega)$ and $L^{p'}(\Omega)$, where 1/p + 1/p' = 1. Which values of *p* can you deal with in this way?
- 7. Prove the following statement:

If *X* and *Y* are two Banach spaces, and $T : X \to Y$ is a compact bounded linear operator, then *T* converts weakly converging sequences into strongly converging sequences, i.e, $T(x_n) \to T(x)$ whenever $x_n \to x$ in $\sigma(X, X')$.

You might want to use the result of the next exercise.

8. (Tricky) Use the Banach-Steinhaus and Hahn-Banach theorems to prove the following property:

If $x_n \rightarrow x$ in $\sigma(X, X')$, then the set $\{x_n\}_n$ is bounded in X.