MasterMath course

Variational and Topological Methods for PDEs

Exercises 7

1. Does direct minimisation (in H_0^1 say) work for (watch the signs)

$$I(u) = \int_{U} \frac{1}{2} |\nabla u|^2 - \frac{1}{4} u^4 \quad ?$$

Why (not)?

2. Does direct minimisation (in H_0^1 say) work for (watch the signs)

$$I(u) = \int_{U} -\frac{1}{2} |\nabla u|^{2} + \frac{1}{4} u^{4} \quad ?$$

Why (not)?

3. Prove uniqueness of the minimiser (if it exists) of

$$\int_U \frac{1}{q} |\nabla u|^q + F(u),$$

where F is convex and q > 1.

- 4. Let *H* be a Hilbert space and $J : H \to \mathbb{R}$ is defined by $J(u) = \frac{1}{2} ||u||_{H}^{2}$. Show that J is C^{1} and calculate the derivative.
- 5. If $J: E \to \mathbb{R}$ is strictly convex, then J has at most one critical point. Why?
- 6. Exercise 8.6.10 from Evans. Additionally, show that you can in this way in fact find a solution with $u \ge 0$. [Use that if $u \in W^{1,2}(U)$, then $|u| \in W^{1,2}(U)$ and ||u|| = |||u|||.]
- 7. Exercise 8.6.11 from Evans.