MasterMath course

Variational and Topological Methods for PDEs

Exercises 9

1. We are going to discuss billiards. For our purposes a billiard is a bounded, strictly convex set in the plane with a smooth boundary. The idea is that a frictionless ball is bouncing around in this set. The orbits are sequences of line segments where each two successive segments share a point on the boundary, and at this points the two segments make the same angle with the tangent to the boundary (angle of incidence equals angle of reflection). Let $s \in S^{1}$ parametrize the boundary, i.e., the points on the boundary are given by $p(s)=(x(s), y(s)) \in \mathbb{R}^{2}$. One may take $\left|\frac{d p}{d s}\right|=1$: arc-length parametrization.

Let $H\left(s, s^{\prime}\right)$ be defined as the distance in \mathbb{R}^{2} between the points $p(s)$ and $p\left(s^{\prime}\right)$.
(a) Show that the line segments $p(s)$ to $p\left(s^{\prime}\right)$ and $p\left(s^{\prime}\right)$ to $p\left(s^{\prime \prime}\right)$ are part of an orbit if and only if

$$
\frac{\partial}{\partial s^{\prime}} H\left(s, s^{\prime}\right)+\frac{\partial}{\partial s^{\prime}} H\left(s^{\prime}, s^{\prime \prime}\right)=0
$$

(b) An n-periodic orbit is a closed orbit on the billiard with n boundary points. Show that the variational formulation of the problem of finding n-periodic orbits is finding critical points of

$$
H_{n}=\sum_{k=1}^{n} H\left(s_{k}, s_{k+1}\right)
$$

where $s_{n+1} \equiv s_{1}$.
(c) Let us look at 2-periodic orbits, represented by $\left(s_{1}, s_{2}\right)$. Show that there exists a 2-periodic orbit corresponding to a maximum of H_{2}.
(d) Argue that there are in fact two maxima. Then use the mountain pass theorem to obtain a different 2-periodic orbit.
(e) What can you say, using variational methods, about 3-periodic orbits?

There are more exercises on the next page!
2. Prove the following deformation lemma for critical levels. Let $F \in C^{1}(E, \mathbb{R})$ [or, to avoid technicalities, $F \in C^{1}(H, \mathbb{R})$ having Lipschitz derivative on bounded sets (with H Hilbert)] satisfy the Palais-Smale condition. Let K_{β} be the critical points at level β. Prove that for any neighborhood N of K_{β} and arbitrarily small ε there is a deformation $\Phi \in C([0,1] \times E, E)$ such that
(a) $\Phi(0, u)=u$ for all $u \in E$
(b) $\Phi(t, u)=u$ for all t if $F(u) \neq[\beta-2 \varepsilon, \beta+2 \varepsilon]$ or if $d F(u)=0$
(c) $\Phi(1, u) \in F^{\beta-\varepsilon}$ for $u \in F^{\beta+\varepsilon}-N$
(d) $\Phi(1, u) \in F^{\beta-\varepsilon} \cup N$ for $u \in F^{\beta+\varepsilon}$
(e) $F(\Phi(t, u))$ is non-increasing in t for any $u \in E$
(f) $\Phi(t, \cdot)$ is a homeomorphism from E to E for every $t \in[0,1]$.
3. Prove the following. Let $F \in C^{1}(E, \mathbb{R})$ satisfy the Palais-Smale condition. Suppose 0 is a local minimizer of F with $F(0)=0$, and suppose that F admits a second local minimizer $u_{1} \neq 0$. Then
(a) either there exists a critical point u of F which is not of minimum type; or
(b) the origin and u_{1} can be connected by a path in any neighborhood of the set of local minimizers u of F with $F(u)=0$. Necessarily then $\beta=F\left(u_{1}\right)=F(0)=0$, where

$$
\beta=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} F(\gamma(t)),
$$

and Γ is the usual space of continuous paths connecting 0 to u_{1}.
4. Prove the following. Let $F \in C^{1}(E, \mathbb{R})$ satisfy the Palais-Smale condition. Suppose F has two local minima (or maxima), then F possesses a third critical point.

