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Abstract 

 

Crowds pose an interesting example of a complex system in which emergent behaviour is 

observed out of the interaction of many individual agents. This behaviour can be very 

important in the safe design of sports and other stadia, especially in the case of possible 

emergency situations. For this reason crowd dynamics is of great interest to architects. 

The purpose of this project is to review the current literature on crowd dynamics and to 

look at some simulations of different types of crowd behaviour in certain specific 

situations namely: the meeting of two crowds in a ’scramble crossing’, the motion of a 

crowd though an exit and the response of a crowd to an emergency (such as a fire). The 

student will implement a differential equation model of the crowd crossing problem. In 

particular, they will study the emergent behaviour that arises in the scramble crossing 

problem and see how this depends on various parameters relating to the individual actions 

of the members of the crowd. 
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Chapter 1 

Introduction 
 

The design and planning of large pedestrian areas has become increasingly important in 

recent times with the vast number of facilities having to cope with large volumes of 

pedestrian traffic. Notable examples of such buildings are airports, shopping centres, 

night clubs and sports stadia which have become larger and more commonplace in recent 

times. One of the key considerations in the architecture of these situations is the 

behaviour of the people that use them, in particular their reaction in panic situations.  

With the prevalence of these types of structures and tragic events which have resulted in 

the massive loss of life, the modelling, simulation and understanding of pedestrian 

movement in emergency egress situations is a necessity.  

 

In many instances the fatalities and injuries in emergency evacuations were not caused by 

the hazard leading to the need for egress but the actions of the crowd itself. Stampedes 

are caused both by real hazards, such as fire, but also the behaviour of the crowd, perhaps 

in forcing its way out of a stadium. The most obvious example of such a situation is the 

Hillsborough disaster, when on April 15
th

, 1989; ninety-six Liverpool FC fans lost their 

lives resulting in the conversion of many football stadiums in the United Kingdom to all-

seater and the removal of barriers at the front of stands. 
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The key aim of this thesis is to explore the current theories and models relating to 

pedestrian flows and implement two of these schemes. There is a massive breadth of 

literature relating to such models which have been developed over the last forty years. 

The model this thesis will focus on and implement is the Social Force Model which was 

developed D. Helbing and P. Molnár[1],[2].  

 

The ultimate aim of this is to explore the emergent behaviour of pedestrian systems, 

particularly in the case of a scramble crossing and the expected striping effects. Other 

models will be discussed and outlined in some detail to highlight the variety of theories 

suggested to simulate pedestrian dynamics. The scheme proposed by V. J. Blue and J. L. 

Adler, their Cellular Automata[3] model, will be explored in some detail as initially it 

was intended that this model also be implemented in the MSc project. 
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Chapter 2 

An Overview of Models for the Simulation of Pedestrian 

Dynamics  

 

The simulation of pedestrian movement has being explored in a variety of ways. In this 

chapter the aim will be to provide an outline of the most prominent of these models along 

with an exposition of the governing equations of each scheme. In general these models 

describe the forces each pedestrian feels; treating each pedestrian as a particle in a larger 

system and using Newton’s Second Law to evaluate position, velocity and acceleration. 

A numerical solver then can be used over a discrete timestep providing a velocity and 

position update. One of the key differences between pedestrian traffic models and other 

roadway-based traffic systems is that pedestrian locations are not restricted to a single 

dimension. Whilst many of the models are initially based on vehicle traffic systems, these 

are only one dimensional models and unlike pedestrian movement subject to a number of 

laws and restrictions governing traffic. Pedestrian movement is inherently more 

changeable than that of vehicles, as unlike vehicle flow which is controlled by well 

defined lane markings with lane change and passing opportunities restricted, there are no 

such restrictions on pedestrian walkways. Pedestrian interaction is also markedly 

different to that of cars since safety concerns are much less, clearly pedestrians can 

actually touch each other without incident, which is certainly not true of moving vehicles. 

Also pedestrians often move in pair or clusters, such as couples or family groups, whilst 

such attractive influences are rare in vehicle traffic. This leads to interactions between 

people that have to be considered in any model, examples of which are bumping into 
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each other, exchange of places or bypass when pedestrian density is high as opposed to 

sidestepping which would be analogous to the behaviour of a car. The velocity and 

acceleration characteristics of pedestrians are also very different, with each pedestrian 

having their own desired and maximum speeds. They are also able to accelerate to full 

speed from standstill almost immediately and can change speed more rapidly allowing 

them to take advantage of gaps in traffic when they arise.  

2.1 Pedestrian Modelling approaches 

Pedestrian flow models can be classified in different ways depending upon how the 

scheme treats the pedestrians and the level of detail of the models. These classifications 

are: 

1. Microscopic models, which consider individual pedestrian behaviour separately. 

The pedestrian behaviour in these models is often described by their interactions 

with other pedestrians in the system. 

2. Mesoscopic models, which do not consider each pedestrian individually but the 

overriding characteristics, such as velocity distributions. The pedestrian behaviour 

is described microscopically though not specifically but rather in terms of velocity 

distributions. 

3. Macroscopic models, which do not make distinctions between individual 

pedestrians nor describe their individual behaviour but consider the flow in terms 

of density, average velocity and flow patterns. 

 

As previously discussed, the main focus of this thesis will be on the Social Force Model 

and Cellular Automata which are both examples of microscopic models. Whilst these are 
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computationally demanding, both the individual and emergent group behaviour of 

pedestrians is of interest. 

2.2 The Gas-Kinetic Model of Pedestrian Flows 

This model was first suggested by L. F. Henderson[4], who treats large pedestrian crowds 

like molecules in a dilute gas. Whilst there are some seemingly random fluctuations in the 

movements of people in large crowds, the fact that each individual has a mass and 

velocity suggests that the classical Maxwell-Boltzmann statistics could be used to 

describe the motion of a crowd using a density function ( ), ,f x v t
� �

. Henderson only 

applies the Maxwell-Boltzmann equations to the so called gaseous phase. This is when 

the crowd is moving and has a low particle density, defined as the number of persons per 

unit area. If this is small then each individual is assumed to be able to move at their 

desired speed. However the model becomes problematic when boundary interactions 

occur and particle density increases, for example at a doorway. This is described as a 

phase transformation to a densely packed crowd liquid phase. To describe the crowd gas 

several assumptions are made, firstly that movement takes place on a continuous plane 

and that at time t each of the N pedestrians has a position (x,y) and velocity (Vx,Vy). 

Secondly the crowd is considered to be homogeneous, that is each particle will have the 

same mass and probability of velocity components. This homogeneity is analogous to 

chemical purity in molecular systems, although Henderson suggests that this 

homogeneity may not be a fair assumption due to what he describes as sexual 

inhomogeneity, the idea that men and women behave differently in crowds. This 

nonuniformity may extend beyond gender and also be attributed to other social and 

environmental factors such, as the age of each pedestrian. The next assumption is that the 
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particles are independent of each other in position and velocity components with position 

and velocity of the individual pedestrian being uncorrelated. Finally, the crowd is 

assumed to be in equilibrium and that it can be treated as a statistical ensemble of any 

individual. The Maxwell-Boltzmann equations for the described assumptions are as 

follows, with the probability density function P(Vx), for a single fluctuating velocity 

component, Vx, is 

 ( )
2

2

. .. .

1 1 1
exp

22

xv x
x

x r m sr m s

dN V
P V

N dV vvπ

� �
≡ = −� �

� �
 (2.2.1) 

Where . .r m s
v is the standard deviation of the speed v V≡ . The expression for Vy is 

analogous and can be combined to get the resultant velocity, V 

 ( )
2

2 2

. . . .

1 1 1
exp

2 2

V

r m s r m s

dN V
P V

N dV v vπ

� �
≡ = −� �

� �
 (2.2.2) 

With the probability density function for speed 

 ( )
2 2

. .2 2

1
exp  with / 2

4 4

v
r m s

dN v v
P V v v

N dv v v

π π
π

� �
≡ = − =� �

� �
 (2.2.3) 

These functions can be extended to situations where there may be a superimposed flux 

upon the system, for instance a crowd moving along a corridor. (2.2.1) Is shifted in this 

case with a new velocity component 
x x x

V V V′ ≡ −  

 ( )
2

2

. .. .

1 1 1
exp

22

xV x
x

x r m sr m s

dN V
P V

N dV vvπ

′ � �′
′ ≡ = −� �

′ � �
 (2.2.4) 

With analogous treatment of (2.2.2) and (2.2.3). 

 

Clearly this is a somewhat simplistic view of pedestrian dynamics, but it is the starting 

point for S. Hoogendoorn and P. H. L. Bovy’s formulation [5]. In the simplest case where 
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there is no distinction between pedestrian types, the gas-kinetic equations represent 

describe the dynamics of the generalised phase-space density ( ), , ,t x v wρ ρ= defined 

by ( ) ( ), , | ,r t x f v w t x . Here ( ),r t x is a multidimensional density which reflects the 

expected number of traffic entities per unit volume at ( ),t x , with ( ), | ,f v w t x the joint 

probability density function of the velocity v and continuous attributes w which reflects 

characteristics of traffic flow and its constituent entities such as desired velocity. The gas-

kinetic equation in n dimensions is 

 ( )

( )

( )

( )

( )

( )
( ) ( )

. . .

IV V
I II III

x v w

event cond

v A B
t t t

ρ ρ ρ
ρ ρ ρ

∂ ∂ ∂� � � �
+ ∇ + ∇ + ∇ = +� � � �

∂ ∂ ∂� � � �

����� �����
����� ����� �����

 (2.2.5) 

This equation shows how the phase-space density changes, with term (I) being 

convection, (II) acceleration, (III) the adaptation of continuous attributes, (IV) event 

based noncontinuum processes and (V) the condition-based noncontinuum processes. The 

so-called pedestrian phase-space density (P-PSD – this is consistent with Hoogendoorn’s 

notation) ( ), , ,t x v wρ  conforms to the setup laid out in the introduction to this chapter, 

that is it is a two dimensional system to describe the pedestrian flow where each 

pedestrian may have different velocity, desired velocity and acceleration considerations. 

With this in mind, pedestrian density ( ),r x is defined to be the expected number of 

pedestrians per unit area.  

 

In (2.2.5) terms (I) – (III) are the continuum processes, that is they are smooth and 

describe the change in the spatial distribution of the pedestrians (in terms of density). 

They represent continuous changes in the independent variables ,  ,  x v w . Terms (IV) and 
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(V) describe the noncontinuum processes of pedestrian interaction – Hoogendoorn calls 

this a stimulus-response mechanism: “an event causes a remedial manoeuvre of the 

impeded pedestrian” and as such aren’t continuous but occur when pedestrians engage 

with each other. The current research omits terms (III) and (V). The resulting equation to 

describe the P-PSD is 

 ( ) ( )

( )

( ) ( )

( ) ( )

1 2 1 2

1 2 1 2

IV
I II

event event

v v A A
t x x v v t t

ρ ρ ρ
ρ ρ ρ ρ

+ −
∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �

+ + + + = +� � � �
∂ ∂ ∂ ∂ ∂ ∂ ∂� � � �

������������������ ���������

 (2.2.6) 

With 1 2 and A A describing the acceleration laws of the system and the terms in (IV) 

describing noncontinuum events which increase or decrease the phase-space density 

respectively.  Hoogendoorn and Bovy describe in detail the derivation of each term, 

however it is sufficient for this thesis to describe the model in general without detailing 

specifics.  

 

One area of interest in the derivation however is the role of transition probabilities in the 

pedestrian interactions, as these probabilities describe how the pedestrian’s direct 

environment affects their behaviour. Three types of pedestrian interaction are 

distinguished, which correspond to the stimulus-response mechanisms: 

1. One-sided interaction – where pedestrian p catches up to a slower moving 

pedestrian q. Here p is held up by q but the converse isn’t true. 

2. Two-sided interaction – where two pedestrian travelling in opposite directions 

meet head on and hold each other up. 
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3. Passive interaction – this is the same as 1 except the pedestrian being considered 

is the one being caught up and so will not take any action as their progress is 

unimpeded. 

Transition probabilities are then used to describe the expected behaviour of each 

pedestrian in the system in one of the three interactions described.  

 

The model also touches on factors that are relevant in several models, particularly the 

pedestrian’s spatial requirements and different classes of pedestrian. The Gas-Kinetic 

model traditionally assumes that the particles in the system are infinitesimally small, this 

however is not necessarily a valid assumption for modelling pedestrian flows since the 

amount of space each pedestrian occupies is of dominant importance. The pedestrian 

classification is the same problem Henderson touched on, in that gender, age or other 

demographic characteristics may affect the behaviour of individuals in the system.  

 

Hoogendoorn and Bovy then solve the formulated problem using the Monte Carlo 

method in a variety of simple cases such as unidirectional, bidirectional and crossing 

pedestrian flows. Their results are reasonable and reproduce the expected velocity-density 

relations qualitatively. 

2.3 The Magnetic Force Model 

The next model was developed by S. Okazaki and S. Matsushita[6] and as the title 

suggests treats the pedestrians within the system as charged objects within the resulting 

magnetic field. Each pedestrian in the system is given a positive charge and destinations 

such as doorways or service counters a negative charge. Clearly the attractive nature of 
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opposite magnetic charges results in the pedestrians moving towards these destination 

points. This magnetic effect also means that pedestrians exert a repulsive force upon each 

other which physically corresponds to them avoiding collisions with each other and 

objects such as boundaries. 

 

Once the room has been setup, it is inputted as a series of vertexes described in the 

Cartesian coordinates. With the destination details configured the model then requires a 

detailed amount of input data to produce realistic results before the simulation can be 

started. The required data is the desired destination, initial position, initial velocity, the 

pedestrian orientation, time that the pedestrian starts walking and their method of walk. 

This final input is the most interesting as the simulation can implement a wayfinding 

technique where the pedestrians will follow a sequence of points (corners in the case of 

this simulator) until they have an unobstructed route, that is no boundaries in their path, 

to their desired destination. Another point of interest in this model is the velocity input, 

which is a maximum velocity. This is simply because if there were no upper bound on the 

velocity the pedestrians would accelerate without limit according to Coulomb’s Law. 

 

Since the pedestrians are treated as magnetic objects, the appropriate force law is 

Coulomb’s Law 

 1 2

2

.1

4

Q Q
F

sπε
=  (2.3.1) 

1 2 and Q Q  are the signed values for the magnetic charge of the objects they represent, s is 

the distance between the two particles and k, the so called Coulomb constant, is the 

constant term 1
4πε . If 1Q represents a positively charged pedestrian, a, say and 2Q a 
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negatively charged pole representing the desired destination. Since a two dimensional 

setup is being considered the force is a vector quantity resulting in the following form of 

Coulomb’s Law 

 1 2

3

.
ˆ. .

Q Q
F k

s
= s  (2.3.2) 

Here ŝ is the unit vector pointing from 1 2 to Q Q . If the charges have the same sign, as in a 

pedestrian-pedestrian interaction, then the resulting force is positive which corresponds to 

a repulsive interaction. Conversely if the signs are different, in the case of a pedestrian-

destination interaction, there is a negative force and so an attractive force is felt which 

leads to the particle accelerating towards the destination. When more than two charges 

are present in the system the forces are superimposed, that is the force between any pair is 

the sum of all the exerted forces from the component charges.  

 

The model also incorporates another force which acts upon the pedestrians in order to 

simulate the collision avoidance characteristics of the crowd. If two pedestrians come 

within a certain distance of each other then the new force is exerted upon the pedestrians. 

That is, if a, intersects within a specific area of another pedestrian then a feels the 

following repulsive force and resulting acceleration to cause a change of direction and 

thus preventing a collision. This acceleration is represented by 

 tan .cos .a
a

dv
v

dt
β α=  (2.3.3) 

Where 
a

v is the velocity of pedestrian a, β is the angle between the relative velocity (RV) 

of a to pedestrian b and the contacting line from the position of pedestrian a to the circle 

around pedestrian b. This circle is the “Pedestrian Area Module” which is equivalent to 
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the “Territorial Sphere” in Helbing’s Social Force Model [1]. Finally α is the angle 

between relative velocity of pedestrian a (RV) to the pedestrian b and the velocity of 

pedestrian a.  

 

Figure 1: Acceleration force A acting on a to avoid collision with b 

 

This model was used to simulate to simulate an escape from fire on one floor of an office 

building, to plot the movement of pedestrians in part of an underground railway station 

and pedestrian flows in a hotel lobby. The model can be used to evaluate how long an 

emergency escape might take, the behaviour of pedestrians in queuing situations – that is 

the number in each queue, the length of their wait and movement processes. 

 2.4 Queuing Systems 

Queuing theory, which is generally considered to be a branch of operations research, 

describes pedestrian flows in terms of probability functions. The pedestrian will arrive at 

A 
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a given node, which represents a server, with a certain probability. They will then spend a 

certain amount of time being served, at a shop till for example, and then continue on to 

their next destination, leaving the queue. A queuing system is comprised of three 

elements, the pedestrian’s arrival in the queue, the service mechanism and the service 

discipline. A queuing discipline determines the manner in which the exchange handles 

calls from customers. Examples are  

• First In, First Out – This principle states that customers are served one at a time 

and that the customer that has been waiting longest is served first 

• Last In First Out – This principle also serves customers one at a time, however 

the customer with the shortest waiting time will be served first 

• Processor Sharing – Customers are served equally. Network capacity is shared 

between customers and they all effectively experience the same delay 

Queuing is handled by control processes within exchanges, which can be modelled using 

state equations. Queuing systems use Markov Chains which model the system in each 

state where Incoming traffic to these systems is modelled via a Poisson distribution. The 

stochastic process in a queuing system is the population of a particular room.  

 

The first model to be discussed was formulated by S. J. Yuhaski, Jr and J. Macgregor 

Smith[7] which develops a state dependent queuing model for the congestion effects of 

movement through circulation systems of a building. Circulation systems are, in this case, 

the pathways of movement such as corridors, stairways and ramps. The problem they 

describe is that of crowded pedestrian flows in confined spaces and the paper describes 

the following as “crucial aspects to movement Systems” 
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1. The service rate of the movements system decays with increasing traffic 

2. The amount of available space within the movement system is finite 

These characteristics are the basis for the construction of their model and their aim to 

“best capture the congestion effects”. The first step is to generate a representation for the 

facility; this is its floor plan. This can be represented by a planar graph ( ),G V E′ ′ ′  (this is 

consistent with their notation) and so the queuing network is the Dual Graph ofG′ . There 

are then two distinct types of spatial entity which must be distinguished, that is the 

activity network and the circulation network. So V is partitioned into two sets { },V A S= . 

The set { }1 2, ,..., NA A A A=  is the set of activity nodes which represent so called “activity 

areas”, say a department of a shop. The set { }1 2, ,..., MS S S S=  then is the circulation 

nodes which are the movement pathways joining activity areas.  

 

Figure 2: Planar Graph ( ),G V E′ ′ ′ and dual graph ( ),G V E  



 

15 

One feature of modelling pedestrian facilities is that transitions within a network are not 

virtually instantaneous as in other systems (telephone networks for example) and so the 

set S is required. Vertices from this set represent additional nodes within a facility which 

handle the flow of pedestrians from  to 
i k

A A without interrupting service.  

 

The model makes the following assumptions; firstly that there are J customer classes, 

which wish to use the facility, drawn from an infinite population and each class has K 

generating sources. Then the average arrival rate of type j per unit time from source k is 

( )1,2,... ; 1,2,...jk j J k Kλ = = . The next assumption is that each pedestrian of type jk will 

follow a deterministic routing vector through the facility, called a “customer chain”. This 

vector has elements ( )1,2,...
jkl jk

r l L= where the lth element represents the destination of 

the pedestrian to the next resource after they have been served at their previous 

destination. So, customers of the type jk enter a system of queues in independent Poisson 

streams at a rate 
jk

λ and follow a sequence of queues before leaving the facility. A 

Poisson stream of arrivals corresponds to arrivals at random. In a Poisson stream 

successive customers arrive after intervals which are independently exponentially 

distributed. 

 

The next stage is to model a single corridor as a queuing system. The corridor is given a 

maximum capacity of C = [5LW] where L is the corridor length and W the width. It is 

then assumed that pedestrians enter the corridor with the behaviour of a Poisson stream of 

rate λ , and the time each person occupies the corridor is exponentially distributed with 

rate 
n

µ . Thus, there is a state dependent service rate, meaning it is a function of the 
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number of pedestrians in the corridor. The model now uses the Chapman-Kolmogorov 

steady-state difference equations for the state probabilities 1 2, ,...,
c

p p p  

 0 1 1
0

1 2

...

...

n
n

n

p p
λ λ λ

µ µ µ
−=  (2.4.1) 

Such that 

 0 1 1

10 1 2

...1
1

...

C
n

n n
p

λ λ λ

µ µ µ
−

=

� �
= + 	 


� �

  (2.4.2) 

Here the arrival rates are not influenced by the number in the queue so 

0 1 ...
C

λ λ λ λ= = = = . The paper suggests two congestion models with approximate 

overall walking-speed 
n

V , firstly the linear relation 

 ( )
1.5

1
n

V C n
C

= + −  (2.4.3) 

Or the exponential relation, which may be more accurate, is 

 
1

expn

n
V A

γ

β

� �� �−
= −	 
� �

� �	 
� �
 (2.4.4) 

A is the amplitude with parameters  and β γ are called the scale and shape parameters. In 

both models the service rate
n

r , is the average of the inverse of the time it takes for the 

pedestrians to travel the length of the corridor 

 n
n

V
r

L
=  (2.4.5) 

With overall service rate 

 
n n

nrµ =  (2.4.6) 

The overall service rate for the linear model then becomes 
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 ( )
1.5

1
n

C n
C

µ = + −  (2.4.7) 

Then the Chapman-Kolmogorov equations become 

 

( )
0

1

1

n
n n n

i

p p
A

C i i
LC

λ

=

=
� �

− +� �
� �

∏
 (2.4.8) 

And 

 

( )10

1

1
1

1

nC

n
n

i

k

p
C i i=

=

= +

− +



∏
 (2.4.9) 

With  n LC
A

k λ= . Similarly the Chapman-Kolmogorov equations for the exponential model 

are 
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 (2.4.11) 

Another notable Queuing Model is the one developed by Løvas[8] introduced a similar 

stochastic model where pedestrians can be modeled in a queuing network. This model is 

setup similarly where Nodes in the network represent rooms and links the doors. Each 

pedestrian will then select a new node with a given probability. The model can evaluate 

several performance measures such as the mean number of persons in a node and the 

mean number of safe evacuees. Løvas has developed a tool called EVACSIM which has 
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simulated egress in several different setups. The system visualizes the movement of the 

pedestrians and provides qualitative information about behaviour at bottlenecks in the 

queuing systems.  

2.5 Cellular Automata 

A cellular automaton is a discrete model studied in computability theory, mathematics, 

and theoretical biology. It consists of a regular grid of cells, each in one of a finite 

number of states. Time is discretised and the state of a cell at time t is a function of the 

states of a finite number of cells (called its neighbourhood) at time t − 1. These 

neighbours are a selection of cells relative to the specified cell, and do not change 

(though the cell itself may be in its neighbourhood, it is not usually considered a 

neighbour). Every cell has the same rule for updating, based on the values in this 

neighbourhood. Each time the rules are applied to the whole grid a new generation is 

created. The Cellular Automata method can be used to simulate pedestrian flow. It is fast 

and relatively simple, with the walkway represented by a cellular grid. In this 

representation each cell within the grid is occupied by one pedestrian. The pedestrian 

flow is modelled by a set of governing rules which differ according to the particular 

model being considered.  

 

The most notable Cellular Automata model is the one developed by V. J. Blue and J. L. 

Adler ([3],[9]) which models the walkway as a circular lattice (closed loop) with width 

W, length G and class L = WG. Each cell within the lattice is assigned a label 

( ),L i j with1  and 1i W j G≤ ≤ ≤ ≤ . The density of pedestrians on the walkway is 

determined at the start of the simulation and remains constant throughout. The 
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Microsimulation continues in discrete timesteps  for 1,2,...,
i

t i T= . The lane assignments 

and speed updates change the position of all the pedestrians within the lattice in four 

stages determined by the local rules which are applied to each individual on the walkway. 

The stages are 

1. A set of lane change rules determining the lane for each pedestrian on the lattice 

2. The pedestrians are moved in to the assigned lanes 

3. A set of rules is applied to find the allowable speed of each pedestrian based on 

the available gap ahead and the pedestrians desired speed 

4. Forward movements based on the allowed speeds are made 

The rule sets for each stage are 

Lane Change (parallel update 1 – stages 1 and 2) 

1) Eliminate conflicts: If two walkers are adjacent then they cannot sidestep into each 

other 

a) If a cell is available between two walkers then assign it to one of then with a 

50/50 split 

 

2) Identify gaps: The lane (same or left/right adjacent) is chosen which best advances 

forward movement upto v_max according to the gap computation subprocedure that 

follows the step forward update 

 

a) For Dynamic Multiple Lanes (DML): 

i) Step out of lane if a walker in the opposite direction is within 8 cells by 

assigning gap = 0 

ii) Step behind a pedestrian moving in the same direction when avoiding a 

collision with an oncoming walker by choosing any available lane with 

gap_same = 1 when gap = 1 

 

b) Ties of equal maximum gaps ahead are resolved according to: 

i) If the 2-way tie is between adjacent lanes then a 50/50 split between which 

lane is chosen 

ii) If the 2-way tie is between the current and an adjacent lane then the walker 

stays in lane 

iii) If there is a 3-way tie between the current and adjacent lanes then the 

pedestrian stays in lane 
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3) Move (this is stage 2): Each pedestrian 
n

p is moved 0, +1 or -1 lateral sidesteps after 

1) – 3) is completed 

 

Step forward (parallel update 2 – stages 3 and 4) 

 

1) Update velocity: Let ( )nv p gap= where gap is from the subprocedure below 

 

2) Exchanges: IF gap = 0 or 1 AND gap = gap_opp (cell occupied by an opposite 

moving pedestrian) THEN with probability p_exchg, 

( ) 1nv p gap= + ELSE ( ) 0nv p = . That is the walker and the opposite moving 

pedestrian either exchange cells with a predefined probability p_exchg or stop when 

they meet each other and sidestep at the next timestep  

 

3) Move (this is stage 4): each pedestrian 
n

p is moved ( )n
v p cells forward 

 

Gap Computation Subprocedure 

 

1) Same direction: Look ahead a up to 8 cells (8 = 2* the largest v_max) IF an occupied 

cell is found with a pedestrian moving in the same direction THEN set gap_same to 

the number of cells between the two pedestrians ELSE set gap_same = 8 
 
2) Opposite Direction: IF an occupied cell is found with an opposite moving pedestrian 

THEN set gap_opp to (0.5*number of cells between the pedestrians) ELSE gap_opp 

= 4 
 

3) Assign gap = MIN(gap_same, gap_opp, v_max) 
 

The lane switching procedure is illustrated in Figure 3. For pedestrian 1, the adjacent 

cells on both the left and right are available. The unoccupied distance on however is 

uniquely maximal in the present lane so no switch is required. Pedestrian 4 conflicts to 

the right with pedestrian 6 and in this instance pedestrian 6 is given access to this cell, 

hence 4 can only sidestep to the left. The unoccupied distance is largest in this lane and 

so 4 will switch. The change is represented by 4’. Pedestrian 7 cannot switch lanes since 

both adjacent lanes are occupied and thus the lane change procedure is terminated. 
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Figure 3: Lane switching behaviour in Blue/Adler model 

 

This model was successfully applied to both uni and bi-directional flows. The results 

reproduce observed phenomena particularly the expected lane formation which is shown 

in figure 4 where grey cells are left moving pedestrians and the black right moving 

pedestrians 

 

Figure 4: Emerging Lane Formation  
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Another interesting model was developed by J. Dijkstra, J. Jessurun and H. Timmermans 

[10] which looks at pedestrian movement with a shopping centre. The rule set for this 

model is 

1) Check decision point: If a pedestrian has passed a decision point (the end of an 

activity or node in the network) then got 3) 

2) Check the cell type – examine the behaviour of the pedestrian and the walkers desired 

direction followed by a change into that direction then a decision point will be passed 

3) If the cell is free then the pedestrian can move into that cell, otherwise got 4) 

4) If the cell to the left/right isn’t occupied then move there 

In this model the movement is directed only toward the destination and can only change 

at decision points with pedestrian interactions not being considered. 

2.6 The Social Force Model 

This model has been developed primarily by D. Helbing and P. Molnár ([1], [2], [11]). 

They describe the idea of social forces in the context of ordinary pedestrian behaviour. 

That is, in general a pedestrian will be used to the majority of situations that confront 

them and they have prescribed behavioural strategies based on previous experience of 

similar situations. As such they will react in the best way, that is the most efficient for 

them and as such pedestrian movement is automatic and thus predictable. The Social 

Force Model is a Microsimulation of each individuals behaviour and so each 

pedestrian,α , in the system can be represented by a point ( )r tα

�
 in space, which changes 

continuously with speed being governed by the equation of motion  

 
( )

( )
dr t

v t
dt

α
α=

�
�

 (2.6.1) 
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Similarly, the speed ( )v tα

�
is continuously changing and thus acceleration is governed by 

the social forces ( )f tα

�
, which represent the sum of the different influences upon the 

individual pedestrian (that is environment and other pedestrians). There is also a 

consideration for random fluctuations within the system which account for random 

behavioural fluctuations which gives rise to ( )tαξ
�

. So, the acceleration obtained is 

 ( ) ( )
dv

f t t
dt

α
α αξ= +

� � �
 (2.6.2) 

The model being implemented in this thesis takes into account an acceleration force 

( )0
f vα α

� �
, repulsive effects of boundaries ( )Bf rα α

� �
, repulsive interactions with other 

pedestrians ( ), , ,f r v r vαβ α α β β

� � � � �
 and attraction effects ( ), ,i if r r tα α

� � �
leading to 

 ( ) ( ) ( ) ( ) ( )
( )

0 , , , , ,B i i

i

f t f v f r f r v r v f r r tα α α α α αβ α α β β α α
β α≠

= + + +
 

� � � � �� � � � � � � �

 (2.6.3) 

2.6.1 The Driving Force 

As the name suggests, the driving force, is the component of the social forces which 

describes each individuals desire to move to their intended destination with some desired 

velocity 0
vα . The desired direction of motion is given by eα

�
 and deviations of the actual 

velocity vα

�
from the desired velocity ( ) ( ) ( )0 0

v t v t e tα α α=
� �

 are corrected within the so 

called relaxation time ατ . The equation which describes this motivation is 

 ( ) ( ) ( )( )0 01
f v t e t v tα α α α

ατ
= −

� � �
 (2.6.4) 

The desired direction of the pedestrian is described by 

 ( )
p r

e t
p r

α
α

α

−
=

−

� �
�

� �  (2.6.5) 
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Where p
�

is the desired destination and rα

�
the current position. 

 

It is often the case that pedestrians may be delayed, at bottlenecks or doorways for 

example, which leads to an increase in the desired speed over the course of time. One 

way to describe this effect is to implement the following  

 ( ) ( ) ( ) ( )0 0 max1 0v t n t v n t vα α α α α= − +� �� �  (2.6.6) 

With, max
vα the maximum desired velocity and ( )0 0vα the initial one. The parameter 

 ( )
( )
( )0

1
v t

n t
v t

α
α

α

= −  (2.6.7) 

Describes the impatience of the pedestrian to reach their destination, with ( )v t the 

average speed into the desired direction of motion. This particular effect may lead to a 

crowd developing pushy behaviour thus increasing the pressure within the crowd, which 

may lead to clogging effects which may have disastrous consequences.  

2.6.2 Pedestrian Interactions 

The repulsive force term ( ), , ,f r v r vαβ α α β β

� � � � �
describes the interactions between two 

pedestrians  and α β , and the desire of pedestrianα  to keep a certain distance from β . 

This term is described by 

 ( )
( ) ( )1 2

1 2
exp . exp

r d r d
f t A n F A n

B B

αβ αβ αβ αβ

αβ α αβ αβ α αβ

α α

� � � �− −
= +	 
 	 


	 
 	 
� � � �

� � �
 (2.6.8) 

The first term of this force describes the tendency to respect the private sphere of each 

individual and also helps to avoid collisions if there are sudden changes within the 

system. The second term accounts for the behaviour of physical interaction in high 



 

25 

densities and pushy crowds if so called frictional effects are ignored. A second 

formulation which includes frictional effects will be briefly introduced later. The 

parameters  and i i
A Bα α denote the interaction strength and range respectively. These 

parameters are often dependent on cultural influences, for example the personal space 

expected may vary depending on the society being modelled. The parameter dαβ is the 

distance between the centres of mass of the pedestrians being considered, rαβ is the sum 

of the radii of pedestrians  and α β and nαβ

�
is the normalised vector pointing from  to β α  

 
( ) ( )

( )
x t x t

n
d t

α β
αβ

αβ

−
=

� �
�

 (2.6.9) 

Where ( )x tα

�
is the point of the centre of mass of  at time tα , and similarly for β . Figure 

5 shows visually these parameters. 

 

Figure 5: Distance between  and α β  

Each pedestrian in the system is modelled to have a solid core, rather than just be a point. 

However this does not have a great impact on the results of the simulation and in [2] the 

pedestrians were considered to be point particles without any problem. The final 

α  

β  

( )d r rαβ α β− +  

rα  

rβ  
nαβ

�
 

( )e tα

�
 

αβϕ  
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parameter in (2.6.8) is Fαβ accounts for the anisotropic behaviour of the pedestrians. In 

this context it means that the actions of those in front of our pedestrian have a greater 

impact on their movement than those behind. Pedestrians can often predict what may 

occur infront of them and can react accordingly. Thus Fαβ  is a factor which gives the 

pedestrians within view greater influence than those out of view. This is done by having 

this factor depend on the angle,ϕ , between the walkers desired direction of movement 

and the direction of the pedestrian exerting the repulsive force. This is also shown in 

figure 5.  

 ( )
( )1 cos

1
2

F
αβ

αβ α α

ϕ
λ λ

+
= + −  (2.6.10) 

αλ is the potential of the anisotropic character of the pedestrians, with  

 ( ) ( ) ( ) ( )
( )
( )

cos .  where  
v t

n t e t e t
v t

α
αβ αβ α

α

ϕ = − =

�
� � �

�  (2.6.11) 

Setting 1αλ < creates the aforementioned anisotropic character, with a pedestrian directly 

infront having the greatest effect as 0 so 1Fαβϕ = = and pedestrians in the range 

3
2 2

0 2π πϕ ϕ π< < < <� have the strongest influence. Figure 6 shows this for various λ  

 

Figure 6: Fαβ characterises anisotropic behaviour 
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2.6.3 Boundary Interactions  

The treatment of boundaries within the model is analogous to that of other pedestrians, 

excluding the anisotropic effects of the pedestrian interactions. This leads to 

 ( ) exp B
B B

B

r d
f r A n

B

α α
α α α α

α

Β

� �−
= � �

� �

� � �
 (2.6.12) 

Where 
B

dα is the distance between the boundary and the pedestrian and 
B

nα

�
the normal 

vector pointing from the boundary toα . In most situations there is more than one 

boundary to consider leading to a question as to which boundaries influence to account 

for. There are three possible ways of considering the boundary interaction 

1. Superposition: All boundaries influence the pedestrian so the forces are summed 

2. Shortest distance: Only the closet boundary element is considered 

3. Biggest impact: only the boundary with the largest impact is considered 

In most geometries the biggest impact and shortest distance model are equivalent; this is 

often an appropriate choice too however this may not however be reasonable for angled 

passageways and superposition may be better. It was decided that in this project only the 

nearest boundary element would be considered, again this was the approach of [2] and 

produced realistic results in that case. 

2.6.4 Attractive Interactions 

Often pedestrians demonstrate certain joining characteristics, such as families or groups 

of tourists, and will wish to move through the walkway together. Other instances may be 

shops, window displays or performances in the street. These two cases are however 

separate, in the former the attractive force is constant and independent of time reflecting 

the desire of these groups to remain together over the whole time interval. In the latter 
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case however the attraction is time dependent as the pedestrian will not wish to be late 

and clearly will ignore the attraction if this is the case. Such attractions have a similar 

modelling to pedestrian interactions however the attraction range 
i

Bα is typically larger 

with a smaller, negative, time dependent interaction strength
i

Aα . 

2.6.5 Individuality and Random Behaviour Fluctuations 

As previously mentioned, each pedestrian may display some random behaviour arising 

from accidental or deliberate changes to the expected and optimal actions. This force 

( )tαξ
�

is Gaussian distributed and perpendicular to the desired direction. One such 

formulation would be 

 ( ) ( ) perp,e t f t Xeα α α αξ =
�� �

 (2.6.13) 

Here ( )20,X N σ∝ with probability density 

 ( )
2

2

1 1
. exp

22

x
f x

σ σπ

� �−
= � �

� �
 (2.6.14) 

2.6.6 Another Formulation 

As previously mentioned, there is another formulation of the Social Force model which 

takes into account the ‘sliding friction force’ in the pedestrian and boundary interaction 

terms. For the pedestrian interactions the model becomes 

 ( ) ( )exp . . . t
r d

f A F k g r d n g r d v t
B

αβ αβ
αβ α αβ αβ αβ αβ αβ αβ αβ αβ

α

κ
� �−� �� �

= + − + − ∆� �� �
� �� �� �

� ��
(2.6.15) 

Here ( )2 1,t n nαβ αβ αβ= −
�

is the tangential direction and ( ).tv v v tαβ β α αβ∆ = −
�� �

the relative 

tangential velocity. The values ,  k κ are given constants of the system and the function 



 

29 

( )g x is zero when its argument is negative and equal to its argument otherwise. In this 

case 

 ( )
0            if 

 else

d r
g r d

r d

αβ αβ

αβ αβ

αβ αβ

>��
− = �

−��
 (2.6.16) 

Physically this means that the ‘sliding friction force’ is only felt if the pedestrians are 

touching. Again boundary interactions are analogous, so 

 ( ) ( )( )exp . . .B
B B B B B B gaB

B

r d
f A k g r d n g r d v t t

B

α α
α α α α α α α α α

α

κ
� �� �−� �

= + − − −� �� �
� �� �� �

� � �� �
 (2.6.17) 

 

 

This alternative model will not be implemented (although in principle once the first 

model is coded the changes required are not difficult) and is only included for 

completeness. Similarly the attractive interactions and random fluctuations described 

earlier will not be implemented either.  
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Chapter 3 

Self-Organisation Phenomena in Pedestrian Flows 
 

One of the main objectives of this thesis is to explore and simulate emergent behaviours 

of pedestrian systems. If a pedestrian flow has certain conditions such phenomena are 

often observable. Of particular interest are 

• Lane formation and striping effects 

• Oscillatory flows and clogging effects at doorways 

• Shock waves in dense crowds 

These self-organisation effects are patterns of behaviour that are not externally planned or 

organised by an outside source such as traffic signals or behavioural conventions.  

3.1 Intersecting Flows 

Intersecting flows are commonplace in many pedestrian facilities and are nearly 

unavoidable as alternatives, such as bridges, are costly and generally impractical. Of 

particular interest are Scramble Crossings which have been observed to display striping 

effects when they intersect. A paper by Dzubiella and Löwen [12] exploring the pattern 

forming in such systems describe these stripes as density waves moving into the direction 

of the sum of the directional vectors of both flows. 

 
Figure 7: Striping phenomena in Intersecting flows 

θ  

θ  
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The stripe formation reduces the number of obstructing interactions and maximisation of 

average pedestrian speeds. 

3.2 Bottlenecks 

Bottlenecks such as doorways are also common in pedestrian areas and the way 

pedestrians interact at them is of interest. Often the flows through bottlenecks are 

irregular and inefficient. If there is an opposite flow into a bottleneck it is often the case 

that the flow of pedestrians is oscillating and unidirectional as opposed to the 

bidirectional flow in an ordinary corridor without a bottleneck. Similar to lane formation, 

which will be discussed in the next section, it is typical for groups to move through the 

bottle neck since it is easier to follow someone than to move against them. This leads to a 

pressure increase, due in part to impatience, on the side of the bottleneck where flow is 

halted and a decrease on the side that is flowing. When the difference between the two 

pressures is large enough the flow will change. Thus the process is reversed and the flows 

will oscillate. 

3.3 Lane Formation 

A bidirectional system, or counterflow, in everyday conditions has pedestrians moving in 

opposite directions which are unevenly distributed over the walkway. One of the most 

commonly observed phenomena is lane formation where pedestrians form into lanes of 

unidirectional flow. This effect leads to a reduction in the number of evasive manoeuvres 

each pedestrian need to make and so increases the efficiency of the walkway. In this case, 

improved efficiency means that the average pedestrian speed is maximal and necessary 

avoidance and braking actions minimal. The number of lanes formed is dependent on the 
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geometry of the walkway. Initially the lanes are small channels, created when opposite 

moving pedestrians meet, which then merge with each other to form larger lanes. 

3.4 Shockwaves 

When the flow of pedestrians is slowed, the shockwave effect can be observed. The 

velocity of each pedestrian, as described by (2.6.6) for the Social Force model, is 

dependent upon their average speed. Physically this corresponds to the walker becoming 

impatient and the desire to increase their velocity becomes stronger than the desire to 

keep a certain distance from the pedestrian infront. This effect is cumulative and when 

one pedestrian moves forward those behind him also move and thus the shockwave effect 

occurs. 

 

Figure 8: illustration of pedestrian behaviour causing shockwaves 
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Chapter 4 

Implementation of the Social Force Model 

One of the key aims of this project was to successfully implement the Social Force 

Model, as described by Helbing [1], and attempt to do some quantitative analysis of the 

results along with reproducing the qualitative behaviours of large pedestrian flows as 

described in chapter 3. In this chapter the implementation of this model will be explored 

with particular emphasis given to detailing some of the problems observed with the 

model and how they were overcome.  

4.1 Numerical Solution of the Social Force Model 

The Social Force Model described in chapter 2 is a first order Ordinary Differential 

Equation (ODE) which needs to be solved numerically to calculate the velocity and 

position of the pedestrians within the system. Importantly the model is an initial value 

problem, for both the velocity and displacement equations, which means that there are 

several excellent MATLAB solvers available for this type of problem. The ODE 

described by the Social Force model with initial conditions 

 
( ) ( ) ( )( )

( ) ( ) ( )( )

1 2

1 2

0 0 , 0

0 0 , 0

t

t

r r r

v v v

α α α

α α α

=

=

�

�
 (4.1.1) 

Is a non-stiff system, as all the elements evolve on a similar time-scale. As this is the case 

the suggested solver initially was ode45 which is extremely efficient for these types of 

problem. This solver implements a Runge Kutta method of the fourth order and was 

developed by Dormand and Prince.  However, an unspotted error in the initial code 
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actually meant that it appeared that the system was stiff and so a different solver was 

chosen, namely ode15s which is a Gear solver and generally very efficient for stiff 

systems. This error was subsequently spotted in the de-bugging procedure and obviously 

raised the question as to whether ode15s was an appropriate solver for the system. To 

choose the best solver some tests were run to calculate the time each one was taking to 

simulate an intersecting pedestrian flow. Each solver was tested with systems of 10 to 

100 pedestrians in increments of 10 and the MATLAB function cputime was used to 

calculate the time taken. 
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Figure 9: Cputime for several solvers – clearly ode23 and ode45 are the best solvers for 

the Social Force Model 

 

Whilst the stiff solver produced accurate results, they were no more accurate than the 

non-stiff solvers. As such in the final implementation ode45 was chosen. The efficiency 

of the system is of paramount importance as the Social Force model is of 2
n complexity. 
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This complexity comes from the pedestrian interaction equation (2.6.8), where the effect 

of every other individual in the system upon α  must be calculated and then summed. 

This then has to be done for each pedestrian leading to ( )2O n calculations, this 

corresponds to a double for loop in the function file. This algorithm can infact be 

reduced to an order n system, however this is not straightforward and time constraints 

prevent its implementation. The first step of this reduction however was included in the 

final code, which is to use a Verlet-Sphere [13]. For each pedestrian a circle, of radius r, 

surrounding them is introduced with r being the radius of the interaction length of the 

social force model. This radius is the maximum distance between any two pedestrian for 

which their social force interaction, as defined by (2.6.8), will be calculated. This 

represents physically the idea that pedestrians beyond a certain distance away will not 

effect the decision making of the individualα , which is both intuitively and 

mathematically reasonable, as (2.6.8) becomes negligible for ( )10r r d Oαβ αβ= − � . 

 

Figure 10: Verlet - Sphere 

r  
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The final code for the simulation solves 4n differential equations, where n is the number 

of pedestrians in the system. To solve, ode15s requires a vector input with each 

component corresponding to a differential equation. The first 2n differential equations are 

the x and y velocity components for pedestrians 1 to n and the second 2n differential 

equations the x and y displacement values for pedestrians 1 to n. That is  

 
( )

( )

( )

( )

1 1

2 2
 for 1,...,

v t f td
n

dt v t f t

α α

α α

α
� � � �

= =	 
 	 

	 
 	 
� � � �

 (4.1.2) 

and 

 
( )

( )

( )

( )

1 1

2 2
 for 1,...,

r t v td
n

dt r t v t

α α

α α

α
� � � �

= =	 
 	 

	 
 	 
� � � �

 (4.1.3) 

The following pseudo-code describes how the differential equations are formulated in the 

function file that ode15s solves.  

FOR every pedestrian in the system do 

 Calculate desired velocity according to (2.6.6) 

 Calculate desired destination 

 Calculate desired direction according to (2.6.5) 

 Calculate driving force (2.6.4) 

 FOR every other pedestrian do 

  Check distance between pedestrians 

  IF this distance < radius of Verlet-Sphere 

   Calculate Social Force (2.6.8) 

   Add Social Force to driving force 

 FOR each boundary element do 

  Check distance to element 

  Calculate the influence of the closest element from (2.6.12) 

  Add to the Social and driving force 

END 

 

Set first 2n vector components as (4.1.2) 

Set second 2n vector components as (4.1.3) 

 

The simulation parameters are set outside of the function file in the associated script file. 

These parameters include the constants of each term, the desired destination, initial 
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position and velocities and the boundary array which describes the geometry of the room 

being considered. 

4.2 The Desired Destination and Waypoints 

In the earlier version of the code, the desired destination was set as a single point which 

the pedestrian would head for. Whilst setting the desired destination in this way did not 

prevent the simulations from displaying the emergent characteristics expected, it leads to 

simulated behaviour which was qualitatively unreasonable. A good example to illuminate 

this would be two pedestrians moving in opposite directions meeting in a corridor. 

 

Figure 11: Pedestrian paths with a single point for p
�

, desired destination 

 

In figure 11, the behaviour of pedestrians with fixed desired destinations is show. 

However, when walking down a corridor the destination is only the opposite end and not 

a fixed point. Thus the expected behaviour would be for the pedestrian to take the 

shortest path to the end of the corridor and as such they would re-evaluate their desired 

destination in the event of interaction with another walker. To implement this behaviour 

the desired destination was re-evaluated with each iteration. This was achieved setting a 

desired destination array and then calculating the closest point of this and using that as p
�

. 

 

Figure 12: Pedestrian paths using a desired destination array 
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In Figure 12 the desired destination arrays are shown at each end of the corridor and the 

new pedestrian paths. In this small test case the difference may seem to be unimportant 

but its value in the modelling come as the number of pedestrians in the system increase. If 

the desired destination remained as a single point then individuals maybe simulated 

trying to force their way through a dense crowd to reach the specified point instead of 

taking the more efficient route. The principle at the core of all pedestrian modelling is 

that individuals will try to use the most efficient route for themselves and that the model 

must reflect the decision making abilities of humans and their capability to change and 

adapt to the system around them.  

 

Another problem found in earlier version of the code was so called Hunting or Chattering 

effects. This phenomenon occurs when the direct line between the pedestrian and their 

desired destination is blocked by the boundary of the setup being simulated. If the model 

isn’t modified to counter this effect the walker will head directly towards the desired 

destination until they reach the boundary. The repulsive interaction with the boundary is 

(obviously) stronger than the driving force and the pedestrian will become stuck on the 

wall. Clearly this behaviour is not consistent with observed pedestrian movement and so 

a solution must be found. 

 

Figure 13: Pedestrians path with and without a waypoint 
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The solution implement in here is to use a waypoint system. In Figure 13 the blue dashed 

line illustrates the desired path of the pedestrian in the original code and the red line the 

desired path after a waypoint is included. The process of implementing waypoints is 

relatively straight forward, the pseudo-code is as follows: 

 FOR each pedestrian do 

  Check the distance from current position to waypoint (i) 

  IF the distance to waypoint (i) < specified distance 

   Set desired destination as the waypoint (i + 1) 

  ELSE 

   Set desired destination as waypoint (i) 

END 

END 

 

Again it is important to note that waypoints are intuitively consistent with pedestrian 

behaviour, in particular a pedestrians immediate destination is always within their line of 

sight. That is, an individual will always travel to a place they can see until their ultimate 

destination is in view. In the case of angled passage ways, corners will be appropriate 

waypoints since moving directly toward them will provide the shortest path to the overall 

goal. 

4.3 The Desired Velocity 

One of the self-organisation phenomena of interest are shockwaves in dense crowds. This 

effect comes from an impatience factor of the modelled pedestrians. This is described in 

the formulation of the desired velocity, (2.6.6). The only extra calculation required is the 

average velocity, which is  

 
( ) ( )0r t r

v
t

α α
α

−
=

� �

 (4.3.1) 
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In earlier versions of the code the desired velocity was fixed, the following graph shows 

the acceleration of an unobstructed pedestrian with both fixed and variable desired 

velocities. 
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Figure 14: The difference between a fixed desired velocity and a variable one 

As Figure 14 shows, the variable desired velocity means that the pedestrian will want to 

travel faster if they are impeded. The graph shows that this effect means the pedestrian 

will move slightly faster than the initial desired velocity before settling into a comfortable 

walking speed. In the case of the fixed desired velocity the walker reaches the desired 

velocity smoothly and without going faster than this value. Certainly the variable desired 

velocity describes shockwave effects well but this effect in the acceleration phase is also 

reasonable.
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Chapter 5 

Simulation and Analysis of the Social Force Model 

In this chapter the code created to implement the Social Force Model will be run for a 

variety of different pedestrian flows. These will be a counterflow within a corridor, with 

and without a bottleneck, a ninety degree corner and finally a Scramble Crossing. The 

aim will be to use the data from the simulation to do some quantitative analysis of 

pedestrian flows to supplement the qualitative observations laid out in chapter 3. 

Obviously it is expected that the model will recreate self organisation phenomena and 

where this is the case it will be highlighted. 

 5.1 The Model Constants 

The Social Force Model has several parameters in each of the driving force (2.6.4), 

pedestrian interaction (2.6.8), and boundary interaction terms (2.6.12). Thus, several 

parameters must be set in the startup phase of the simulation, in this instance in the script 

file for the model.  

 

The driving force parameters are consistent with those of Helbing [1] where the desired 

velocity is set to 1.34 ms
-1 

with a relaxation time, ατ , of 0.5. The relaxation time is the 

time taken to correct disturbance in movement (e.g. obstacles or avoidance manoeuvres). 

Helbing also gives values for the parameters in the pedestrian and boundary interaction 

terms. To verify that these values were reasonable the simulation was run for a variety of 

parameters in a test room and the resulting pedestrian flows evaluated. 
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Figure 15: An example of pedestrian flows in the test room (Not to Scale) 

Figure 15 shows one of the test runs for a given set of parameters, each line in the figure 

represents the movement of a pedestrian over time. The test room was simulated with 50 

pedestrians and qualitative observations were made. An example of such an observation 

is that for large values of 
B

Bα in (2.6.12) the pedestrians appeared to be too far from the 

boundaries given the amount of traffic in the room. To test the interaction strengths a 

simple test was to set the desired velocity of a pedestrian to 0 and place them next to a 

boundary. The repulsive force of the boundary for different parameter values could then 

be more accurately observed providing a better reference for deciding on realistic 

parameters. A similar process was done for pedestrian interactions. Whilst there was only 

a qualitative analysis at this stage it allowed for a set of realistic parameters to be chosen, 

where the conventions for pedestrian behaviour come from the authors’ personal 
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experience and the experiments done by Helbing [1]. The following table gives the 

chosen parameters 

Parameter Formula Value 

Initial Desired Velocity -

( )0 0vα  
(2.6.6) 1.34 ms

-1 

Relaxation Time - ατ  (2.6.4) 0.5 s 

Maximum Speed - max
vα  (2.6.6) 1.3* ( )0 0vα  

Territorial Sphere Pedestrian 

Interaction Strength - 1
Aα  

(2.6.8) 0 

Territorial Sphere Pedestrian 

Interaction Range - 1
Bα  

(2.6.8) 0.3 m 

Anisotropic Character - αλ  (2.6.10) 0.75 

Physical Pedestrian 

Interaction Strength - 2
Aα  

(2.6.8) 2 

Physical Pedestrian 

Interaction Range - 2
Bα  

(2.6.8) 0.2 m 

Boundary Interaction Strength 

- 
B

Aα  
(2.6.12) 5 

Boundary Interaction Range  

-
B

Bα  
(2.6.12) 0.1 m 

Radius of Pedestrians – rα  (2.6.8), (2.6.12) 0.3 m 

 

Table 1: Simulation Parameters 

 

In the simulation it was chosen to take 1 0Aα = as suggested by Helbing [1]. The purpose 

of this is to speed up the simulation in dense crowds, which is appropriate for the 

situations being considered. In all the cases that will be discussed in this thesis (in 

particular the Scramble Crossing) the emergent behaviour is most evident in densely 

populated situations. Since this term describes the tendency to respect each pedestrians 

territorial sphere these considerations can be ignored in dense crowds and emergency 

situations. 
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One final consideration in the startup phase is the size of the so-called Verlet-Sphere 

implemented in (2.6.8) discussed in chapter 4. The radius was chosen to be 10 m, 

anything further away than this has an overall contribution to the social force felt byα to 

be ( )1510O −≥ which is negligible since the cumulative social force of all pedestrians 

uponα is of ( )1O . 

5.2 Pedestrian Counterflows 

In this section the code developed will be used to simulate pedestrian counterflows both 

with and without a bottleneck in the walkway. The purpose of modelling these situations 

is to assess the validity of the simulation in a qualitative sense. In chapter 3 certain 

emergent phenomena were discussed; in particular lane formation in a counterflow and 

oscillatory flow at bottleneck. For these particular geometries a more detailed analysis of 

the pedestrian movements will not be considered, rather this section aims to confirm that 

the model simulates well experimentally observed phenomena ([1], [2]). 

 

In a counterflow expected emergent behaviour is lane formation as discussed in chapter 

3. The simulation was run for 250 pedestrians on a 200 meter walkway which is 6 meters 

wide. Half the pedestrians were randomly placed at each end of the walkway with a 

bivariate uniform distribution using the rand function in MATLAB. The wavefront of 

each the pedestrian bodies (in this case the group at either end) meet at the middle of the 

walkway. The simulation results were used to produce a movie (submitted on cd with the 

thesis – the file ‘250conterflow.avi’) of the pedestrian movement. 
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       (a) The initial pedestrian distribution        (b) The final pedestrian distribution 

Figure 16: The initial and final pedestrian positions created for a counterflow 

The results of the simulation are better than expected, reproducing the self organisation 

phenomena perfectly. However these results underline the idealised nature of the 

implemented model. In a real counterflow the pedestrians would not be homogeneous, 

that is the desired speed of the walkers would not be uniform and the pedestrians radii 

would not be the same. These inhomogeneities would lead to behaviour that isn’t 

observed in this simulation, a particular example of this would be overtaking manoeuvres 

performed by faster moving pedestrians. In walkways with large pedestrian densities 

these manoeuvres can lead to a breakdown in the lane formation; this suggests that these 

idealisations may not always be valid assumptions. 

 

The next geometry to consider is a counterflow with a bottleneck. In this case the 

bottleneck refers to a doorway although in practice it could be a longer bottleneck (c.f. 

the test room geometry). The bottleneck, a 1 meter wide doorway, is positioned in the 

middle of the walkway which is 3 meters wide. 30 pedestrians were placed randomly, 

again with a bivariate uniform distribution, with half at each end of the corridor. Again a 

movie (on the cd – ‘100corridor.avi’) of the simulation was produce – although it must be 
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stressed it is not in real time. This is due to the fact that ode45 is a variable timestep 

solver, which means that the time between each frame varies. However the movie 

creating tool in MATLAB has a fixed frame rate leading to the movies not being in real 

time.  
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Figure 17: These figures show how flow oscillates at a bottleneck 

The figure illustrates the oscillatory flow through a bottleneck is reproduced by the 

simulation. This oscillatory behaviour is much clearer in the associated movie. Again the 

results of the simulation are consistent with the experimental data of Helbing [1].  

(a) Initial Pedestrian Positions (b) Pedestrians meet at Bottleneck 

with right moving (red) pedestrians 

flowing through 

(c) Switch in flow – now the left 

moving (blue) pedestrians are 

flowing through 

(d) The flow has switched several 

times, now the right moving 

pedestrians are passing bottleneck 
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5.3 A Ninety Degree Corner 

Having shown in two separate cases that the model is qualitatively accurate, the next 

stage is to do some quantitative analysis of the results for different geometries. The first 

situation to be modelled is a crowded corner in a corridor. A particular case where this 

geometry is of specific interest would be a modern sports stadium. There are often very 

large crowds which may need to evacuate the facility quickly and ninety degree corners 

are commonly found along escape routes. Thus the effect that they have upon pedestrian 

flow is of great interest. 

 

The first thing to explore is how the corner effects the movement and speed of a single 

pedestrian. Obviously if a ninety degree corner has an effect on the large scale behaviour 

of pedestrian flows then it is reasonable to expect that there will be an observable change 

in the individual walkers movement at the corner.  
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The speed of a single pedestrian through a ninety degree corner

 

Figure 18: The Speed of a single Pedestrian around a ninety degree corner 
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Figure 18 clearly shows that the change of direction associated with moving around a 

corner leads to a sudden drop in speed as the walker reaches it. This highlights the 

problem with ninety degree corners in pedestrian facilities, that is that rather than 

allowing for a smooth change of direction and thus maintaining a steady speed it forces 

the pedestrians to change direction abruptly which has concertina effects on the following 

traffic. The figure also shows how the pedestrian speeds up after passing the corner to 

compensate for the obstruction. This effect results in the pedestrian density (pedestrians 

per unit area) being lower after the corner if the crowd is dense enough. 

 

The next step is to model a large flow and analyse these concertina effects. As previously 

mentioned, the average pedestrian density is reduced after the corner and is greatest just 

before the corner, corresponding to the shockwave phenomena described in section 3.4.  
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Figure 19: The simulation of a ninety degree corner 
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Figure 19 shows the simulation for only 200 pedestrians moving around a 3 meter wide 

corner, not a particularly large number when compared to what may be expected in a 

large sports stadium and already the corner is slowing traffic. This is highlighted in 

Figure 20, which shows that the overall mean speed of the pedestrians is reduced as the 

first walkers come to the corner. However, as more of the pedestrians pass the corner the 

overall mean speed starts to increase, reflecting the compensatory increase in speed of 

each individual as they pass the corner due to the change in their desired velocity 

described by (2.6.6). 
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Figure 20: The overall mean speed of pedestrians around a ninety degree corner 

The average densities were calculated for the 3 distinct phases of the corridor – the 

unidirectional flow before the corner, the corner itself and the corridor after it. The 

average pedestrian density before and after the corner are similar here, at approximately 
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1.5 pedestrians per square meter, however on the corner this increases to approximately 

2.7 pedestrians per square meter, if the 3 empty cells on thee outside of the corner are 

excluded. It is not unexpected that these 3 cells are empty; this is due to the fact that the 

natural instinct of a walker will be to head for the apex of the corner, as this will provide 

the shortest route to their desired destination. This reasoning also goes some way toward 

explaining why the corner itself is such a hindrance to traffic flow. Clearly all the 

pedestrians are seeking the shortest route and so all will want to pass as close to the apex 

of the corner as they can. This in turn will lead to increased densities in the cells next to 

the apex and explain the zero pedestrian density at the far edge of the corner.  

 

In this case the densities before and after the corner is essentially the same; but, as figures 

18 and 20 show, the speed of the walkers has increased after the corner. This quantitative 

effect is a good foundation for explaining why corners can cause clogging in dense 

crowds. Unfortunately, due to the n
2
 complexity of the code, it wasn’t possible to run the 

simulation for higher numbers of pedestrians. As discussed, for larger crowds, it would 

be expected that the corner would clog more noticeably leading to a significant reduction 

in pedestrian density after it. It should also be noted that although some shockwaving has 

occurred at the corner, this effect is not as prominent as the experimental data suggests it 

should be and again this may simply be because the current crowd isn’t large enough. At 

this point it is worth mentioning again the homogeneity of the pedestrians in the current 

simulations, in particular the uniform desired speed. This uniformity is both unrealistic 

and means that no overtaking manoeuvres will occur. The lack of certain expected 

behaviours in the simulation therefore may, in part, be explained by this.  
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5.4 The Scramble Crossing 

The final pedestrian flow to consider is the Scramble Crossing. Scramble Crossing is the 

term used to describe the meeting of two unidirectional flows with a non-zero angle of 

intersection (if the angle of intersection is zero this simply describes a bidirectional 

counterflow). Such intersecting flows are commonplace in pedestrian walkways and so 

the dynamics of them is of great interest. Only the simplest case, where there are no 

boundaries for the pedestrians to interact with, will be simulated in this project as the 

effect of particular interest is the stripping phenomena described in section 3.1.  

 

A Scramble Crossing with 500 individuals was simulated with a ninety degree angle of 

intersection. The first quantitative data to consider is the velocities of the pedestrians in 

the simulation. It is expected that the pedestrians will interact in a manner that leads to 

the least deviation from the desired velocities. 
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Figure 21: Plots of the speed characteristics of a Scramble crossing 

The plots in figure 21 illustrate well that the simulated interactions within a scramble 

crossing are optimal. In Figure 21(b) the drop in overall mean speed at about 15 seconds 

is when the two pedestrian wavefronts meet. This drop in the overall mean speed is 

(a) A Histogram of the speed of 10 

random walkers 

(b) The overall mean speed of 

pedestrians in a Scramble Crossing 
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approximately 0.1 ms
-1

 which would is clearly not particularly significant. Obviously the 

overall mean speed may hide the fact that movement in the area where the 2 flows meet is 

very slow. Clearly only a small proportion of the total number of pedestrians will be in 

the intersection at any one time and so the speed of the pedestrians outside of the point of 

intersection could mask the fact that movement where the flows meet is slow. Figure 

21(a) however dispels this; it is a histogram of the speeds at each timestep of a random 

sample of 10 pedestrians where each pedestrian is represented by a different colour bar. It 

clearly shows that the pedestrian speeds are tightly distributed around the initial desired 

speed of 1.34 ms
-1

 indicating that even when a pedestrian is moving through the area of 

intersection their actual speed does not deviate too far from their desired speed. 
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Figure 22: Variance and Standard Deviation of Pedestrian in a Scramble Crossing 
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Figure 23: The regions the Lattice 

Constants are calculated in 

Figure 22 shows both the variance and standard deviation of the pedestrian speeds in the 

simulated Scramble Crossing. These are perhaps better statistical measures of the 

pedestrian behaviour and are consistent with the previous conclusions. The mean 

standard deviation, after the two flows meet (at 16 seconds into the simulation), is 0.1888 

which shows that the pedestrian speeds do not vary wildly when the flows meet 

supporting the conclusions drawn from the plots in Figure 21. 

 

The most interesting aspect of the Scramble Crossing is the observed stripping 

phenomena. The simulation does reproduce this effect although it is not as obvious the 

lane formation of a counterflow shown in Figure 16 or the illustration of the effect in 

Figure 7. As this is the case there is little point showing still frames of the simulation. The 

effect is much more evident from the movies (submitted on CD with the thesis – 

‘500scramblecrossing.avi’) and certainly the movie shows that the simulation recreates 

the expect phenomena qualitatively. One statistical measure to show this stripping 

phenomena is occurring is the computation of Lattice Constants, 1 2 and l l . These are 

described by Ripley [14] in chapter 2. In the simplest case, where the standard basis is 

used, 1l  is the average distance between 

pedestrians in the x direction and 2l  the y 

direction. These Lattice Constants were 

calculated for 5 different regions, the 2 flows 

before the intersection (A and B) and the 2 

flows after intersection (C and D) and the area 

of intersection itself (E). The Lattice constants were taken at 40t = so a sufficient number 
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of pedestrian had managed to pass the intersection of the flows. The Lattice constants are 

summarised in Table 2: 

 

Region 1l  2l  

A 0.5486 0.5491 

B 0.5516 0.5521 

C 0.6132 1.0236 

D 0.5962 0.9742 

E 0.3212 0.3195 

 

Table 2: Lattice Constants 

 

Initially the pedestrians were uniformly distributed and given the homogeneity of the 

walkers in this simulation it is to be expected that the lattice constants in regions A and B 

are very close to each other. In region E both the Lattice Constants are close to 0.3 which 

is the pedestrian radius defined for this simulation (See Table 1) describing the high 

density in the area of intersection. The interesting values are produced in regions C and 

D. In these area, 1l , the average separation in the x direction, is close to the initial values 

but 2l , the average separation in the y direction has doubled. This change, whilst visually 

obvious, provides a quantitative value highlighting the stripping effect.  

5.5 Model Shortcomings 

Having simulated a variety of pedestrian flows, the results obtained have highlighted a 

number of areas in which the model could be improved. The most obvious of these, 

which has already being touched upon, is the homogeneity of the system. Currently the 

pedestrians are modelled as uniform, which may not be a reasonable assumption and may 

lead to important effects not being simulated. The solution would be to obtain further 

information on the makeup of pedestrian crowds from experimental data. In the case of 
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the desired velocity it would be a case of setting it a randomly distributed value, probably 

a Normal distribution with a mean value the same as the current constant desired velocity 

and a variance of 0.3 say, that is ( ) ( )0 0 ~ 1.34,0.3v Nα . A similar approach could be 

adopted with the pedestrian radii.  

 

Another problem that arises in the current implementation are shadowing effects. These 

occur when there is a solid wall between two pedestrian but the distance between them is 

less than the radius of the Verlet-Sphere. Even though the pedestrians can’t see each other 

the current code still calculates the social force between them and adds it to the 

acceleration. Clearly this is unrealistic given the fact that there is no line of sight between 

them and thus no way either can know the other is there. One way to solve this problem 

would be to adjust the Verlet-Sphere for each pedestrian. This re-evaluation is shown 

below 

 

Figure 24: The New Verlet-Sphere 

Only Pedestrians in the shaded area would be considered in the model, eliminating the 

shadowing effects.  
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Chapter 6 

Summary and Future Directions 

The aim of this project was to implement a version of the Social Force Model and use it 

to simulate various pedestrian flows. The results produced by the simulation with this 

implementation provided some excellent qualitative results, reproducing the expected 

self-organisation phenomena very well. These included oscillating flows at bottle necks, 

lane formation in a counter flow and stripping in a Scramble Crossing. However in the 

final chapter several flaws in the current implementation were identified though solution 

to each of them was suggested.  

 

If this project were to be continued in future there are several areas that should be looked 

at. The first of these would be to include the additional pedestrian behaviours set out in 

section 2.6 such as the random fluctuations described by (2.6.13) and the joining 

behaviour discussed in section 2.6.4.  

 

Currently the simulation requires order n
2
 calculations at each iteration of the ODE 

solver. There are techniques to reduce this to an order n algorithm which would allow the 

simulation to be run for much larger systems on a single processor. Even if an order n 

algorithm is achieved it would be useful to parallelise the implementation so that the 

simulation could be extended to huge scale problems such as airport terminals or world 

sporting events, where there may be as many as 150,000 pedestrians present.  
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With the order n algorithm in place it would then be possible to explore the effect of 

vastly increased density upon the systems already investigated. Certainly in the case of 

the ninety degree corner it would be valuable to find a quantitative value for the critical 

density of the geometry. The effect of the flow reaching its critical density is of 

paramount importance in emergency situations as this is when such a density may be 

reached. 

 

Further investigation should focus primarily on the effect of boundaries on pedestrian 

flows and try to develop solutions to flaws in current building design. This is simply 

because the most interesting pedestrian flows occur when boundaries are present and that 

in emergency situations it is the boundaries that become the biggest hazards when they 

restrict pedestrian flow. 
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Appendix A 

MATLAB Codes 

A.1 SFMDFPIBI.m 

%   Driving Force, Pedestrian interactions and boundary interactions     % 

%                     dv/dt = f0a + fab + faB                            % 

%------------------------------------------------------------------------% 

  

clear all 

global m bdry p p1 p2 D way BDRY  

 global tau v0a0 vmax r A1a A2a B1a B2a lambda A1 B1 VS dist 

  

% Number of Pedestrians% 

m = input('Enter the number of Pedestrians in the system (must be even):'); 

% Timespan of simulation % 

T = input('Enter the desired length of the simulation (in seconds): '); 

tspan = [0 T]; 

% Select the geometry to be simulated % 

disp('The code has 5 geometries to choose from, they are:') 

disp('1. A counterflow') 

disp('2. A Counterflow with a doorway (bottleneck)') 

disp('3. The test room') 

disp('4. A Scramble Crossing') 

disp('5. A ninety degree corner') 

K = input('Enter the number of the room you wish to simulate: ');  

%----------------------------------------------------------% 

% Vector used in waypoint calculation - their value tells  % 

% pedestrian alpha which waypoint to head for              % 

%----------------------------------------------------------%  

D = zeros(1,m);  

%-----------------% 

% model constants % 

%-----------------% 

  

% Relaxation time % 

tau    = 0.5; 

% Initial desired velocity % 

v0a0   = 1.34; 

% Maximum desired velocity % 

vmax   = 1.3*v0a0; 

% Pedestrian radii % 

r      = 0.3*ones(1,m); 

% Pedestrian Interaction constants from (2.6.8) % 

A1a    = 0; 

A2a    = 2; 

B1a    = 0.3; 

B2a    = 0.2; 

lambda = 0.75; 

% Boundary Interaction constants from (2.6.12) %  

A1     = 5; 
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B1     = 0.1; 

% Radius of Verlet Sphere % 

VS     = 10; 

% Distance to waypoint at which it deem to have been reached % 

dist   = 1.2;  

%--------------------------------------% 

% Initial position and velocity vector % 

%--------------------------------------% 

  

if (K == 1)     

    way = 1; 

    Vx  = [1.34*rand(1,m/2),-1.34*rand(1,m/2)]; 

    Vy  = zeros(1,m); 

    X   = [9*rand(1,m/2),9*rand(1,m/2)+11]; 

    Y   = [2*rand(1,m)+3.5];     

elseif (K == 2)     

    way = 0;    

    Vx  = zeros(1,m); 

    Vy  = zeros(1,m); 

    X   = [100*rand(1,m/2)-50,100*rand(1,m/2)+50]; 

    Y   = [6*rand(1,m)+7.5];  

elseif (K == 3)  

    way = 1;     

    Vx  = zeros(1,m); 

    Vy  = zeros(1,m); 

    X   = [5*rand(1,m/2),5*rand(1,m/2)+15]; 

    Y   = [10*rand(1,m)];  

elseif (K == 4)  

    Vx  = zeros(1,m); 

    Vy  = zeros(1,m); 

    X   = [45*rand(1,m/2)-40,45*rand(1,m/2)+35]; 

    for i = 1:m 

        if (i <= m/2) 

            Y(i) = X(i) - 10*rand(1,1) + 5; 

        elseif (i > m/2) 

            Y(i) = (35 - X(i)) + 10*rand(1,1); 

        end 

    end  

elseif (K == 5)     

    way = 1; 

    Vx  = zeros(1,m); 

    Vy  = zeros(1,m); 

    X   = [35*rand(1,m)-30]; 

    Y   = [2*rand(1,m)+0.5]; 

end  

% Setting u - the initial position and velocity vector % 

for i = 1:m 

    u((2*i)-1) = Vx(i); 

    u((2*i))   = Vy(i); 

end  

for i = 1:m 

    u((2*m)+(2*i)-1) = X(i); 

    u((2*m)+(2*i))   = Y(i); 

end    

start = u;  

%----------------------------------------------------------------------% 

% Desired destination - p is initially set as a waypoint (if required) % 

%----------------------------------------------------------------------% 

  

if (K == 1) 
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    p    = [[10.5*ones(1,m/2),9.5*ones(1,m/2)]',[4.5*ones(1,m)]']; 

    p1   = [[50*ones(1,(2/0.1)+1)]',[3.5:0.1:5.5]']; 

    p2   = [[-30*ones(1,(2/0.1)+1)]',[3.5:0.1:5.5]']; 

elseif (K == 2) 

    p  = zeros(m,2); 

    p1 = [[100*ones(1,(6/0.1)+1)]',[7:0.1:13]']; 

    p2 = [[zeros(1,(6/0.1)+1)]',[7:0.1:13]']; 

elseif (K == 3) 

    p    = [[5*ones(1,m/2),15*ones(1,m/2)]',[5*ones(1,m)]']; 

    p1   = [[20*ones(1,(4/0.1)+1)]',[3:0.1:7]']; 

    p2   = [[zeros(1,(4/0.1)+1)]',[3:0.1:7]'];  

elseif (K == 4) 

    p    = zeros(m,2); 

    p1   = [[50:0.1:55]',[55:-0.1:50]']; 

    p2   = [[-15:0.1:-10]',[50:0.1:55]']; 

elseif (K == 5) 

    p    = [[8.5*ones(1,m)]',[2*ones(1,m)]']; 

    p1   = [[7.5:0.1:9.5]',[40*ones(1,(2/0.1)+1)]']; 

    p2   = [[7.5:0.1:9.5]',[40*ones(1,(2/0.1)+1)]']; 

end  

%----------------% 

% Boundary Array % 

%----------------% 

  

if (K == 1) 

    bdry = [[0:0.1:20,0:0.1:20,10*ones(1,(1/0.1)+1),10*ones(1,(1/0.1)+1)... 

        ]',[3*ones(1,(20/0.1)+1),6*ones(1,(20/0.1)+1),3:0.1:4,5:0.1:6]',]; 

    BDRY = 1; 

elseif (K == 2) 

    bdry = [[-50:0.1:150,-50:0.1:150]'... 

        ,[6*ones(1,(200/0.1)+1),14*ones(1,(200/0.1)+1)]']; 

    BDRY = 1; 

elseif (K == 3) 

    bdry = [[5:0.1:15,5:0.1:15,5*ones(1,(3/0.1)+1),5*ones(1,(3/0.1)+1)... 

        ,15*ones(1,(3/0.1)+1),15*ones(1,(3/0.1)+1)]'... 

        ,[3*ones(1,(10/0.1)+1),7*ones(1,(10/0.1)+1),0:0.1:3,7:0.1:10,... 

        0:0.1:3,7:0.1:10]']; 

    BDRY = 1; 

elseif (K == 4) 

    BDRY = 0; 

elseif (K == 5) 

    bdry = [[-30:0.1:10,-30:0.1:7,10*ones(1,(40/0.1)+1),... 

        7*ones(1,(37/0.1)+1)]',[zeros(1,(40/0.1)+1),3*ones(1,(37/0.1)+1)... 

        ,0:0.1:40,3:0.1:40]']; 

    BDRY = 1; 

end  

%----------------------------------------% 

% The solver for the system - here ode45 % 

%----------------------------------------% 

  

options1 = odeset('AbsTol',1d-3,'RelTol',1d-4);  

[t1,u1] = ode45(@fun5,tspan,start,options1);  

pause  

%---------------------------------------% 

% Plotting the paths of the pedestrians % 

%---------------------------------------% 

  

% Plotting the boundaries % 

if (K == 4) 

    hold on 
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else 

    plot(bdry(:,1),bdry(:,2),'rx') 

    if (K == 1)||(K==3) 

        axis([0,20,0,10]); 

    elseif (K == 2) 

        axis([25,75,0,20]); 

    elseif (K == 5) 

        axis([0,10,0,10]); 

    end 

    hold on 

end 

% Plotting the pedestrian paths % 

for i = (2*m)+1:2:(4*m) 

    if (i<=3*m) 

        plot(u1(:,i),u1(:,i+1),'b-') 

        if (K == 1)||(K == 3) 

            axis([0,20,0,10]); 

        elseif (K == 2) 

            axis([25,75,0,20]) 

        elseif K == 4 

            axis([0,40,0,40]); 

        elseif K == 5 

            axis([0,10,0,10]); 

        end 

        hold on 

    else 

        plot(u1(:,i),u1(:,i+1),'r-') 

        if (K == 3)||(K ==1) 

            axis([0,20,0,10]); 

        elseif (K == 2) 

            axis([25,75,0,20]) 

        elseif K == 4 

            axis([0,40,0,40]); 

        elseif K == 5 

            axis([0,10,0,10]); 

        end 

        hold on 

    end 

end  

pause  

%-----------------------------------------------------------% 

% Making the Movie - plots the pedestrian positions at each % 

% timestep and then uses each plot as a movie frame         % 

%-----------------------------------------------------------% 

  

for j = 1:length(t1) 

    % Plotting the boundaries % 

    if (K == 4) 

        hold off 

    else 

        hold off 

        plot(bdry(:,1),bdry(:,2),'rx') 

        if (K == 1)||(K == 3) 

            axis([0,20,0,10]); 

        elseif (K == 2) 

            axis([25,75,0,20]); 

        elseif (K == 5) 

            axis([0,10,0,10]); 

        end 

        hold on 
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    end 

    % Plotting the pedestrians % 

    for i = (2*m)+1:2:(4*m) 

        if (i<=3*m) 

            plot(u1(j,i),u1(j,i+1),'bo') 

            if (K == 1)||(K == 3) 

                axis([0,20,0,10]); 

            elseif (K == 2) 

                axis([25,75,0,20]) 

            elseif K == 4 

                axis([0,40,0,40]); 

            elseif K == 5 

                axis([0,10,0,10]); 

            end 

            hold on 

        else 

            plot(u1(j,i),u1(j,i+1),'ro') 

            if (K == 3)||(K ==1) 

                axis([0,20,0,10]); 

            elseif (K == 2) 

                axis([25,75,20]) 

            elseif K == 4 

                axis([0,40,0,40]); 

            elseif K == 5 

                axis([0,10,0,10]); 

            end 

            hold on 

        end 

    end 

    F(j) = getframe; 

end 

  

clf 

 

A.2 fun5.m 

% Driving force, pedestrian interaction and boundary interaction function % 

%-------------------------------------------------------------------------% 

  

function f0a = fun5(t,u)  

global m bdry p p1 p2 D way BDRY x0  

global tau v0a0 vmax r A1a A2a B1a B2a lambda A1 B1 VS dist 

  

%---------------------------------------------------% 

% Putting pedestrian positions in a separate vector % 

%---------------------------------------------------% 

  

for i = 1:m 

    x(i,1) = u((2*i)-1+(2*m)); 

    x(i,2) = u((2*i)+(2*m)); 

end  

%-------------------------------------------------------% 

% Setting inital position for average speed calculation % 

%-------------------------------------------------------% 

  

if (t == 0) 

    x0 = x; 

end 
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%-------------------------------% 

% Desired Velocity from (2.6.6) % 

%-------------------------------% 

for i = 1:m 

    if t == 0 

        v0a(i) = v0a0; 

    else 

        V (i,:)    = x(i,:) - x0(i,:); 

        Vbar       = norm(V(i,:)/t); 

        na         = 1 - (Vbar/v0a0); 

        v0a(i)     = (1 - na)*v0a0 + na*vmax; 

    end 

    %-----------------------% 

    % Desired destination p % 

    %-----------------------% 

    if (way == 1) 

        % Pedestrians in area A (L-Hand corner for Scramble Crossing) % 

        if (i <= m/2) 

            nrmpx(i) = norm(p(i,:) - x(i,:)); 

            if (nrmpx(i) < dist) 

                D(i) = 1; 

            end 

            if (D(i) == 1) 

                p(i,:) = p1(1,:); 

                nrmpx(i) = norm(p(i,:) - x(i,:)); 

                for j = 1:length(p1) 

                    if (norm(p1(j,:) - x(i,:)) < nrmpx(i)) 

                        p(i,:) = p1(j,:); 

                        nrmpx(i) = norm(p(i,:) - x(i,:)); 

                    end 

                end 

            end 

            % Pedestrians in area B (R-Hand corner for Scramble Crossing) % 

        elseif (i > m/2) 

            nrmpx(i) = norm(p(i,:) - x(i,:)); 

            if (nrmpx(i) < dist) 

                D(i) = 1; 

            end 

            if (D(i) == 1) 

                p(i,:) = p2(1,:); 

                nrmpx(i) = norm(p(i,:) - x(i,:)); 

                for j = 1:length(p2) 

                    if (norm(p2(j,:) - x(i,:)) < nrmpx(i)) 

                        p(i,:) = p2(j,:); 

                        nrmpx(i) = norm(p(i,:) - x(i,:)); 

                    end 

                end 

            end 

        end 

    elseif (way == 0) 

        % Pedestrians in area A (L-Hand corner for Scramble Crossing) % 

        if (i <= m/2) 

            p(i,:) = p1(1,:); 

            nrmpx(i) = norm(p(i,:) - x(i,:)); 

            for j = 1:length(p1) 

                if (norm(p1(j,:) - x(i,:)) < nrmpx(i)) 

                    p(i,:) = p1(j,:); 

                    nrmpx(i) = norm(p(i,:) - x(i,:)); 

                end 
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            end 

            % Pedestrians in area B (R-Hand corner for Scramble Crossing) % 

        elseif (i > m/2) 

            p(i,:) = p2(1,:); 

            nrmpx(i) = norm(p(i,:) - x(i,:)); 

            for j = 1:length(p2) 

                if (norm(p2(j,:) - x(i,:)) < nrmpx(i)) 

                    p(i,:) = p2(j,:); 

                    nrmpx(i) = norm(p(i,:) - x(i,:)); 

                end 

            end 

        end 

    end 

    %---------------------------------------% 

    % Desired Direction vector from (2.6.5) % 

    %---------------------------------------% 

    if (nrmpx(i) == 0) 

        e(i,:) = [0,0]; 

    else 

        e(i,:) = (p(i,:) - x(i,:))/(nrmpx(i)); 

    end 

    %--------------------------------------% 

    % Driving Force component from (2.6.4) % 

    %--------------------------------------% 

    f((2*i)-1) = ((v0a(i)/tau) * e(i,1)) - (u((2*i)-1)/tau); 

    f((2*i))   = ((v0a(i)/tau) * e(i,2)) - (u((2*i))/tau); 

    %---------------------------------------------------------------------% 

    % Pedestrian Interactions from (2.6.8) - Summing all the interactions % 

    %---------------------------------------------------------------------% 

    fab = [0,0]; 

    for j = 1:m 

        if (i ~= j) 

            dab = norm(x(i,:) - x(j,:)); 

            if (dab < VS) 

                rab = r(i) + r(j); 

                nab = ((x(i,:) - x(j,:))/dab); 

                fab = fab + ((A1a*exp((rab - dab)/B1a))*nab)... 

                    *(lambda + (1 - lambda)*((1+(-nab*e(i,:)'))/2))... 

                    + ((A2a*exp((rab - dab)/B2a))*nab); 

            end 

        end 

    end 

    f((2*i)-1) = f((2*i)-1) + fab(1,1); 

    f((2*i))   = f((2*i)) + fab(1,2); 

    %---------------------------------------------------------------------% 

    % Boundary Interaction component, this is analogous to the pedestrian % 

    % interactions - infact the formula only needs different constants    % 

    %---------------------------------------------------------------------% 

  

    %-----------------------------------------------------% 

    % Summing all the boundary interactions from (2.6.12) % 

    %-----------------------------------------------------%  

    if BDRY == 1 

        for j = 1:length(bdry) 

            if (j == 1) 

                daB = norm(x(i,:) - bdry(j,:)); 

                BDY = bdry(j,:); 

                rd  = r(i) - daB; 

            elseif ((norm(x(i,:) - bdry(j,:))) < daB) 

                daB = norm(x(i,:) - bdry(j,:)); 
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                BDY = bdry(j,:); 

                rd  = r(i) - daB; 

            end 

        end 

        naB = (x(i,:) - BDY)/daB; 

        faB = ((A1*exp(rd/B1))*naB); 

        f((2*i)-1) = f((2*i)-1) + faB(1,1); 

        f((2*i))   = f((2*i)) + faB(1,2); 

    end 

    %----------------------------------% 

    % Displacement update from (2.6.1) % 

    %----------------------------------% 

    X((2*i)-1)= u((2*i)-1); 

    X(2*i)    = u(2*i);  

end 

  

f0a = [f,X]'; 


