
Proxy support for service discovery using

mDNS/DNS-SD in low power networks

Milosh Stolikj, Richard Verhoeven, Pieter J. L. Cuijpers, and Johan J. Lukkien,

Dept. of Mathematics and Computer Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

Abstract—We present a solution for service discovery of
resource constrained devices based on mDNS/DNS-SD. We extend
the mDNS/DNS-SD service discovery protocol with support for
proxy servers. Proxy servers temporarily store information about
services offered on resource constrained devices and respond on
their behalf while they are not available. We analyze two pro-
tocols for the delegation mechanism between a service provider
and a proxy server: an active proxy protocol, as used in the
mDNS/DNS-SD implementation by Apple, and a new, passive
proxy protocol. We implement and simulate both approaches.
Based on the delay and energy usage, we show that the second
approach converges faster, thus saving more energy by allowing
the resource constrained device to be turned off earlier.

I. INTRODUCTION

The Internet of Things (IoT) is a vision of a global,

dynamic network of heterogeneous devices, connected via

standards based protocols. The IoT will connect virtually every

electronic device, from desktop machines to ubiquitous sensors

and actuators. Therefore, significant effort has been made

towards the specification and adaptation of software protocols

which can be supported by all devices. For instance, since the

IPv6 standard for end to end connectivity is not applicable for

low power networks, a specific adaptation layer (6LowPAN)

has been developed and standardized. Such protocols are

intended to be run even on the low end spectrum of the IoT,

where devices have little memory, low cost/low data rate radio

chipsets and limited battery life.

Service oriented computing has been seen as a potential

programming paradigm for the IoT [1]. At the simplest level,

resources on low power devices can be exposed to the local or

global network in the form of services: ex. services for reading

sensor measurements or actuating switches. These services can

be further composed in more complex services, to provide new

functionality. The successful realization of this vision relies on

the availability of a common service discovery protocol. Fur-

thermore, using a standards-based service discovery protocol

will ease the burden of integration of heterogeneous devices.

Previous research [5] [6] has identified the Multicast Domain

Name System (mDNS) [2] with DNS based Service Discovery

(DNS-SD) [3] as a potential protocol for service discovery in

the IoT, and this protocol is the focus of this paper.

mDNS is an extension of the DNS protocol for local

area networks. The main differences with the original DNS

protocols are: 1) naming information is stored locally, on each

This work is supported in part by the Dutch P08 SenSafety Project, as part
of the COMMIT program.

node in the network; 2) queries are sent multicast instead

of unicast; and 3) each node directly responds to queries.

Similarly, DNS-SD is an extension of DNS which uses DNS

resource records to describe services in a domain-name like

fashion. The service description can further specify the service

protocol and additional context information.

Resource constrained, battery powered devices can not effi-

ciently participate in the mDNS/DNS-SD protocol due to their

large off-line periods. Battery powered devices use low radio

duty cycles to increase their life time, while mDNS/DNS-SD

assumes devices to be constantly online. Therefore, if a query

for a service hosted at a battery powered device comes while

the device is off-line, the service will not be detected.

In this paper, we present an extension to the mDNS/DNS-

SD protocol for resource constrained devices. We enable

devices to be unavailable for longer periods of time, yet still

remain discoverable, by delegating their role in the service

discovery protocol to proxy servers. We describe two protocols

for the delegation: an active proxy protocol, as used in the

mDNS/DNS-SD implementation by Apple, and a new, passive

proxy protocol. In the active proxy protocol, the service

provider searches and selects the proxy server for delegation.

In the passive proxy protocol, the service provider only signals

its intention that it requires a proxy service: the proxy server

picks up and processes the intention on its own. We implement

both protocols in the Contiki [4] operating system. Finally,

we compare the two protocols in terms of code size, memory

requirements, energy usage and delay.

The paper is structured as follows. Section II covers re-

lated work on service discovery. Section III introduces the

mDNS/DNS-SD protocol, while the protocol extensions are

described in section IV. Section V reports simulation results

of the performance of both extensions in a single-hop network.

Finally, section VI gives a summary of the presented work.

II. RELATED WORK

Related research in service discovery can be divided into

two groups: generic service discovery protocols and their

application to resource constrained devices, and service dis-

covery protocols directly targeted at low power networks.

mDNS/DNS-SD is a widely used standard for service dis-

covery in local area networks. It has been implemented in all

major operating systems for high capacity devices, as well as

in resource constrained devices [5] [6]. Further optimizations

of the protocol have been proposed [7] to reduce message sizes

in order to support low power networks better. These changes

do not capture the always-on requirements of the protocol,

which is investigated in this paper.

The Service Location Protocol (SLP) [8] is another stan-

dardized service discovery protocol for local area networks.

SLP has been designed to scale from small, decentralized

networks to large corporate networks. A 6LowPAN adaptation

of SLP has been proposed [9], but it now seems abandoned.

Furthermore, the protocol has been extended with proxy

agents [10], for connecting high and low power networks, and

context support such as proximity services [11].

The Simple Service Discovery Protocol (SSDP) [12] is part

of the Universal Plug and Play (UPnP) specification, which

is a commonly used software stack for consumer electronics

devices. The protocol itself is rather heavy in terms of message

sizes. Therefore, like with SLP, the ports of SSDP to low

power networks rely on application level gateways [13], which

translate messages between the high and low power networks.

Many service discovery protocols have been designed with

resource constrained devices in mind. These protocols can

operate in single-hop [14], centralized [16], hierarchical [15]

or 6LowPAN [17] networks. Even though such protocols

optimize the performance on low power networks, the in-

terpretability with high power networks becomes reliant on

application level gateways. In order to provide seamless inte-

gration, reduce the translation overhead and preserve end-to-

end transparency, such gateways should be minimized in the

IoT, which limits the usability of such specific protocols.

III. MDNS/DNS-SD SERVICE DISCOVERY

mDNS and DNS-SD form the core service discovery proto-

col in Bonjour, a zero-configuration implementation by Apple.

The protocol consists of two components: a communication

protocol defined by mDNS, and a service discovery and

service description protocol defined by DNS-SD.

mDNS is an extension over the unicast Domain Name

System (DNS [18]) for name resolution in local area networks.

Names can refer to addresses, as in classic DNS, or to services,

using DNS-SD. Therefore, mDNS exclusively resolves host

names ending with the .local top level domain. The packet

structure in mDNS is similar to the one defined in the

DNS protocol. The main difference between the two comes

in the message exchange protocols: mDNS foresees a fully

distributed environment, where resolution information is stored

locally on each device within a small network, and each device

directly answers to incoming name resolution queries. In that

sense, every participating device acts both as a server and a

resolver. As a result, multicast messaging is used to effectively

distribute both queries and responses.

DNS-SD is a standard which enables DNS clients to dis-

cover named instances of a given service using DNS resource

records (RR). A service instance in DNS-SD is described using

SRV, TXT, PTR and A/AAAA RRs (Figure 1), connected by

the service instance name. The SRV RR holds information

of the name of the service instance, service type (protocol),

time to live, priority, weight, port number, and the endpoint.

The priority and weight parameters give preference when the

same service is hosted by multiple instances. The endpoint

parameter is in the form of a host name, which is resolved

to an IP address by an A/AAAA RR. The TXT RR contains

the service metadata in the form of [key]:[value] pairs. The

exact content depends on the protocol used, and can include an

URI path for a specific resource, invocation parameters, more

specific service description etc. Finally, PTR RRs provide the

mapping between service types and service instances.

In mDNS/DNS-SD, all RRs describing a service instance

are stored on the node providing the service. The discovery of

a service is shown in Figure 2.

lsensor._light._sub._coap._udp.local. IN SRV 0 1 1234 sensor1.local.

lsensor._light._sub._coap._udp.local. IN TXT "PATH=/light/switch1\;if=01"

_light._sub._coap._udp.local. IN PTR lsensor._light._sub._coap._udp.local.

sensor1.local. IN AAAA aaaa::1

Service

instance

Service type

(Protocol)
Domain Type Priority Weight Port Endpoint

AddressAlias

(search criteria)

Metadata

(access information)

Fig. 1. DNS-SD description of a light sensor service. The four resource
records are connected through the name of the service.

mDNS in combination with DNS-SD enables easier man-

agement and deployment of dynamic networks. Since there is

no need to configure separate DNS servers, auto-configuration

is easier. Furthermore, adding new devices to the network

is trivial, since the new devices can discover and advertise

network services independently.

Since mDNS/DNS-SD had been designed for service dis-

covery in local area networks of high capacity devices, it is

not directly applicable to networks of resource constrained

devices. For example, due to memory limitations alone, it is

impossible to reuse existing implementations of the protocols.

Table I shows the memory profile of several implementations

of mDNS/DNS-SD, including our own optimised implementa-

tion, for different device types. From the table, it is clear that

the original Bonjour implementation cannot fit on resource

constrained devices. Even the Arduino port, which is already

a feature-limited implementation of mDNS/DNS-SD, is too

large to fit on small factor devices.

TABLE I
CODE AND MEMORY FOOTPRINT OF DIFFERENT

MDNS/DNS-SD IMPLEMENTATIONS

Implementation Code Memory

Bonjour by Apple 500KB 1 /
Ethernet Bonjour for Arduino 14KB /
uBonjour for Contiki [5] 7.69KB 0.4KB

mDNS/DNS-SD for Contiki 2 6.51KB 0.7KB

1 Based on the size of mDNSResponser.exe on 64 bit
platforms. Memory information is unavailable.

2 Available at https://github.com/mstolikj/contiki

IV. PROXY SUPPORT FOR SLEEPING NODES

One of the drawbacks of practical implementations of

mDNS/DNS-SD is that devices are assumed to be constantly

Service Provider2

server2.local

aaaa::2

Service Client

client.local

aaaa::3

mDNS_response

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

mDNS_query

PTR _light._sub._coap._udp.local

Service Provider1

server1.local

aaaa::1

mDNS_response

PTR: _light._sub._coap._udp.local

→ l2._light._sub._coap._udp.local

mDNS_query

SRV l1._light._sub._coap._udp.local

mDNS_response

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1, server1.local

mDNS_query

TXT l1._light._sub._coap._udp.local

mDNS_response

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01”

mDNS_query

AAAA server1.local

mDNS_response

AAAA: server1.local

→ aaaa::1

(a) Service discovery without packet fragmentation

Service Provider2

server2.local

aaaa::2

Service Client

client.local

aaaa::3

mDNS_response

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1, server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01”

AAAA: server1.local

→ aaaa::1

mDNS_query

ANY _light._sub._coap._udp.local

Service Provider1

server1.local

aaaa::1

mDNS_response

PTR: _light._sub._coap._udp.local

→ l2._light._sub._coap._udp.local

SRV: l2._light._sub._coap._udp.local

→ Weight:1, Priority:1, server2.local

TXT: l2._light._sub._coap._udp.local

→ “PATH=/light/switch2;if=01”

AAAA: server2.local

→ aaaa::2

(b) Service discovery with packet fragmentation

Fig. 2. Resolving a service using mDNS/DNS-SD. First, the resolver needs to find service instances of the requested service, provided by PTR RR. Then, the
actual service is resolved, through SRV and TXT RRs. Finally, the host providing the service is resolved via A/AAAA RRs. Depending on the implementation,
the four RRs can be distributed independently, in separate packets (a), or can be packed into one larger packet (b). The former is easier to implement, but the
latter results in smaller payloads. Using DNS name compression, the four RRs fit in 158 bytes. On a 128 byte frame as, for example, used in 802.15.4, the
four compressed RR’s would be fragmented in two frames. Note: all messages are multicast and all nodes belong to the same broadcast domain.

online. This comes from the distributed nature of the protocol:

if a device is not online when a query for one of its services

arrives, it will not be able to respond to it, thus its services will

be undetectable. Additionally, in order to be able to quickly

adapt to network changes, such as devices leaving from the

network, services are advertised with relatively short time-

to-live intervals (2 minutes on LANs). Frequent messaging

is an unwanted feature for low power networks due to the

limited battery life of the participating devices. As illustrated

in [19], this behaviour introduces a trade-off between signaling

frequency, i.e. increased traffic in the network, and the risk of

discovering non-existing services.

In order to use mDNS/DNS-SD for service discovery in

sensor networks, the protocol has been adapted to accom-

modate devices with low duty cycles, or so called sleeping

service providers (SSP). One approach to facilitate SSPs is

to introduce proxy servers on high capacity (non battery pow-

ered) devices. Proxy servers are responsible for taking some of

the workload from the SSPs which they serve. In this paper,

we focus only on proxy support for service advertisements.

We consider two mechanisms for the delegation protocol

between the SSP and the proxy server: active and passive

proxy protocol. The distinction is based on the role of the

sleeping device in the proxy selection phase. Both approaches

are explained in the forthcoming sections.

A. Active proxy

Using an active proxy protocol, the SSP is the entity

which selects the proxy server to be used. The protocol is

described in Figure 3. The SSP initiates the protocol by first

searching for a proxy server. After the SSP has selected a

suitable proxy server, it first finds a route to it it, and then

registers with it. Depending on the response received from

the proxy server, the SSP begins its sleep cycle or tries to

register to a different proxy server. The registration protocol

itself is outside of the mDNS/DNS-SD specification and varies

between implementations.

We follow the Bonjour implementation by Apple as an

active proxy protocol. The Bonjour active proxy is available

as another service in the network, advertised as a sleep-

proxy. udp service. By reverse engineering the Bojour protocol

we discovered that the SSP registers with the proxy server by

sending an unicast dynamic DNS update packet (DDNS) [20],

which contains all RRs which should be hosted at the proxy,

and an EDNS0 RR [21] which specifies the lease time of

the proxy hand-off [22], and ownership information of the

SSP [23]. The ownership information is used to transfer the

MAC addresses to the proxy server. This address is used to

both intercept messages destined for the service provider while

it is not available, as well as for waking up the service provider.

The proxy server always returns a unicast response, which

informs the SSP whether the proxy request was accepted.

B. Passive proxy

The new passive proxy protocol reduces the number of

messages that need to be sent by embedding the service ad-

vertisement with the proxy registration. As shown in Figure 4,

the SSP adds a parameter in the TXT RR of its service which

signals the intent that the service advertisement should be

processed by a proxy server. The server that decides to serve

Proxy Server

aaaa::2

Service Client

aaaa::3

mDNS query

PTR _sleep-proxy._udp.local

mDNS response

PTR: _sleep-proxy._udp.local

→ p1._sleep-proxy._udp.local

SRV: p1._sleep-proxy._udp.local

→ Weight:1, Priority:1, proxy1.local

TXT: p1._sleep-proxy._udp.local

AAAA: proxy1.local

→ aaaa::2

DDNS register

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1,server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01”

AAAA: server1.local

→ aaaa::1

EDNS0: Lease time, MAC, Password

mDNS_query

PTR _light._sub._coap._udp.local

mDNS_response

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1, server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01”

AAAA: server1.local

→ aaaa::1

IPv6 ND

aaaa::2

IPv6 ND

aaaa::2->[…]

Sleeping Service Provider

aaaa::1

Step1: Proxy discovery

Step 2: Route discovery

Step 3: Proxy registration

DDNS registration acknowledment

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1,server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01”

AAAA: server1.local

→ aaaa::1

EDNS0: Lease time, MAC, Password

Fig. 3. Active proxy protocol in mDNS/DNS-SD. The service provider
selects a proxy service and registers to it. Afterwards, the proxy server
responds on behalf of the service provider. Note: full lines portray multicast
messages; dashed lines portray unicast messages.

the request acknowledges the delegation by re-sending the

service advertisement. The distinction between advertisements

originating from the service provider and cached advertise-

ments from the proxy server is done using the Authoritative

Answer bit (AA). The purpose of the re-transmission is two

fold: 1) the SSP knows that someone has handled its request

and can go to sleep; and 2) other proxy servers know that

they need not process that advertisement. The protocol can

be further optimized by re-transmitting only the first SRV RR

in order avoid unnecessary distribution of large (fragmented)

messages. The SRV RR is unique to the SSP and can be

undoubtedly interpreted by the SSP and by other proxy servers.

The proxy server needs to know the duration of the sleep

cycle of the SSP. With the active proxy protocol, this informa-

tion is sent directly to the proxy server within the registration

message, in the form of the lease time. With the passive proxy

protocol, it has to be added within the advertisement message.

This information, along with the request to be proxied, can

be added as additional parameters of the service that are

added within the TXT description of the service advertisement

(Figure 5). Similarly, other required parameters, such as the

MAC address, can be transferred. The compact nature of

these two descriptions is of paramount importance since large

service advertisements can lead to packet fragmentation.

mDNS_response, Authorative Answer=1

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1, server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01;Proxied=1”

AAAA: server1.local

→ aaaa::1

mDNS_response, Authorative Answer=0

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1, server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01;Proxied=2”

AAAA: server1.local

→ aaaa::1

mDNS_query

PTR _light._sub._coap._udp.local

mDNS_response, Authorative Answer=0

PTR: _light._sub._coap._udp.local

→ l1._light._sub._coap._udp.local

SRV: l1._light._sub._coap._udp.local

→ Weight:1, Priority:1, server1.local

TXT: l1._light._sub._coap._udp.local

→ “PATH=/light/switch1;if=01;Proxied=2”

AAAA: server1.local

→ aaaa::1

Proxy Server

aaaa::2

Service Client

aaaa::3

Sleeping Service Provider

aaaa::1

Fig. 4. Passive proxy protocol in mDNS/DNS-SD. The service provider
indicates that it wants to be served by a proxy server in the service
advertisement. This request is processed by the proxy server, and from there
on, it starts responding on behalf of the service provider. The request is
acknowledged by re-sending the advertisement. All messages are multicast.

lsensor._light._sub._coap._udp.local. IN TXT "Proxied=1; DutyCycle=50ms;PATH=/light/switch1\;if=01"

lsensor._light._sub._coap._udp.local. IN SRV 0 1 1234 sensor1.local.

_light._sub._coap._udp.local. IN PTR lsensor._light._sub._coap._udp.local.

sensor1.local. IN AAAA aaaa::1

Flag for request

for proxy
Sleep time

Fig. 5. Embedded registration request for the passive proxy protocol.

V. EVALUATION

We compare the performance of the active and passive proxy

protocols by simulating a set of nodes. We are interested

in memory footprint, the delay and energy consumption for

registering a service with a proxy server.

A. Memory footprint

We implemented both protocols for proxy registration in

the Contiki operating system [4]. The size of the modules,

compiled using the msp430-gcc 4.5.3 compiler for the Tmote

Sky sensor motes [24], are shown in Table II.

Both the passive proxy client and the proxy server are

smaller than the corresponding active proxy components. This

difference is due to the additional complexity required for

implementing the DDNS protocol for the proxy registration.

Even though the packet format is similar in DDNS and mDNS,

additional resources are used for establishing the connection

for the DDNS update protocol.

B. Simulation

We simulated a single hop scenario in Cooja [26], a cross-

level simulator for the Contiki operating system. Cooja in-

ternally uses the MSPsim device emulator for cycle accurate

Tmote Sky emulation, as well as a symbol accurate emulation

of the CC2420 radio chip. The test network consisted of three

Tmote Sky nodes - a sleeping service provider, a proxy server

 0

 10

 20

 30

 40

 50

 60

 70

 80 85 90 95 100

E
n
e
rg

y
 (

m
J
)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

(a) Sleeping Service Provider

 0

 10

 20

 30

 40

 50

 60

 80 85 90 95 100

E
n
e
rg

y
 (

m
J
)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

(b) Proxy Server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80 85 90 95 100

E
n
e
rg

y
 (

m
J
)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

(c) Overhearing Node

Fig. 6. Energy usage for completing the active and passive proxy protocol. ap and pp refer to the active/passive proxy protocol, with 4, 8 and 16Hz wake-up
intervals for the ContikiMAC radio duty cycling protocol. ap-hole refers to the optimized version of the active proxy protocol. The energy usage of the
overhearing node (c) is measured for the entire simulation duration.

TABLE II
CODE AND MEMORY FOOTPRINT OF DIFFERENT

COMPONENTS FOR PROXY REGISTRATION, IN ADDITION

TO THE MDNS/DNS-SD IMPLEMENTATION (BYTES)

Component Proxy protocol Code Memory

Service provider active 1.484 66
Proxy server active 1.268 452
Service provider passive 1.136 90
Proxy server passive 902 432

(PS), and a dummy node, all located in the same single-hop

6LoWPAN network. The SSP advertises one service, described

using four RRs: PTR, SRV, TXT and AAAA. All four RRs are

stored in a single DNS packet, which is then fragmented into

two 802.15.4 frames for transport. All nodes use the CSMA-

CA MAC protocol together with the ContikiMAC [25] radio

duty cycling protocol (RDC) with wake-up frequencies of 4,

8 and 16 Hz, which results in wake-up intervals of 250ms,

125ms and 62.5ms, accordingly.

The simulation starts with all nodes being online. At second

5, the SSP advertises its service. At second 7, the SSP starts

registering with the PS using one of the previously described

protocols. After the registration finishes, the SSP turns off its

radio. The simulation is stopped when the proxy registration

completes. The dummy node does not participate in the proxy

protocol, but it overhears all traffic in the network. We use it

to show the impact of the protocols to nodes in the vicinity.

Due to packet loss, the proxy registration may not succeed

in its first iteration. Therefore, we implemented repetitions of

individual stages of the proxy protocols based on the expiry

of fixed timeouts. The timeout for competition of step 1 from

the active proxy protocol and the entire passive proxy protocol

is set at 5 times the RDC wake-up interval. The repetition of

step 2 of the active proxy protocol is dictated by the neighbour

discovery protocol, and the timeout is fixed at 10 seconds.

Finally, the timeout of the entire step 3 is set at 2 seconds. This

should be enough to capture any retransmissions of unicast

frames by the CSMA-CA protocol.

The simulations were executed using a constant loss rate

model for radio propagation, with varying packet delivery ratio

 0

 1

 2

 3

 4

 5

 6

 7

 8

 80 85 90 95 100

D
e
la

y
 (

s
)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

Fig. 7. Required time (delay) for completing the active and passive
proxy protocol, as measured by the service provider. ap and pp refer to
the active/passive proxy protocol, with 4, 8 and 16Hz wake-up intervals for
the ContikiMAC radio duty cycling protocol. ap-hole refers to the optimized
version of the active proxy protocol.

between 80 and 100%, at 2% increments. The charts show the

mean values of 1.000 runs, and the error bars correspond to

the 95% confidence interval of the mean.

We compared the performance of the active (ap) and passive

proxy (pp) registration protocol. To verify the impact of the

neighbour discovery protocol on the active proxy protocol, we

also implemented an optimized version of the active proxy

protocol (ap-hole), where the neighbour discovery stage (step

2 from Figure 3) is skipped. In this optimised version, the link

layer address of the proxy server is generated from the last 8

bytes of the IPv6 address, present in the AAAA RR of the

sleep-proxy service description.

Figure 7 shows the delay, i.e. the time elapsed from starting

the proxy registration protocol until its completion. As ex-

pected, increasing the wake-up interval results in much higher

delays. With all three different wake-up parameters, due to

the smaller number of messages, the passive proxy protocol

finishes much faster than the active proxy protocol. The

improvements vary depending on the channel check interval

rate and the radio error rate, from 2 to 6 fold. The optimized

active proxy protocol also converges faster, up to 2 fold.

The difference between the two versions grows as the packet

delivery ratio drops. Still, even the optimized version requires

more time to complete than the passive proxy protocol.

Figure 6 shows the energy usage of the SSP and the proxy

server during the proxy registration. These measurements were

profiled using the software power profiler Powertrace [27].

Contrarily to expectations, increasing the wake-up interval

actually increases the energy usage for the proxy server and the

SSP. This behaviour is due to the radio duty cycling protocol:

ContikiMAC makes senders do more work than receivers.

The energy usage of the passive proxy protocol is lower

compared to the active proxy protocol, though the differences

are not as high as with the delay. We attribute this behaviour

to the efficiency of the ContikiMAC protocol. Furthermore, in

the active proxy protocol, if a message loss occurs during the

neighbour discovery phase, the sender will be silent for the

entire timeout period, which introduces a large delay, but not

much energy usage. This is visible in the energy usage of the

active proxy protocol and the optimized version with a 4Hz

wake-up interval. Even though the difference between the two

in terms of delay is large, they consume similar amounts of

energy at the proxy server side.

Finally, Figure 6c shows the average energy usage of the

dummy node in the network. The energy usage is measured

during the entire simulation, and includes the mDNS initial-

ization stage, where every node advertises its host name and

address. The passive proxy protocol requires less energy due to

the smaller number of messages during both the initialization

phase and registration phase. The passive proxy is silent during

the initialization phase, while the active proxy advertises the

sleep-proxy service. Surprisingly, the neighbour discovery

does not significantly impact the active proxy protocol in

this aspect. Namely, the energy footprint of the active proxy

protocol is close to the optimized version.

VI. CONCLUSION

In this paper we proposed an extension to the mDNS/DNS-

SD protocol for service discovery for low power networks of

resource constrained devices with the help of proxy servers.

We presented two protocols for the delegation mechanism

between the service provider and the proxy server. In the first,

active proxy protocol, the service provider actively searches

and selects the proxy server for delegation. In the second,

passive proxy protocol, the service provider only signals its

intention that it requires a proxy service: the proxy server picks

up and processes the intention as a registration request. Both

protocols were implemented in the Contiki operating system.

The simulations show that in a single hop network, the

passive proxy protocol converges faster, requires less energy

and is smaller in code size when compared to the active proxy

protocol. The improvements vary depending on the MAC

protocol behaviour and the noise in the wireless medium. With

a sender-initiated radio duty cycling layer, the passive proxy

protocol can finish on average up to six times faster than the

active proxy protocol, consuming half of the energy.

For future work, we plan to evaluate the behaviour of both

protocols in a multi-hop network. The underlying multicast

protocol then plays an important role, and emphasizes the

trade-off between multicast and unicast traffic.

REFERENCES

[1] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the soa-based internet of things: Discovery, query, selection, and
on-demand provisioning of web services,” IEEE Trans. Serv. Comput.,
vol. 3, no. 3, pp. 223–235, Jul. 2010.

[2] S. Cheshire and M. Krochmal, “Multicast DNS,” RFC 6762, IETF, 2013.
[3] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC

6763, IETF, 2013.
[4] A. Dunkels, B. Grnvall, and T. Voigt, “Contiki - a lightweight and flex-

ible operating system for tiny networked sensors,” in Work. Embedded

Networked Sensors, ser. Emnets-I, 2004.
[5] R. Klauck and M. Kirsche, “Bonjour contiki: a case study of a dns-based

discovery service for the internet of things,” in Conf. Ad-hoc, Mobile,

and Wireless Networks, ser. ADHOC-NOW, 2012, pp. 316–329.
[6] J. Schoonwalder, T. Tsou, and B. Sarikaya, “Protocol profiles for

constrained devices,” in Work. Interconnecting Smart Objects with the

Internet, 2011.
[7] R. Klauck and M. Kirsche, “Enhanced DNS message compression -

optimizing mDNS/DNS-SD for the use in 6LoWPANs,” in Work. Sensor

Networks and Systems for Pervasive Computing, ser. PerSeNS, 2013.
[8] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location

Protocol, Version 2,” RFC 2608, IETF, 1999.
[9] K. H. Kim, W. A. Baig, S. W. Yoo, S. D. Park, and H. Mukhtar, “Simple

service location protocol (sslp) for 6lowpan,” IETF, 2010.
[10] S. A. Chaudhry, W. D. Jung, A. H. Akbar, and K.-H. Kim, “Proxy-

based service discovery and network selection in 6lowpan,” in High

Performance Computing and Communications, ser. LNCS, 2006, vol.
4208, pp. 525–534.

[11] S. H. Chauhdary, M. Cui, J. H. Kim, A. K. Bashir, and M.-S. Park,
“A context-aware service discovery consideration in 6lowpan,” in Conf.

Convergence and Hybrid Information Technology, 2008, pp. 21–26.
[12] A. Presser and et al, “Upnp device architecture 1.1,” 2008.
[13] R. Bosman, J. J. Lukkien, and R. Verhoeven, “Gateway architectures

for service oriented application-level gateways,” IEEE Tran. Consumer

Electronics, vol. 57, no. 2, pp. 453–461, 2011.
[14] M. Nidd, “Service discovery in deapspace,” Personal Communications,

vol. 8, no. 4, pp. 39–45, 2001.
[15] R. Marin-Perianu, H. Scholten, P. Havinga, and P. Hartel, “Energy-

efficient cluster-based service discovery in wireless sensor networks,”
in Conf. Local Computer Networks, 2006, pp. 931–938.

[16] T. Ozcelebi, J. J. Lukkien, R. Bosman, and O. Uzun, “Discovery,
monitoring and management in smart spaces composed of low capacity
nodes,” IEEE Trans. Consumer Electronics, vol. 56, no. 2, pp. 570–578,
2010.

[17] T. A. Butt, I. Phillips, L. Guan, and G. Oikonomou, “Trendy: An
adaptive and context-aware service discovery protocol for 6lowpans,”
in Work. Web of Things, ser. WoT, 2012.

[18] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034,
IETF, 1987.

[19] M. Tjiong and J. J. Lukkien, “On the false-positive and false-negative
behavior of a soft-state signaling protocol,” in Conf. Advanced Informa-

tion Networking and Applications, ser. AINA, 2009, pp. 971–979.
[20] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, “Dynamic Updates in

the Domain Name System (DNS UPDATE),” RFC 2136, IETF, 1997.
[21] J. Damas, M. Graff, and P. Vixie, “Extension Mechanisms for DNS

(EDNS(0)),” RFC 6891, IETF, 2013.
[22] S. Cheshire and M. Krochmal, “Dynamic dns update leases,” IETF, 2006.
[23] S. Cheshire and M. Krochmal, “Edns0 owner option,” IETF, 2009.
[24] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power

wireless research,” in Symp. Information processing in sensor networks,
ser. IPSN, 2005.

[25] A. Dunkels, “The contikimac radio duty cycling protocol,” SICS
T2011:13, Tech. Rep., 2011.

[26] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Conf. Local Computer

Networks, 2006, pp. 641–648.
[27] A. Dunkels, “Powertrace: Network-level power profiling for low-power

wireless networks,” SICS T2011:15, Tech. Rep., 2011.

