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Abstract — This paper presents a method for optimizing 

software updates of consumer electronic devices running 

multiple applications with a common software component, 

called horizontal patching. Instead of using separate deltas for 

patching different applications, the method generates one 

delta from the other. Due to the large similarities between the 

deltas, this horizontal delta is small in size. Experimental 

results on two test sets, consisting of software updates for 

sensor networks and smart phones, show that significant 

improvements can be achieved. Between 27% and 84% data 

can be saved from transmission, depending on the type of 

applications and shared components
1
. 

 
Index Terms — software update, remote reprogramming, 

horizontal patching, heterogeneous networks. 

I. INTRODUCTION 

Today's consumer applications are running on multiple, 

networked devices. Furthermore, in order to decrease 

development cost and improve interoperability, there is a clear 

tendency to build CE devices on top of a common platform, 

including an operating system [1], a middleware [2] or a 

virtual machine [3]. The range of these devices varies, from 

different generations of smart phones to home entertainment 

systems [4]. A more pervasive type of system is the upcoming 

adaptive ambient lighting system [5], which employs a 

network of low capacity nodes with different roles. For 

instance, while some nodes measure luminance, others are 

responsible for switching the light actuators. 

Updating software is an essential feature of modern CE 

devices, for the purpose of bringing new functionality, or 

correcting discovered bugs. Since the number of devices to be 

updated can be large, the communication medium has 

limitations and the update should be swift, a software update is 

a non-trivial task. This is especially true for networks of 

embedded systems that depend on relatively small batteries. 

Software is most effectively updated in an incremental 

fashion (Fig. 1) [6]. Incremental updates use small scripts 

called deltas (Δ), which contain instructions and data to 

produce an updated version from a previous one. Deltas are 

platform and application specific, i.e. a delta generated for one 

application for a specific platform cannot be used to update 

the same application for another platform or to update a 
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different application. As a result, in networks of 

heterogeneous devices running multiple applications on top of 

a common software component, incremental updates foresee 

separate deltas for each combination of an application with a 

platform.  

 

Fig. 1. Overview of an incremental update. The software update is 

prepared on a system which has both the old and new version of the 

software to be updated. Using a DIFF algorithm, the difference in the two 

versions is captured in the form of deltas. These deltas are usually 

compressed to further reduce in size, and transferred to the device which 

requires the update. There, after decompression, the delta is used to 

patch the old software version into the new version. 

 

Given a network of heterogeneous devices running multiple 

applications on top of a common software component, current 

approaches for software update disseminate separate deltas for 

each device. A feasible method to minimize the 

communication volume is to disseminate the updates using a 

broadcast based scheme instead of unicasting (Fig. 2). 

However, the amount of data that needs to be distributed can 

be further reduced by exploiting the information redundancy 

present in the deltas. 

 

Fig. 2. Updating two different devices in a network. Even though both 

devices might share components, currently individual updates are 

prepared for each of them. Since multiple devices of the same type exist in 

the same network, broadcast/multicast dissemination is preferred to 

unicast. As a result, both updates for device types A and B reach most/all 

devices in the network. 

 

This paper presents horizontal patching, a new method for 

handling code differences in systems running multiple 

applications on top of a common software component. Instead 

of distributing separate deltas for updating individual 



 

applications, horizontal patching can be used to generate one 

delta from the other one, so that both deltas can be distributed 

together. The horizontal delta is smaller in size; hence less 

data needs to be transmitted, saving work, bandwidth and 

energy. 

Experimental validation on two different test sets using two 

different algorithms for incremental update shows significant 

improvements. When small devices are updated, such as 

software in sensor networks of low capacity devices, the 

resulting horizontal delta can save from 27% to 80% data from 

transmission. The improvements depend on the number and 

type of applications which need to be updated. When the 

operating system of smart phones is updated, between 49% 

and 84% data is saved from transmission. Both test cases 

confirm that horizontal patching can be used to great effect to 

improve software updates in large networks of devices sharing 

a common software component. 

The remainder of this paper is organized as follows. Section 

II gives an overview on related work on software updates in 

multi-application networks. Section III describes the model for 

incremental updates and the internals of such algorithms. 

Section IV covers horizontal patching and its application. 

Section V analyses the obtained results. Finally, Section VI 

gives conclusions and ideas for future work. 

II. RELATED WORK 

In this section, first an overview of algorithms for 

incremental update is given. Next, the application of 

incremental update in consumer electronics is covered. 

Subsequently, approaches for incremental updates which 

consider multiple deltas are analyzed and compared to the new 

method presented in this work. 

A. Algorithms for incremental update 

Incremental update uses DIFF algorithms for extracting the 

difference between two consecutive software versions. A 

rough classification of these algorithms can be made based on 

the type of matching done between the software versions. One 

group of algorithms, including VCDIFF [7] and RSYNC [8], 

find completely identical blocks between the two consecutive 

software versions. This makes them relatively fast during both 

delta generation and patching. The second group of 

algorithms, such as BSDIFF [6], find similar but not 

completely identical data blocks between the two software 

versions. Deltas generated using this approach are generally 

smaller, but take significantly more time to be created.  

B. Application of incremental update in consumer 

electronics 

Algorithms for incremental update are general enough to 

have been applied in many domain-specific applications. This 

ranges from software updates in mobile phones [9], sensor 

networks [10], on-vehicle information devices [11] etc. 

Domain-specific variations of the algorithms [12][13][14] 

have been built to enhance the delta generation process in 

order to further reduce the update size. These algorithm 

adaptations can be seen as best practices, which can be 

transferred to other domains to reap similar benefits. 

Updates are generally disseminated in a point-to-point 

fashion, where CE devices connect to a central server and 

retrieve updates. However, when multiple devices are located 

in the same network and have to be updated at once, 

broadcast-based schemes significantly reduce the number of 

transmissions in the network [15]. 

C. Multi-version software update 

Related work on multiple deltas mainly focuses on 

incremental updates of a single application. Kiyohara et al 

[11] enable merging of multiple consecutive VCDIFF deltas 

for one application to decrease the cumulative delta size. The 

result is a single delta which contains instructions and data to 

build the latest software version from any of the previous 

ones. The work presented in this paper is complementary, 

focusing on situations where multiple applications need to be 

updated.  

Bissyandé et al [16] describe an epidemic propagation 

protocol to handle the distribution of multiple deltas of 

applications for the mobile operating systems. The protocol 

assumes that a single application can evolve into multiple 

orthogonal versions, hence multiple deltas exist for it. Their 

approach optimizes the gathering of deltas in an opportunistic 

fashion. Shamsaie et al [17] perform off-line planning of 

updates of multiple applications by examining which 

combination of deltas has the smallest size. The method 

presented in this paper broadens the scope of these two works, 

by allowing one delta to be the source of another delta, 

essentially expanding that search space. 

The work presented in this paper is an extension to the 

horizontal patching approach presented by Stolikj et al [18]. 

The contributions are three fold. Firstly, a systematic approach 

to horizontal patching is given. Secondly, an analysis of its 

scalability is presented. Finally, the approach is validated on 

two sample sets consisting of updates of small resource 

constrained devices as well as updates of smart phones. 

III. INCREMENTAL UPDATE IN MULTI-APPLICATION 

SYSTEMS 

Consider a network of multiple, heterogeneous devices 

sharing a common software component, such as an operating 

system, software middleware or virtual machine engine. The 

software stack on each device consists of a set of applications 

running on top of the shared software component. In certain 

environments, e.g. a sensor network, an embedded system, or 

a mobile platform, the applications are bundled and distributed 

together with the shared software component. In such systems, 

an update of the shared software component results in an 

update of the entire bundle. The bundle of an application with 

the shared software component defines a software entity for 

update, and is from here on referred to as the software bundle 

for a specific device type.  

Let                be the old version of the software 

bundle for device type              . The new version 

of the software bundle is then      
    

    
        

     



 

         . A simple method to reduce the size of data for 

transmission for update is to compress the new software 

before distribution: 
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Algorithms for incremental update, such as BSDIFF and 

VCDIFF, extract the difference between the old and new 

software versions in scripts called deltas. These deltas hold 

instructions and data for how to build the new version from 

the old one, through a method called patching. Since these 

deltas are used to transform different versions of the same 

software set, they can be referred to as vertical deltas, formally 

defined as: 
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A. BSDIFF Delta Encoding 

BSDIFF is a well-established algorithm for delta encoding. 

An update with BSDIFF is created in two steps (Fig. 1). First, 

a delta (Δ) between the two versions is constructed. Then, the 

delta is compressed (compress(Δ)) and sent to the device for 

update. There, after decompression, the delta is applied to the 

old version to reconstruct the new version. 

 

 
Fig. 3. Example of a BSDIFF delta. ADD specifies that the first 27 bytes 

from the old data and from the Diff block are summed. Zeroes in the Diff 

block mean that the corresponding byte from the old data is unchanged. 

INSERT adds four bytes from the Extra block to the output. SEEK 

moves the pointer in the old data three places forward, to the end of the 

stream.   

 

BSDIFF has a two-pass algorithm to construct optimized 

deltas. In the first pass, completely identical blocks are found 

in the two versions. Next, these blocks are extended in both 

directions, such that every prefix/suffix of the extension 

matches in at least half of its bytes. These extended blocks 

correspond to the modified code. 

The BSDIFF delta is built of three parts (Fig. 3): a control 

block of commands; a diff block of bytewise differences 

between approximate matches and an extra block of new data. 

When the old and new versions are similar, the diff block 

consists of large series of zeroes, which are easy to compress. 

 
Fig. 4. Example of a VCDIFF delta. The first instruction copies the first 5 

bytes from the old data (S0). Then, the next 10 bytes are added, after 

which two blocks from the newly written data are copied (T14 and T6). 

The last four bytes are again added from the delta. 

 

B. VCDIFF Delta Encoding 

VCDIFF is a format for encoding the difference between 

two data sets (Fig. 4). The original idea for it comes from data 

compression algorithms - the old and new version are 

concatenated; then the resulting stream is compressed using a 

data compression algorithm. From the output, the first part, 

which corresponds to the old version, is omitted, leaving only 

the instructions for the decoder to decompress the new 

version. VCDIFF features a detailed byte-code instruction set, 

consisting of a small number of instructions, which can be 

used in different addressing modes, accessing both the old and 

the new data. Additionally, a cache of recent addresses is held 

in memory.  

Several tools for generating VCDIFF deltas are available. In 

this work, Xdelta [19] is used as an encoder for generating 

VCDIFF deltas. It uses additional heuristics for optimizing the 

generated instruction set, such as removing completely 

covered instructions and combining small instructions into 

one, essentially reducing the delta size. 

IV. HORIZONTAL PATCHING 

Vertical deltas are not universal: a delta created for one 

application on a certain platform cannot be applied on a 

different application or a different platform Therefore, 

updating multiple devices in a network would require 

distributing each of the individual deltas, as shown in Fig. 2.  

 

 
Fig. 5. Possibilities for horizontal patching in a two-application network. 

The two devices are sharing the same operating system.  

 

Horizontal patching is a way to reduce the size of data that 



 

needs to be distributed in the network. When a shared 

component is updated, all vertical deltas essentially hold the 

same information. Therefore, it is possible to use one vertical 

delta as a basis, and generate another delta from it (Fig. 5): 
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Since both deltas hold the same modifications, the 

horizontal delta between them is smaller in size than the 

vertical one. The combined delta then consists of the basis and 

the horizontal delta (Δ0 + δ0,1 or Δ1 + δ1,0)). E.g., when Δ0  and 

δ0,1  are used, only Δ0  needs to be executed for updating 

device type A. On device type B, first δ0,1 is executed on Δ0, 

producing Δ1; finally, Δ1 is executed (Fig. 6). The savings in 

space by using the combined delta in the multi-hop part of the 

network outweighs the loss in using it in the last-hop part. 

All algorithms for incremental update use some form of 

compression to reduce the size of the vertical deltas. 

Unfortunately, due to the relocation and in some cases, 

obfuscation, introduced by this compression, it is very difficult 

to compute efficient horizontal delta directly on compressed 

vertical deltas. Therefore, we compute the horizontal deltas on 

uncompressed vertical deltas, and afterwards compress them 

for distribution. 

 

 
Fig. 6. Horizontal patching in practice. The basis vertical delta (Δ0) is 

distributed along with the horizontal delta (δ0,1). On devices of type A, 

only Δ0 is used for patching. On devices of type B, first Δ1 is built by 

applying patch δ0,1 on Δ0. Then, Δ1 is used to patch the system. 

 

A. Scalability analysis 

The number of horizontal patches rapidly grows as the 

number of device types increases. Selecting the best option for 

horizontal update can be seen as finding the minimal spanning 

tree in a labeled di-graph (Fig. 7). Each vertex in the di-graph 

represents a vertical delta, whereas each edge corresponds to a 

horizontal delta. According to Cayley’s formula [20], the 

number of spanning trees on n labeled vertices is     . For the 

number of possibilities for horizontal patching, this value 

needs to be multiplied by n, for each vertical delta as the base. 

The cost of each edge is equal to the size of the associated 

horizontal delta. Therefore, choosing an optimal horizontal 

delta would result in searching for the minimal cost spanning 

tree between      possible trees.  

The processing time for finding the minimal spanning tree 

can quickly explode as the number of types of devices 

increases. This is a result of the large number of trees which 

have to be searched, as well as the processing time required to 

create the entire di-graph. The time required for building a 

delta depends on the size of the old and new versions. BSDIFF 

creates a delta in O((x+y) log x) time, where x is the size of the 

old version and y is the size of the new version. Processing 

time can be extremely long for large input, such as firmware 

images for smart phones, ranging from a few hours to several 

weeks. Building a complete di-graph would require computing 

n(n-1) horizontal deltas in addition to the n vertical deltas, 

which can become excessively long. 

 

 
Fig. 7.  Nine different options (minimal spanning trees) for horizontal 

patching of three heterogeneous devices. 

 
Require: - inputs –  

- number of vertical deltas N, 

- array of sizes of vertical deltas Δ,  

- matrix of sizes of horizontal deltas δ, 

Ensure: -output - 

- returns the minimal horizontal delta combination of the given di-
graph,  

Requires: 

- edge – object with elements from, to and weight,  
- max – returns the index of the largest element in an array. 
 

1. reachable:={}; 

2. path:={}; 

3. s:=max(Δ); 

4. append(reachable, s); 

5. append(path, new edge(s, s, Δs)); 

6. while len(reachable)<N do 

7.   min:=MAX_INT; 

8.   for each i   reachable do 
9.     for j:=0; j<N; j:=j+1 do 

10.       if j   reachable and δi,j < min then 
11.         min:=δi,j; 

12.         from:=i; 

13.         to:=j; 

14.       fi; 

15.     end for; 

16.   end for; 

17.   append(reachable, to); 

18.   append(path, new edge(from, to, min)); 

19. od; 

20. return path; 

 

Fig. 8.  Algorithm for greedy search of a horizontal delta.  

 

In order to reduce processing time, the di-graph has to be 

pruned. An easy way to approach this problem is to greedily 



 

build the tree, using the minimum number of edges for 

comparison. The greedy algorithm, shown in Fig. 8, expands 

the tree from the largest vertical delta. The largest vertical 

delta is chosen as a root because it requires less bits to omit 

data in horizontal deltas than to add new data. As a result, 

horizontal deltas from larger to smaller vertical deltas are most 

likely to be smaller in size than the reversed. 

In each iteration, a new edge is selected based on two 

criteria: a) it connects a new vertex; b) no other edge exists 

such that it connects a new vertex and it is smaller in size than 

the selected edge. The greedy approach reduces the graph to 
 (   )

 
 edges, which is feasible to compute. The performance 

of the greedy algorithm compared to the minimal cost 

spanning tree is evaluated in the next section. 

 

 
Fig. 9.  Greedy search of a horizontal delta. Assuming that Δ0 is the 

largest vertical delta, in the first iteration the three horizontal deltas are 

inspected. In (2), after δ0,3 is chosen, the di-graph is expanded with edges 

from Δ3 which reach new vertices (δ3,1 and δ3,2). The edges towards 

unreachable vertices from the previous step are also taken into 

consideration (δ0,1 and δ0,2). After δ3,1 is selected (3), one more edge is 

computed (δ1,2). By adding δ1,2, all vertices are reachable. The horizontal 

delta then consists of δ0,0, δ0,3, δ3,1, δ1,2.  

 

V. PERFORMANCE EVALUATION 

In this section the performance of horizontal patching is 

evaluated. The first part describes the experimental setup and 

the two test sets used in the experiments. The second part 

presents the comparison between horizontal and vertical 

patching, as well as the difference between the greedy 

approach to horizontal patching compared to the optimal 

horizontal patch. 

A. Experimental setup 

The performance of horizontal patching is evaluated in a 

scenario for updating all devices in a network using a 

broadcast scheme for distributing updates. All devices are of 

different type, i.e. for each device a separate vertical update is 

used. The number of devices in the network depends on the 

test set being used. The first test set is for updating the 

firmware of sensor nodes and the second test set is for 

updating the operating system of smart phones.  

Compression ratio, i.e. space savings, is used as a 

comparison metric. It shows the percentage of data saved from 

transmission from the original data, and is computed as: 
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The sum of the compressed new software bundles 

∑  (   )
   
   , is used as a reference point (old_size). For each 

combination of two or more different devices, all vertical 

deltas are computed with both BSDIFF and VCDIFF. Then 

between each pair of vertical deltas, the horizontal deltas are 

computed. In the end, two pairs of compression ratios are 

compared: vertical deltas and horizontal deltas for BSDIFF 

and VCDIFF.  

The first test set consists of seven applications for the 

Contiki operating system [1]. They are built together with the 

operating system into one firmware image for commercially 

available sensor nodes. The test is repeated for three 

consecutive operating system updates, as shown in TABLE I. 

In all test cases, the applications are ordered by size, from 

largest to smallest.  

The second test set consists of updates of an open source 

operating system for different commercially available smart 

phones. The devices have different hardware components, 

such as radio chipsets, sensors etc. Since vendors rarely 

maintain the software in such devices for a long time, not all 

versions of the operating system are available for all devices. 

Therefore, the sample set is broken into three subsets, in 

which an update from the old and new version exists for each 

model (TABLE II). 

 
TABLE I 

SIZE OF TEST DATA (COMPRESSED FIRMWARE IMAGE CONSISTING OF AN 

APPLICATION AND AN OPERATING SYSTEM) FOR SENSOR NODES, IN BYTES. 

Application Contiki 2.3 Contiki 2.4 Contiki 2.5 

1 25,403 25,563 25,062 
2 22,544 21,594 22,579 

3 18,324 17,235 18,282 

4 17,739 16,696 17,752 
5 14,379 13,305 14,490 

6 14,027 12,954 14,112 

7 14,026 12,941 14,066 

 

 
TABLE II 

SIZE OF COMPRESSED FIRMWARE IMAGES FOR SMART PHONES, IN 

MEGABYTES. DEVICES 1, 4 AND 7 FORM SUBSET 1, FOR UPDATES FROM V1 

TO V2; DEVICES 2, 3, 5 AND 6 FORM SUBSET 2, FOR UPDATES FROM V2 TO V3 

AND DEVICES 2, 3 AND 8 FORM SUBSET 3 FOR UPDATES FROM V3 TO V4. 

Device OS v1 OS v2 OS v3 OS v4 

1 193 239 - - 
2 191 - 240 256 

3 187 - 234 248 

4 169 200 - - 
5 163 - 195 - 

6 163 - 195 - 

7 148 175 - - 
8 - - 256 272 

 



 

B. Results 

Fig. 10 shows the performance of horizontal patching using 

the sensor node test set. It is clear that horizontal patching 

provides higher compression compared to only vertical 

patching, both for BSDIFF and VCDIFF. The improvement is 

drastic with BSDIFF. Furthermore, as the number of different 

devices (applications) rises, the performance of horizontal 

patching improves, while vertical patching remains stable. For 

instance, whereas the average compression ratio of horizontal 

patching with BSDIFF grows from 56% with two different 

devices to 71% with seven different devices, the compression 

ratio of BSDIFF with only vertical deltas is approximately 

42% in all cases. 

Horizontal patching has similar performance in the smart 

phone test case (Fig. 11). Compression ratio is higher with 

BSDIFF, although both algorithms benefit from horizontal 

patching compared to only vertical patching. It is important to 

note that due to the large size of the uncompressed deltas, 

BSDIFF was unable to produce five horizontal deltas in 

reasonable time. Therefore, the number of available samples 

for BSDIFF for this test set is much lower. 

 

 
Fig. 10.  Compression ratio of horizontal patching for sensor nodes using 

BSDIFF and VCDIFF, in comparison to compressed firmware images. 

Since seven applications in total are available, for three operating system 

updates, the number of samples available is 
    

  (   ) 
         .  BSDIFF 

has better compression ratio in all cases, although it is considerably 

slower compared to VCDIFF. In both cases, the compression ratio gained 

using horizontal patching increases with the number of different devices. 

 

Fig. 10 and 11 show the performance of the best (optimal) 

horizontal delta. As previously stated, in order to find the 

optimal delta, horizontal deltas between all possible 

combinations of pairs of verticals deltas have to be generated, 

which consumes a lot of time. On the other hand, the greedy 

algorithm for building the horizontal delta is not far off the 

optimal one. As shown in TABLE III, the difference between 

the greedy approach and the optimal one is very small. The 

maximum measured offset in compression ratio was 1.5%, 

which is negligible. Therefore, the greedy approach is a 

sufficient solution to solve the problem of intractability of 

horizontal patching for large input data and high number of 

different devices for update. 

 

 
Fig. 11.  Compression ratio of horizontal patching for smart phones. It is 

important to note that we were not able to generate five horizontal 

patches, therefore the number of samples for BSDIFF for two devices is 

six, whereas only one sample with three devices was available. 

 

 
TABLE III 

DIFFERENCE IN COMPRESSION RATIO BETWEEN OPTIMAL HORIZONTAL 

DELTAS AND GREEDY HORIZONTAL DELTAS. 

Sample 

set 

Number 

of 

devices 

BSDIFF VCDIFF 

Average 

difference 

Standard 

deviation 

Average 

difference 

Standard 

deviation 

Sensor 

nodes 

2 0.008 0.036 0.014 0.036 

3 0.095 0.169 0.072 0.111 

4 0.137 0.167 0.101 0.112 

5 0.162 0.148 0.120 0.107 

6 0.191 0.118 0.128 0.101 

7 0.232 0.064 0.129 0.087 

Smart 
phones 

2 0.001 0.004 0.154 0.316 

3 0.644 - 0.443 0.645 

4 - - 0.107  

 

VI. CONCLUSION 

This paper presents horizontal patching, a method for 

optimizing the size of incremental updates in a multi-

application environment where heterogeneous devices share a 

common software component. Horizontal patching reduces the 

size of updates by constructing one delta from another. 

Therefore, when the common software component needs to be 

updated, horizontal patching can be used to create a smaller 

delta compared to the collection of deltas for each individual 

device.  

Horizontal patching gives better results as the number of 

heterogeneous devices for update grows. This comes with the 

cost of additional processing time required for computing all 

horizontal deltas. The scalability analysis shows that the 

number of possible options for horizontal patching quickly 

grows and it becomes impossible to predict the final outcome. 

Therefore, a greedy approach is presented, which only 

searches through horizontal deltas which have a root in the 

largest vertical delta. 

The improvement of horizontal patching is confirmed by 



 

experimental validation on two test sets – one for updating 

software in resource constrained devices, and the second one 

for updating the operating system of smart phones. The impact 

is evident with two algorithms for delta encoding – BSDIFF 

and VCDIFF. For instance, with BSDIFF, the average 

compression ratio of vertical patching is around 42% for two 

to seven different devices in the first test set, while the 

compression ratio of horizontal patching grows from 56% 

with two different devices to 71% with seven different 

devices. Similar results are measured with VCDIFF, with 31% 

compression ratio of vertical patching with two to seven 

different devices, and 39% to 48% compression ratio with two 

to seven different devices. 

In all test cases, the greedy approach is shown to be very 

close to the optimal horizontal delta. The difference between 

the optimal and greedy horizontal delta is at most 1.5%, which 

shows that horizontal patching can be used even with a large 

number of different devices. 

The method of horizontal patching can be easily adopted for 

updating any CE devices which share software components. 

This leads to more efficient schemes for telecom operators to 

upgrade fleets of smart phones, tablets, television sets etc. 

using smaller updates. 
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