

Patching a Patch - Software Updates Using

Horizontal Patching
Milosh Stolikj, Student Member, IEEE, Pieter J. L. Cuijpers, and Johan J. Lukkien, Member, IEEE

Abstract — This paper presents a method for optimizing

software updates of consumer electronic devices running

multiple applications with a common software component,

called horizontal patching. Instead of using separate deltas for

patching different applications, the method generates one

delta from the other. Due to the large similarities between the

deltas, this horizontal delta is small in size. Experimental

results on two test sets, consisting of software updates for

sensor networks and smart phones, show that significant

improvements can be achieved. Between 27% and 84% data

can be saved from transmission, depending on the type of

applications and shared components
1
.

Index Terms — software update, remote reprogramming,

horizontal patching, heterogeneous networks.

I. INTRODUCTION

Today's consumer applications are running on multiple,

networked devices. Furthermore, in order to decrease

development cost and improve interoperability, there is a clear

tendency to build CE devices on top of a common platform,

including an operating system [1], a middleware [2] or a

virtual machine [3]. The range of these devices varies, from

different generations of smart phones to home entertainment

systems [4]. A more pervasive type of system is the upcoming

adaptive ambient lighting system [5], which employs a

network of low capacity nodes with different roles. For

instance, while some nodes measure luminance, others are

responsible for switching the light actuators.

Updating software is an essential feature of modern CE

devices, for the purpose of bringing new functionality, or

correcting discovered bugs. Since the number of devices to be

updated can be large, the communication medium has

limitations and the update should be swift, a software update is

a non-trivial task. This is especially true for networks of

embedded systems that depend on relatively small batteries.

Software is most effectively updated in an incremental

fashion (Fig. 1) [6]. Incremental updates use small scripts

called deltas (Δ), which contain instructions and data to

produce an updated version from a previous one. Deltas are

platform and application specific, i.e. a delta generated for one

application for a specific platform cannot be used to update

the same application for another platform or to update a

1 This work is supported in part by the Dutch P08 SenSafety Project, as

part of the COMMIT program.
Milosh Stolikj, Pieter J. L. Cuijpers and Johan J. Lukkien are with the

Department of Mathematics and Computer Science, Eindhoven University of

Technology, den Dolech 2, 5612 AZ Eindhoven, The Netherlands (e-mail:
m.stolikj@tue.nl, p.j.l.cuijpers@tue.nl, j.j.lukkien@tue.nl)

different application. As a result, in networks of

heterogeneous devices running multiple applications on top of

a common software component, incremental updates foresee

separate deltas for each combination of an application with a

platform.

Fig. 1. Overview of an incremental update. The software update is

prepared on a system which has both the old and new version of the

software to be updated. Using a DIFF algorithm, the difference in the two

versions is captured in the form of deltas. These deltas are usually

compressed to further reduce in size, and transferred to the device which

requires the update. There, after decompression, the delta is used to

patch the old software version into the new version.

Given a network of heterogeneous devices running multiple

applications on top of a common software component, current

approaches for software update disseminate separate deltas for

each device. A feasible method to minimize the

communication volume is to disseminate the updates using a

broadcast based scheme instead of unicasting (Fig. 2).

However, the amount of data that needs to be distributed can

be further reduced by exploiting the information redundancy

present in the deltas.

Fig. 2. Updating two different devices in a network. Even though both

devices might share components, currently individual updates are

prepared for each of them. Since multiple devices of the same type exist in

the same network, broadcast/multicast dissemination is preferred to

unicast. As a result, both updates for device types A and B reach most/all

devices in the network.

This paper presents horizontal patching, a new method for

handling code differences in systems running multiple

applications on top of a common software component. Instead

of distributing separate deltas for updating individual

applications, horizontal patching can be used to generate one

delta from the other one, so that both deltas can be distributed

together. The horizontal delta is smaller in size; hence less

data needs to be transmitted, saving work, bandwidth and

energy.

Experimental validation on two different test sets using two

different algorithms for incremental update shows significant

improvements. When small devices are updated, such as

software in sensor networks of low capacity devices, the

resulting horizontal delta can save from 27% to 80% data from

transmission. The improvements depend on the number and

type of applications which need to be updated. When the

operating system of smart phones is updated, between 49%

and 84% data is saved from transmission. Both test cases

confirm that horizontal patching can be used to great effect to

improve software updates in large networks of devices sharing

a common software component.

The remainder of this paper is organized as follows. Section

II gives an overview on related work on software updates in

multi-application networks. Section III describes the model for

incremental updates and the internals of such algorithms.

Section IV covers horizontal patching and its application.

Section V analyses the obtained results. Finally, Section VI

gives conclusions and ideas for future work.

II. RELATED WORK

In this section, first an overview of algorithms for

incremental update is given. Next, the application of

incremental update in consumer electronics is covered.

Subsequently, approaches for incremental updates which

consider multiple deltas are analyzed and compared to the new

method presented in this work.

A. Algorithms for incremental update

Incremental update uses DIFF algorithms for extracting the

difference between two consecutive software versions. A

rough classification of these algorithms can be made based on

the type of matching done between the software versions. One

group of algorithms, including VCDIFF [7] and RSYNC [8],

find completely identical blocks between the two consecutive

software versions. This makes them relatively fast during both

delta generation and patching. The second group of

algorithms, such as BSDIFF [6], find similar but not

completely identical data blocks between the two software

versions. Deltas generated using this approach are generally

smaller, but take significantly more time to be created.

B. Application of incremental update in consumer

electronics

Algorithms for incremental update are general enough to

have been applied in many domain-specific applications. This

ranges from software updates in mobile phones [9], sensor

networks [10], on-vehicle information devices [11] etc.

Domain-specific variations of the algorithms [12][13][14]

have been built to enhance the delta generation process in

order to further reduce the update size. These algorithm

adaptations can be seen as best practices, which can be

transferred to other domains to reap similar benefits.

Updates are generally disseminated in a point-to-point

fashion, where CE devices connect to a central server and

retrieve updates. However, when multiple devices are located

in the same network and have to be updated at once,

broadcast-based schemes significantly reduce the number of

transmissions in the network [15].

C. Multi-version software update

Related work on multiple deltas mainly focuses on

incremental updates of a single application. Kiyohara et al

[11] enable merging of multiple consecutive VCDIFF deltas

for one application to decrease the cumulative delta size. The

result is a single delta which contains instructions and data to

build the latest software version from any of the previous

ones. The work presented in this paper is complementary,

focusing on situations where multiple applications need to be

updated.

Bissyandé et al [16] describe an epidemic propagation

protocol to handle the distribution of multiple deltas of

applications for the mobile operating systems. The protocol

assumes that a single application can evolve into multiple

orthogonal versions, hence multiple deltas exist for it. Their

approach optimizes the gathering of deltas in an opportunistic

fashion. Shamsaie et al [17] perform off-line planning of

updates of multiple applications by examining which

combination of deltas has the smallest size. The method

presented in this paper broadens the scope of these two works,

by allowing one delta to be the source of another delta,

essentially expanding that search space.

The work presented in this paper is an extension to the

horizontal patching approach presented by Stolikj et al [18].

The contributions are three fold. Firstly, a systematic approach

to horizontal patching is given. Secondly, an analysis of its

scalability is presented. Finally, the approach is validated on

two sample sets consisting of updates of small resource

constrained devices as well as updates of smart phones.

III. INCREMENTAL UPDATE IN MULTI-APPLICATION

SYSTEMS

Consider a network of multiple, heterogeneous devices

sharing a common software component, such as an operating

system, software middleware or virtual machine engine. The

software stack on each device consists of a set of applications

running on top of the shared software component. In certain

environments, e.g. a sensor network, an embedded system, or

a mobile platform, the applications are bundled and distributed

together with the shared software component. In such systems,

an update of the shared software component results in an

update of the entire bundle. The bundle of an application with

the shared software component defines a software entity for

update, and is from here on referred to as the software bundle

for a specific device type.

Let be the old version of the software

bundle for device type . The new version

of the software bundle is then

 . A simple method to reduce the size of data for

transmission for update is to compress the new software

before distribution:

 (
) (

) (1)

Algorithms for incremental update, such as BSDIFF and

VCDIFF, extract the difference between the old and new

software versions in scripts called deltas. These deltas hold

instructions and data for how to build the new version from

the old one, through a method called patching. Since these

deltas are used to transform different versions of the same

software set, they can be referred to as vertical deltas, formally

defined as:

 (
) (2)

A. BSDIFF Delta Encoding

BSDIFF is a well-established algorithm for delta encoding.

An update with BSDIFF is created in two steps (Fig. 1). First,

a delta (Δ) between the two versions is constructed. Then, the

delta is compressed (compress(Δ)) and sent to the device for

update. There, after decompression, the delta is applied to the

old version to reconstruct the new version.

Fig. 3. Example of a BSDIFF delta. ADD specifies that the first 27 bytes

from the old data and from the Diff block are summed. Zeroes in the Diff

block mean that the corresponding byte from the old data is unchanged.

INSERT adds four bytes from the Extra block to the output. SEEK

moves the pointer in the old data three places forward, to the end of the

stream.

BSDIFF has a two-pass algorithm to construct optimized

deltas. In the first pass, completely identical blocks are found

in the two versions. Next, these blocks are extended in both

directions, such that every prefix/suffix of the extension

matches in at least half of its bytes. These extended blocks

correspond to the modified code.

The BSDIFF delta is built of three parts (Fig. 3): a control

block of commands; a diff block of bytewise differences

between approximate matches and an extra block of new data.

When the old and new versions are similar, the diff block

consists of large series of zeroes, which are easy to compress.

Fig. 4. Example of a VCDIFF delta. The first instruction copies the first 5

bytes from the old data (S0). Then, the next 10 bytes are added, after

which two blocks from the newly written data are copied (T14 and T6).

The last four bytes are again added from the delta.

B. VCDIFF Delta Encoding

VCDIFF is a format for encoding the difference between

two data sets (Fig. 4). The original idea for it comes from data

compression algorithms - the old and new version are

concatenated; then the resulting stream is compressed using a

data compression algorithm. From the output, the first part,

which corresponds to the old version, is omitted, leaving only

the instructions for the decoder to decompress the new

version. VCDIFF features a detailed byte-code instruction set,

consisting of a small number of instructions, which can be

used in different addressing modes, accessing both the old and

the new data. Additionally, a cache of recent addresses is held

in memory.

Several tools for generating VCDIFF deltas are available. In

this work, Xdelta [19] is used as an encoder for generating

VCDIFF deltas. It uses additional heuristics for optimizing the

generated instruction set, such as removing completely

covered instructions and combining small instructions into

one, essentially reducing the delta size.

IV. HORIZONTAL PATCHING

Vertical deltas are not universal: a delta created for one

application on a certain platform cannot be applied on a

different application or a different platform Therefore,

updating multiple devices in a network would require

distributing each of the individual deltas, as shown in Fig. 2.

Fig. 5. Possibilities for horizontal patching in a two-application network.

The two devices are sharing the same operating system.

Horizontal patching is a way to reduce the size of data that

needs to be distributed in the network. When a shared

component is updated, all vertical deltas essentially hold the

same information. Therefore, it is possible to use one vertical

delta as a basis, and generate another delta from it (Fig. 5):

 () (3)

Since both deltas hold the same modifications, the

horizontal delta between them is smaller in size than the

vertical one. The combined delta then consists of the basis and

the horizontal delta (Δ0 + δ0,1 or Δ1 + δ1,0)). E.g., when Δ0 and

δ0,1 are used, only Δ0 needs to be executed for updating

device type A. On device type B, first δ0,1 is executed on Δ0,

producing Δ1; finally, Δ1 is executed (Fig. 6). The savings in

space by using the combined delta in the multi-hop part of the

network outweighs the loss in using it in the last-hop part.

All algorithms for incremental update use some form of

compression to reduce the size of the vertical deltas.

Unfortunately, due to the relocation and in some cases,

obfuscation, introduced by this compression, it is very difficult

to compute efficient horizontal delta directly on compressed

vertical deltas. Therefore, we compute the horizontal deltas on

uncompressed vertical deltas, and afterwards compress them

for distribution.

Fig. 6. Horizontal patching in practice. The basis vertical delta (Δ0) is

distributed along with the horizontal delta (δ0,1). On devices of type A,

only Δ0 is used for patching. On devices of type B, first Δ1 is built by

applying patch δ0,1 on Δ0. Then, Δ1 is used to patch the system.

A. Scalability analysis

The number of horizontal patches rapidly grows as the

number of device types increases. Selecting the best option for

horizontal update can be seen as finding the minimal spanning

tree in a labeled di-graph (Fig. 7). Each vertex in the di-graph

represents a vertical delta, whereas each edge corresponds to a

horizontal delta. According to Cayley’s formula [20], the

number of spanning trees on n labeled vertices is . For the

number of possibilities for horizontal patching, this value

needs to be multiplied by n, for each vertical delta as the base.

The cost of each edge is equal to the size of the associated

horizontal delta. Therefore, choosing an optimal horizontal

delta would result in searching for the minimal cost spanning

tree between possible trees.

The processing time for finding the minimal spanning tree

can quickly explode as the number of types of devices

increases. This is a result of the large number of trees which

have to be searched, as well as the processing time required to

create the entire di-graph. The time required for building a

delta depends on the size of the old and new versions. BSDIFF

creates a delta in O((x+y) log x) time, where x is the size of the

old version and y is the size of the new version. Processing

time can be extremely long for large input, such as firmware

images for smart phones, ranging from a few hours to several

weeks. Building a complete di-graph would require computing

n(n-1) horizontal deltas in addition to the n vertical deltas,

which can become excessively long.

Fig. 7. Nine different options (minimal spanning trees) for horizontal

patching of three heterogeneous devices.

Require: - inputs –

- number of vertical deltas N,

- array of sizes of vertical deltas Δ,

- matrix of sizes of horizontal deltas δ,

Ensure: -output -

- returns the minimal horizontal delta combination of the given di-
graph,

Requires:

- edge – object with elements from, to and weight,
- max – returns the index of the largest element in an array.

1. reachable:={};

2. path:={};

3. s:=max(Δ);

4. append(reachable, s);

5. append(path, new edge(s, s, Δs));

6. while len(reachable)<N do

7. min:=MAX_INT;

8. for each i reachable do
9. for j:=0; j<N; j:=j+1 do

10. if j reachable and δi,j < min then
11. min:=δi,j;

12. from:=i;

13. to:=j;

14. fi;

15. end for;

16. end for;

17. append(reachable, to);

18. append(path, new edge(from, to, min));

19. od;

20. return path;

Fig. 8. Algorithm for greedy search of a horizontal delta.

In order to reduce processing time, the di-graph has to be

pruned. An easy way to approach this problem is to greedily

build the tree, using the minimum number of edges for

comparison. The greedy algorithm, shown in Fig. 8, expands

the tree from the largest vertical delta. The largest vertical

delta is chosen as a root because it requires less bits to omit

data in horizontal deltas than to add new data. As a result,

horizontal deltas from larger to smaller vertical deltas are most

likely to be smaller in size than the reversed.

In each iteration, a new edge is selected based on two

criteria: a) it connects a new vertex; b) no other edge exists

such that it connects a new vertex and it is smaller in size than

the selected edge. The greedy approach reduces the graph to
 ()

 edges, which is feasible to compute. The performance

of the greedy algorithm compared to the minimal cost

spanning tree is evaluated in the next section.

Fig. 9. Greedy search of a horizontal delta. Assuming that Δ0 is the

largest vertical delta, in the first iteration the three horizontal deltas are

inspected. In (2), after δ0,3 is chosen, the di-graph is expanded with edges

from Δ3 which reach new vertices (δ3,1 and δ3,2). The edges towards

unreachable vertices from the previous step are also taken into

consideration (δ0,1 and δ0,2). After δ3,1 is selected (3), one more edge is

computed (δ1,2). By adding δ1,2, all vertices are reachable. The horizontal

delta then consists of δ0,0, δ0,3, δ3,1, δ1,2.

V. PERFORMANCE EVALUATION

In this section the performance of horizontal patching is

evaluated. The first part describes the experimental setup and

the two test sets used in the experiments. The second part

presents the comparison between horizontal and vertical

patching, as well as the difference between the greedy

approach to horizontal patching compared to the optimal

horizontal patch.

A. Experimental setup

The performance of horizontal patching is evaluated in a

scenario for updating all devices in a network using a

broadcast scheme for distributing updates. All devices are of

different type, i.e. for each device a separate vertical update is

used. The number of devices in the network depends on the

test set being used. The first test set is for updating the

firmware of sensor nodes and the second test set is for

updating the operating system of smart phones.

Compression ratio, i.e. space savings, is used as a

comparison metric. It shows the percentage of data saved from

transmission from the original data, and is computed as:

 (

) . (4)

The sum of the compressed new software bundles

∑ ()

 , is used as a reference point (old_size). For each

combination of two or more different devices, all vertical

deltas are computed with both BSDIFF and VCDIFF. Then

between each pair of vertical deltas, the horizontal deltas are

computed. In the end, two pairs of compression ratios are

compared: vertical deltas and horizontal deltas for BSDIFF

and VCDIFF.

The first test set consists of seven applications for the

Contiki operating system [1]. They are built together with the

operating system into one firmware image for commercially

available sensor nodes. The test is repeated for three

consecutive operating system updates, as shown in TABLE I.

In all test cases, the applications are ordered by size, from

largest to smallest.

The second test set consists of updates of an open source

operating system for different commercially available smart

phones. The devices have different hardware components,

such as radio chipsets, sensors etc. Since vendors rarely

maintain the software in such devices for a long time, not all

versions of the operating system are available for all devices.

Therefore, the sample set is broken into three subsets, in

which an update from the old and new version exists for each

model (TABLE II).

TABLE I

SIZE OF TEST DATA (COMPRESSED FIRMWARE IMAGE CONSISTING OF AN

APPLICATION AND AN OPERATING SYSTEM) FOR SENSOR NODES, IN BYTES.

Application Contiki 2.3 Contiki 2.4 Contiki 2.5

1 25,403 25,563 25,062
2 22,544 21,594 22,579

3 18,324 17,235 18,282

4 17,739 16,696 17,752
5 14,379 13,305 14,490

6 14,027 12,954 14,112

7 14,026 12,941 14,066

TABLE II

SIZE OF COMPRESSED FIRMWARE IMAGES FOR SMART PHONES, IN

MEGABYTES. DEVICES 1, 4 AND 7 FORM SUBSET 1, FOR UPDATES FROM V1

TO V2; DEVICES 2, 3, 5 AND 6 FORM SUBSET 2, FOR UPDATES FROM V2 TO V3

AND DEVICES 2, 3 AND 8 FORM SUBSET 3 FOR UPDATES FROM V3 TO V4.

Device OS v1 OS v2 OS v3 OS v4

1 193 239 - -
2 191 - 240 256

3 187 - 234 248

4 169 200 - -
5 163 - 195 -

6 163 - 195 -

7 148 175 - -
8 - - 256 272

B. Results

Fig. 10 shows the performance of horizontal patching using

the sensor node test set. It is clear that horizontal patching

provides higher compression compared to only vertical

patching, both for BSDIFF and VCDIFF. The improvement is

drastic with BSDIFF. Furthermore, as the number of different

devices (applications) rises, the performance of horizontal

patching improves, while vertical patching remains stable. For

instance, whereas the average compression ratio of horizontal

patching with BSDIFF grows from 56% with two different

devices to 71% with seven different devices, the compression

ratio of BSDIFF with only vertical deltas is approximately

42% in all cases.

Horizontal patching has similar performance in the smart

phone test case (Fig. 11). Compression ratio is higher with

BSDIFF, although both algorithms benefit from horizontal

patching compared to only vertical patching. It is important to

note that due to the large size of the uncompressed deltas,

BSDIFF was unable to produce five horizontal deltas in

reasonable time. Therefore, the number of available samples

for BSDIFF for this test set is much lower.

Fig. 10. Compression ratio of horizontal patching for sensor nodes using

BSDIFF and VCDIFF, in comparison to compressed firmware images.

Since seven applications in total are available, for three operating system

updates, the number of samples available is

 ()
 . BSDIFF

has better compression ratio in all cases, although it is considerably

slower compared to VCDIFF. In both cases, the compression ratio gained

using horizontal patching increases with the number of different devices.

Fig. 10 and 11 show the performance of the best (optimal)

horizontal delta. As previously stated, in order to find the

optimal delta, horizontal deltas between all possible

combinations of pairs of verticals deltas have to be generated,

which consumes a lot of time. On the other hand, the greedy

algorithm for building the horizontal delta is not far off the

optimal one. As shown in TABLE III, the difference between

the greedy approach and the optimal one is very small. The

maximum measured offset in compression ratio was 1.5%,

which is negligible. Therefore, the greedy approach is a

sufficient solution to solve the problem of intractability of

horizontal patching for large input data and high number of

different devices for update.

Fig. 11. Compression ratio of horizontal patching for smart phones. It is

important to note that we were not able to generate five horizontal

patches, therefore the number of samples for BSDIFF for two devices is

six, whereas only one sample with three devices was available.

TABLE III

DIFFERENCE IN COMPRESSION RATIO BETWEEN OPTIMAL HORIZONTAL

DELTAS AND GREEDY HORIZONTAL DELTAS.

Sample

set

Number

of

devices

BSDIFF VCDIFF

Average

difference

Standard

deviation

Average

difference

Standard

deviation

Sensor

nodes

2 0.008 0.036 0.014 0.036

3 0.095 0.169 0.072 0.111

4 0.137 0.167 0.101 0.112

5 0.162 0.148 0.120 0.107

6 0.191 0.118 0.128 0.101

7 0.232 0.064 0.129 0.087

Smart
phones

2 0.001 0.004 0.154 0.316

3 0.644 - 0.443 0.645

4 - - 0.107

VI. CONCLUSION

This paper presents horizontal patching, a method for

optimizing the size of incremental updates in a multi-

application environment where heterogeneous devices share a

common software component. Horizontal patching reduces the

size of updates by constructing one delta from another.

Therefore, when the common software component needs to be

updated, horizontal patching can be used to create a smaller

delta compared to the collection of deltas for each individual

device.

Horizontal patching gives better results as the number of

heterogeneous devices for update grows. This comes with the

cost of additional processing time required for computing all

horizontal deltas. The scalability analysis shows that the

number of possible options for horizontal patching quickly

grows and it becomes impossible to predict the final outcome.

Therefore, a greedy approach is presented, which only

searches through horizontal deltas which have a root in the

largest vertical delta.

The improvement of horizontal patching is confirmed by

experimental validation on two test sets – one for updating

software in resource constrained devices, and the second one

for updating the operating system of smart phones. The impact

is evident with two algorithms for delta encoding – BSDIFF

and VCDIFF. For instance, with BSDIFF, the average

compression ratio of vertical patching is around 42% for two

to seven different devices in the first test set, while the

compression ratio of horizontal patching grows from 56%

with two different devices to 71% with seven different

devices. Similar results are measured with VCDIFF, with 31%

compression ratio of vertical patching with two to seven

different devices, and 39% to 48% compression ratio with two

to seven different devices.

In all test cases, the greedy approach is shown to be very

close to the optimal horizontal delta. The difference between

the optimal and greedy horizontal delta is at most 1.5%, which

shows that horizontal patching can be used even with a large

number of different devices.

The method of horizontal patching can be easily adopted for

updating any CE devices which share software components.

This leads to more efficient schemes for telecom operators to

upgrade fleets of smart phones, tablets, television sets etc.

using smaller updates.

ACKNOWLEDGMENT

The authors thank Aleksandra Kuzmanovska and Martijn

van den Heuvel for many useful discussions on the scalability

and usability of horizontal patching.

REFERENCES

[1] A. Dunkels, B. Grnvall and T. Voigt, “Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors,” Work.

Embedded Networked Sensors (Emnets-I), pp. 455-462, 2004.
[2] F. Battaglia, G. Iannizzotto, and F. La Rosa, “An open and portable

software development kit for handheld devices with proprietary

operating systems,” IEEE Trans. Consumer Electronics, vol. 55, no. 4,
pp. 2436-2444, November 2009.

[3] M. Vidakovic, T. Maruna, N. Teslic, and V. Mihic, “A java API

interface for the integration of DTV services in embedded multimedia
devices”, IEEE Trans. Consumer Electronics, vol. 58, no. 3, pp. 1063-

1069, August 2012.

[4] L. C. P. Costa, R. A. Herrero, M. G. De Biase, R. P. Nunes, and M. K.
Zuffo, “Over the Air Download for Digital Television Receivers

Upgrade,” IEEE Trans. Consumer Electronics, vol. 56, No. 1, pp. 261-

268, February 2010.
[5] S. Bhardwaj, A.A. Syed, T. Ozcelebi and J. J. Lukkien, “Power-

managed smart lighting using a semantic interoperability architecture,”

IEEE Trans. Consumer Electronics, vol. 57, no. 2, pp. 420-427, May
2011.

[6] C. Percival, “Matching with mismatches and assorted applications” Ph.

D. Thesis, University of Oxford, 2006.
[7] D. Korn, J. MacDonald, J. Mogul, and K. Vo, “The VCDIFF Generic

Differencing and Compression Data Format,” RFC 3284 (Proposed

Standard), June 2002.
[8] A. Tridgell, and P. MacKerras, “The rsync algorithm,” Technical Report

TR-CS-96-05, Australian National University, 1996.

[9] R. Kiyohara, and S. Mii, “BPE Acceleration Technique for S/W Update
for Mobile Phones,” 24th IEEE Int. Conf. on Advanced Information

Networking and Applications (AINA), pp. 592-599, April 2010.
[10] C. Miller and C. Poellabauer, “Reliable and efficient reprogramming in

sensor networks,” ACM Trans. Sensor Networks, vol. 7, 2010.

[11] R. Kiyohara, K. Tanaka, Y. Terashima, “S/W upgrade for on-vehicle
information devices,” IEEE Conf. Consumer Electronics (ICCE), pp. 19-

20, 2012.

[12] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Efficient incremental code

update for sensor networks,” ACM Trans. on Sensor Networks, vol. 7,

pp. 30:1-30:32, February 2011.

[13] N. Samteladze, and K. Christensen, “DELTA: Delta Encoding for Less

Traffic for Apps”, 37th IEEE Conf. on Local Computer Networks (LCN),
pp. 212-215, October 2012.

[14] J. Jeong and D. Culler, “Incremental network programming for wireless

sensors,” IEEE Conf. on Sensor and Ad Hoc Communications and
Networks (SECON), pp. 25-33, October 2004.

[15] M. Gumbold, “Software distribution by reliable multicast,” 21st IEEE

Conf. on Local Computer Networks (LCN), pp. 222-231, October 1996.
[16] T. F. Bissyandé, L. Réveillére, J.-R. Falleri, and Y. Bromberg,

“Typhoon: a middleware for epidemic propagation of software updates,”

Middleware for Pervasive Mobile and Embedded Computing (M-
MPAC), 2011.

[17] A. Shamsaie, and J. Habibi, “Planning updates in multi-application

wireless sensor networks,” Symp. Computers and Communications
(ISCC), pp. 802-808, 2011.

[18] M. Stolikj, P. J. L. Cuijpers, and J. J. Lukkien, “Patching a patch:

Software updates using horizontal patching,” IEEE Conf. Consumer

Electronics (ICCE), pp. 647-648, 2013.

[19] J. Macdonald, “Xdelta - open-source binary diff,” 2011.

[20] A. Cayley, “A theorem on trees,” Quart. J. Math. 23, pp. 376–378, 1889.

BIOGRAPHIES

Milosh Stolikj received a B.Sc. in computer science and a

M.Sc. in software engineering from the Sts Cyril and

Methodius University, Republic of Macedonia. In June
2011, he started research in the System Architecture and

Networking (SAN) group of the Mathematics and

Computer Science department of the Eindhoven University
of Technology. His main research interests are in the area of

wireless sensor networks. He is a member of the IEEE Consumer Electronics

Society.

Pieter J. L. Cuijpers is an assistant professor in the System

Architecture and Networking Research group at the

Eindhoven University of Technology in the Netherlands. He

received his MSc in Electrical Engineering and his PhD in

Computer Science at that same institute in 2000 and 2004
respectively. After developing a process algebra for hybrid

systems (HyPA), his current research interest include the

application of quantitative formal methods to cyber physical
systems, with a focus on performance analysis and scheduling of distributed

embedded systems.

Johan J. Lukkien is head of the System Architecture and

Networking Research group at Eindhoven University of

Technology since 2002. He received M.Sc. and Ph.D. from
Groningen University in the Netherlands. In 1991 he joined

Eindhoven University after a two years leave at the
California Institute of Technology. His research interests

include the design and performance analysis of parallel and

distributed systems. Until 2000 he was involved in large-
scale simulations in physics and chemistry. Since 2000, his research focus has

shifted to the application domain of networked resource-constrained

embedded systems. Contributions of the SAN group are in the area of
component-based middleware for resource-constrained devices, distributed

coordination, Quality of Service in networked systems and schedulability

analysis in real-time systems.

