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ABSTRACT

Two moving-window methods, using either flat or Gaus-
sian weighted windows, for local thresholding with Robust
Automatic Threshold Selection are developed. The results
show that fast segmentation of blood vessels against a vary-
ing background and noise is possible at modest computa-
tional cost. Volumes of128 × 2562 and2563 can be seg-
mented in 3.1 s and 6.6 s, for flat, and 12.6 s and 30.8 s for
Gaussian windows, respectively, on a 1.9 GHz Pentium 4.

1. INTRODUCTION

Thresholding is still one of the most commonly used meth-
ods of image segmentation. Apart from its use as a stand-
alone segmentation method, thresholding may yield a good
initial estimate from which more advanced methods can pro-
ceed [1, 2]. In all applications of thresholding, correct selec-
tion of the threshold is the key issue, and many methods for
automatic selection of optimal thresholds have been pub-
lished [3, 4]. Local thresholding can deal properly with a
locally varying background, or variations in the grey level
of objects, both of which may occur in a single image [4].

In this paper we will focus on a particular local, bilevel
thresholding method, called Robust Automatic Threshold
Selection (RATS) [5]. Despite its successful application to
2-D microscopic images, [6], it has never been adapted to 3-
D medical images. We will develop new, moving-window
versions of the algorithm and apply them to segmentation
of blood vessels in 3-D angiograms. We will compare the
results with those of earlier tiled local thresholding with
RATS [5, 6], and with those obtained with the simple per-
centile thresholding preprocessing step used for vessel seg-
mentation used by several authors [1, 2]. The use of per-
centile thresholders has two problems: (i) they are not adap-
tive to local changes in image properties, and (ii) choosing
the correct percentile is done heuristically, so the results for,
e.g., abdominal angiograms are of no use in, e.g., cerebral
angiography. In the former the 95th percentile is recom-
mended by [2]. However, on a cerebral magnetic resonance
angiogram (MRA) we found that the 99th yielded consider-
ably better results, as can be seen in Figure 1.

2. ROBUST AUTOMATIC THRESHOLD
SELECTION

RATS [5] is a simple and fast method for bilevel threshold-
ing of grey scale images. Kittler et al. [5] show that the
optimal thresholdT in a noise-free image is given by

T =
∑
e(x, y)p(x, y)∑

e(x, y)
, (1)

in which p(x, y) is the grey level at(x, y) and the edge
strengthe(x, y) is given by

e(x, y) = max(gx(x, y), gy(x, y)), (2)

with

gx(x, y) = |p(x− 1, y)− p(x+ 1, y)| (3)

and

gy(x, y) = |p(x, y − 1)− p(x, y + 1)|. (4)

In the presence of noise,T is biased towards the most com-
mon category in the image. This noise bias is counteracted
by using a threshold on the edge strength below which the
pixels are not weighted at all. The statistic now becomes

T =
∑
w(x, y)p(x, y)∑

w(x, y)
, (5)

with

w(x, y) =

{
e(x, y) if e(x, y) > λη

0 otherwise,
(6)

in whichη is the standard deviation of the image noise, and
λ is an adjustable parameter, which depends on the actual
edge strength used. For the edge strength defined in (2)
it was shown empirically thatλ = 5 is a good choice for
Gaussian noise [7].

It has been shown that any edge detector with an even
response to a step edge at the origin will yield the same
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Fig. 1. Thresholding an MRA of a human brain: (top) MIP
of original; surface renderings of (middle) 95th percentile
thresholded result, and (bottom) 99th percentile thresholded
result. The middle result is practically useless.

optimalT in any number of dimensions [7]. In particular,
the gradient detector

g2(x, y, z) = g2
x(x, y, z) + g2

y(x, y, z) + g2
z(x, y, z) (7)

with gx, gy, andgz defined in an analogous way as in (3)
and (4), shows no curvature bias and is rotation invariant.
Besides, it has a reduced noise bias, as was already noted
by Kahmoun and Astruc in 1-D [8]. However, the reduced
noise bias comes at the expense of increased variance, which
can be countered by using Sobel filter kernels to computex,
y, andz derivatives, in which caseλ = 3 is recommended
[7]. This value will be used throughout this paper.

2.1. Local Application of RATS

RATS lends itself well to local application [5] for two rea-
sons: (i) the statistic in (5) is robust against noise, and (ii) it

is easy to check whether a region contains an edge by check-
ing whether the denominator in (5) is above some threshold
[5, 7]. Two strategies for local application of RATS have
been developed [5, 6]. These methods divide the image
into non-overlapping rectangular regions (of in the order
of 32 × 32 pixels), computeT if possible and assign the
threshold to the center pixel of the region. Once all thresh-
olds have been assigned to the central pixels of each region,
all other pixels are assigned thresholds by bi-linear interpo-
lation.

A problem arises from the fact that the threshold is ap-
plied at the center of the region, whereas the edge which
generated the statistic may be to one side of the region. This
is demonstrated in Figure 2. The threshold surface will not
in general be at the right level at the edges themselves, i.e.,
where they matter most. When using a moving window ap-
proach, the threshold applied at each edge pixel is computed
from an area centered on the edge pixel itself, reducing this
effect.

2.2. Moving Window RATS

The threshold surface computed by a moving window ver-
sion of RATS can be written as

T (x, y, z) =

x+h∑
i=x−h

y+h∑
j=y−h

z+h∑
k=z−h

w(i, j, k)p(i, j, k)

x+h∑
i=x−h

y+h∑
j=y−h

z+h∑
k=z−h

w(i, j, k)
, (8)

which can be written as a the ratio of two convolutions

Th(x, y, z) =
(Πh ∗ (w · p))(x, y, z)

(Πh ∗ w)(x, y, z)
, (9)

in which∗ denotes convolution andΠh(x, y, z) is given by

Πh(x, y, z) =

{
1 if |x| ≤ h, |y| ≤ h, and|z| ≤ h
0 otherwise.

(10)

(a) (b) (c) (d)

Fig. 2. Problems with tiled local RATS: (a) image of shaded
square on uniform background; (b) using a two level quad-
tree (four leaves), the threshold at the left-hand side of the
square is overestimated; (c) using a 3 level quad-tree correct
segmentation is achieved, but with (d) 4 levels an artefact
appears inside the square.



One problem with (9) is thatT is undefined for all voxels
where(Πh ∗ w)(x, y, z) = 0. However, the convolution
formalism allows generalization of the algorithm to other
convolution kernels, e.g. Gaussian. Gaussian kernels are
rotation invariant and have infinite impulse response (IIR),
and so will contribute over the entire image. Besides, they
are separable, and can be computed quickly using a recur-
sive implementation, which has an IIR [9]. We arrive at

Tσ(x, y) =
(Gσ ∗ (w · p))(x, y)

(Gσ ∗ w)(x, y)
, (11)

with Gσ a Gaussian with zero mean and standard deviation
of σ. A further advantage of (11) over (9) is that edges close
to the current pixel are given higher weights than distant
edges.

3. APPLICATION TO ANGIOGRAMS

We implemented oct-tree-based RATS (OT-RATS) [6], mov-
ing window RATS (MW-RATS), and the Gaussian variant
(GW-RATS) in 3-D. When using MW-RATS according to
(9) pixels were set to background whenever the denomina-
tor was zero. This is safe as long as the width of the win-
dow exceeds the width of the thickest vessels. However,
choosing a narrow window improves the localization of the
threshold computation, which could lead to spurious holes
in foreground objects. Using the knowledge that holes in
vessels are impossible, we chose a narrow window, but used
post-processing to remove holes, which are connected back-
ground components which do not touch the image border.
This was done using the union-find method [10].

A comparison of OT-RATS, MW-RATS, and GW-RATS
is given in Figure 3. We use the same edge threshold level
λη and for OT-RATS and MW-RATS approximately the
same size of the region used to determine the thresholds
(2048 and133 = 2197 respectively). In the case of GW-
RATS we choseσ = 4 in this comparison, so that a sphere
of radius2σ has approximately the same volume (2145 vox-
els). OT-RATS produces a number of annoying artefacts,
some of which are clearly visible as somewhat amorphous
clumps in the top image. This is lacking in the lower two
images in Figure 3. The GW-RATS result appears to be
cleaner than that of MW-RATS. In particular, the middle im-
age of Figure 3 shows a kind of “halo” of noise responses
around certain larger vessels (conspicuous on the lefthand
side). Besides, the area on the lower lefthand side of the im-
age, just below a large vessel contains various almost linear
artefacts in the MW-RATS result, which are absent in both
the OT-RATS and GW-RATS results.

In Figure 4 the sensitivity of the method to the estimate
of η is explored. Atη = 10 the result is unusable; atη = 40
small vessels disappear, but the large vessels remain un-
changed. Vessel enhancement filtering using attribute filters

Fig. 3. Thresholding same MRA of a human brain as in
Fig. 1 usingλ = 3 andη = 25: surface renderings of (top)
OT-RATS result with 5-level oct-tree; (middle) MW-RATS
result using window133 voxels; and (bottom) GW-RATS
result withσ = 4.

from [11] greatly reduces noise, whilst retaining the vessels,
allowing filtering withη = 1 on the processed image.

MW-RATS is fast, requiring only 3.1 s of computing
time for a128× 2562 volume, and 6.6 s for a2563 volume
on a 1.9 GHz Pentium 4 based PC with 512 MB of 800 MHz
RDRAM. GW-RATS is slower, requiring 12.6 s and 30.8 s
for the same two volumes respectively.

4. DISCUSSION

The new moving window versions of RATS, and in particu-
lar GW-RATS, show a good deal of promise in segmenting
vascular structures in 3-D angiograms. The number of tun-
able parameters is fairly low: window size (orσ) andλ.
Parameterη should be an estimate for the image noise and
could be determined experimentally, possibly from the im-



Fig. 4. Surface rendering of GW-RATS result of same an-
giogram as in Fig. 1 usingσ = 4 and (top)η = 10; (middle)
η = 40; (bottom)η = 1 after filtering the input image with
the vessel enhancement filter in [11].

age itself as suggested in [5]. Further extensions of the mov-
ing window methods might include multi-scale versions, in
which if a threshold cannot be assigned at a small scale,
runs at progressively larger window sizes are performed to
classify any unclassified pixels. Because both convolutions
have a cost independent of the window size, the cost of the
multi-scale version is proportional to the number of scales.

More work is needed to provide a full evaluation of the
method, both as a stand-alone segmentation method and
as a preprocessing step for other, more advanced methods.
In particular a larger number of angiograms must be pro-
cessed and the results reviewed by human experts. Besides,
phantoms for which the ground truth segmentation is known
must be used to give objective estimates of segmentation
performance. Such an extended study is now under way.
However, the results show that MW-RATS and GW-RATS
can segment complex images with filamentous structures at

modest computational cost. Other possible applications in-
clude filamentous microorganisms such as fungi, or text.
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