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Chapter 1
Introduction

Degenerate parabolic equations appeared in the literature as mathematical models for
several phenomena in physics, chemistry, biology or economy. The simplest example
in this sense is the porous medium equation describing the flow of an ideal gas in a
homogeneous porous medium, where the diffusion is a power-like function. More complex
situation arise in petroleum reservoir and groundwater aquifer simulations. In this case
convective or source terms appear naturally. Phase change problems corresponding to
processes of heat transfer involving melting or solidification lead to equations of the same
type, which are more complicated when the liquid phase is allowed to move and an internal
generation or absorption of heat is present.

Thinking of the classical heat equation, if some singularities appear in the initial data,
these are smoothed as the solution evolves in time. This is due to the infinite speed of
propagation, which tells that any local perturbation of the solution will influence it in any
of the subsequent moments and in the whole domain. The situation is fairly the same
if nonlinear but regular parabolic equations are considered. This alleviates a numerical
approximation of the solution of such kind of problems.

The above frame changes when the degenerate case is considered. Roughly speaking,
this means the equation may change its parabolic character, for example, into an elliptic or
even hyperbolic one. This phenomenon appears in the points where diffusion vanishes and
may be influenced by the properties of the solution and consequently the equation behaves
like a regular parabolic one in some subdomains but manifests other characters outside
of them. The interfaces separating the domains of regularity - sometimes called also
free boundaries - have finite speed of propagation, unlike the (nonlinear) heat equation.

Moreover, these boundaries are not generally known in advance and have to be determined
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together with the solution. Often, the interfaces cannot be described by smooth curves
(or surfaces) since cusps or indefinite (mushy) regions may appear.

Resulting from the features mentioned above, the solutions lacks regularity across the
interface. The singularities do not smooth out as time evolves and, in fact, they may
even develop, giving the problem a strongly nonlinear character. This fact is mirrored
also in the numerical approximation of the solution pointing out the necessity of adequate
algorithms being able to deal both with the free boundary and the singularities of the

solution.

1.1 Overview

Here we deal with a fairly small class of free and moving boundary problems having

a special unifying mathematical structure. This results from the equivalence of their

classical formulations, as differential equations with suitable explicit conditions at the

prescribed and unknown boundaries, to a variational formulation. The interface is hidden

in the nonlinear diffusion, so the problem is brought to a fixed domain formulation. In

fact, the problems considered in the subsequent chapters have the following form
Problem P:

o — V- (VB(u) + F(u)) = r(u), in Qr =(0,T) x Q,
u(0,2) = wfx), i 9,
U= 1up, on OS2,

where 3 : R — R is an increasing function, Q a bounded domain in R¢(d > 1) with
a Lipschitz continuous boundary and 7' a finite and fixed time. A simple calculation
shows that 3'(u) stands for the diffusion coefficient, which is nonnegative because of the
assumptions on 5. However, §'(u) may also vanish for some values of u - the slow diffusion
phenomenon, giving the above equation a degenerate hyperbolic character. Similarly, if
(' is unbounded in some points, the problem becomes elliptic there. This can be better
noticed if the new unknown 6 = ((u) is considered, so the time derivative of u becomes
(371 (6)d,0. Thus, the values of u for which # is infinite turn to points where the time
derivative vanishes - the fast diffusion case, so the transformed equation becomes elliptic.

The analysis of existence and - eventually - uniqueness of solutions can be done avoid-
ing an interference of the unknown free boundary. Because of the strongly nonlinear
character of the problem, a solution in the classical sense can be seldom found and there-

fore it is understood rather in a weak sense. Several works are devoted to the problem
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of existence, uniqueness or regularity of solutions. Among them we mention [75], [18],
[36], [1], [5], [52], [25], [97], [76], [45] or [48]. In the beginning, the interest was focussed
especially on model problems without convection or reaction and in this case not only ex-
istence, but also uniqueness of solutions has been proven. However, many of the problems
in the degenerate parabolic class are modelling phenomena where reaction or convection
is present and therefore these terms have been taken into consideration more often in the
last decade. Then the parabolic problem could change to a hyperbolic one and unique-
ness may even not hold true. However, this is not the point of interest of the (numerical)
analysis in the forthcoming chapters and therefore we always assume the problem has a

unique solution.

Explicit analytical solutions for degenerate parabolic equations have been found only in
some particular cases. Therefore, the numerical approximation of solutions is extremely
important. But the algorithms considered for this purpose should take into account
the features mentioned before, particularly the singularities of the solution along the
free boundaries. Because the difficulties appear especially near the free boundaries, one
possibility is given by the algorithms trying to approximate first these interfaces and
solving then numerically the more regular problems in the regions of non-degeneracy (as
done, e.g., in [26]). The tracking procedure is acceptable if the interfaces are smooth
hypersurfaces, but even then the problem complicates in two or three spatial dimensions.
A similar idea was considered in [68], [69] and [70], for predicting a region including the
free boundaries. The spatial discretization is strongly refined in that part of the domain,

resulting in an adaptive algorithm.

The fixed domain formulation suggests some procedures for obtaining a numerical ap-
proximation of the solution in the whole domain, while the interface comes out implicitly.
Depending on the way the lack of regularity is treated, the resulting algorithms can be
classified into non-regularization and regularization ones. In the first case the solution of
the original problem is approximated directly at semi-discrete times, without performing
any modification in the equation. In this setting, the theory of nonlinear semigroups of
contractions in Banach spaces ([16]) leads not only to existence, uniqueness and global
regularity results, but is also the starting point for semi-discrete numerical methods. A
direct application of the definition of the semigroup is the Crandall-Ligget method ([23])
corresponding to the simple backward difference method, having the O(7'/?) convergence

order. If 7 = T'/n stands for the time step, the resulting algorithm for the above problem
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reads
ubF —ub = 7V (VB(WF) + F(ub)) + 7r(u),

uFloq = up(k7)

for k = 1, n, together with the initial data given above. Here u* approximates the solution
at the time ¢, = k7. The framework is maintained in [29], where the analysis based on
Green operators is extended to a fully discrete scheme. An improved convergence order
(O(7)) was proven recently in [85] for the special case of a semigroup generated by a
subgradient in a Hilbert space. In connection with a Galerkin finite element spatial
discretization, the analysis was extended afterwards to a fully discrete scheme in [86].
Algorithms related to the backward Euler method are considered also in [68], [69] (in
connection with a two dimensional adaptive spatial discretization), [4] (for a Raviart-
Thomas mixed finite element method), [37] (the resulting nonlinear problems being solved
with preconditioned Newton methods), [28] (where a regularization step is hidden in the
separate treatment of the degeneracy regions), [35] (for a fully discrete finite volume
method), [71] or [72] (together with apriori error estimates in an adaptive approach). The
resulting schemes are nonlinear. Explicit methods have been proposed in [22] and [97],
while a linear semi-implicit scheme is analysed in [2].

The schemes in the second category include also a regularization step. In this case the
properties of the solution of the problem written above are taken into account. Hence,
since v itself is less regular than ((u), it is more convenient to consider # = (3(u) as the
main unknown. But the degenerate problem cannot be written in terms of § because this
involves also derivatives for v = 7'(6), which may explode in the degeneracy points.
Therefore, a natural remedy to this problem is the regularization, which can be done
either by controlling the derivatives of 3 for getting strictly positive lower bounds and
finite upper ones, or by approximating the initial degenerate problem through a non-
degenerate one. The algorithms in the first group are akin to the nonlinear Chernoff
formula ([17]). This gives rise to some (linear) relaxation schemes ([14]), among which

the simplest one is analysed in [60]

0 — B(ub1) = %v (VO + F(uh) + —r(ub),

u
9k\aa= Blup(kT)),
uk = uh 0k — Bt ),

where the relaxation parameter u satisfies some stability conditions. Fully discrete coun-

terparts are considered in [74] and [70]. Since the relaxation parameter does not depend
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on the variables ¢ or x, the scheme above is linear but the accuracy is altered especially
around the free boundaries. This drawback is avoided through nonlinear versions of the
scheme proposed in [46], [47] or [54]. Even though these schemes can be applied to a
larger class of problems, we give here only a simplified version adapted to Problem P,

Scheme JK:
M(O = () =rV - (V6 + Pt + 7w, (1)
0*|oq =0 (up(kT)),

where Ay € L>®(Q) satisfies the convergence condition

o BB + a8t = B 1)~
L_ﬂ < M <min{ K, I A

(1.2)

Here K,a € (0,1) are parameters of the method, while Lg stands for the Lipschitz

constant of 3. Now wu(k7) is approximated through the relaxation step
wp = uFT 4+ M\ (08 — B(uFTY). (1.3)

For solving the resulting nonlinear (regular) elliptic problems in (1.1), an iterative proce-
dure is considered in [47] and [54]. Taking initially Axo = min ¢ K, % in (1.1),
the first approximation %! for #* can be obtained solving the resulting linear problem.
Applying this solution in (1.2) yields a further approximation A ; and the procedure can
be continued.

Another regularization approach perturbs the degenerate problem in order to obtain
a regular one. Any discretization method appropriate for parabolic problems may be
applied then, but the analysis should rely only on those estimates for the solution of
the modified problem which depend regularly on the perturbation parameter. Alike the
methods related to the nonlinear Chernoff formula, if the resulting elliptic problems are
nonlinear, these can be solved efficiently due to the regularization step. Moreover, linear
semi-implicit schemes are also available in this framework ([67], [88] or [79]). Most of
the numerical algorithms in this group start with a regularization obtained through the
perturbation of the nonlinearity (3 or its inverse. This idea was first used in the numerical
analysis in [50], [84] and [32]. A linear scheme based on the approximation of § was
proposed in [88]. Related to this, the scheme in [33] combines the regularization procedure

with a split of the operator into its hyperbolic part and the nonlinear diffusion.
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A similar approach consists in the modification of the inverse of the nonlinearity func-
tion (37'), together with the transformation of the equation in terms of the more regular
unknown, § = f(u). Numerical schemes using this idea are analysed in [63], [66] and [73].
Still in this frame, the particular relation between the enthalpy and temperature in the
Stefan problem was exploited in [67] for proving the convergence of a linear scheme. A
similar nonlinear approach is considered in [53] for approximating more complex problems
including both slow and fast diffusion.

A different possibility to approximate the degenerate equation by regular ones is offered
by the maximum principle. Applied for the analysis of the porous medium equation for
the first time in [75], this technique may be useful for obtaining numerical schemes for
some classes of problems ([98], [79]).

Hereafter we use the standard notation (see, e.g. [57], [59] or [99]). In particular,
L?*(Q) contains the functions which are square integrable w.r.t the Lebesgue integral on
the domain ©, while H!(Q) requests the same also for the (generalized) derivatives of
first order. Hj(Q) is a subset of H'(Q2) whose elements have zero boundary values (in the
sense of traces). If g lies in H'(Q), g+ Hy () are the elements u of H*(Q2) for which u—g
belongs to Hg(S2). The dual of H;(2) is denoted by H~1(Q2). In case of time dependent
functions, the elements of L?(I; X) are functions with values in the normed space X which
are square integrable (in the sense of Bochner) on the time interval I, while for H*(I; X)
the same holds for the derivatives of first order with respect to t. We let (-,-) stand for
the inner product on L?(2), or the duality pairing between Hg(€2) and H~1(Q), || - || for
the norm in L?(€2). In case these notations are ambiguous, || - ||z .o denotes the norm in
H*?(Q) (the functions having the derivatives up to the order k in the space LP(f2)), or
| - | zrer,x) gives the norm in H*(I; X). In addition, we often write u or u(t) instead of
u(t, ) and use C to denote a generic positive constant independent of the discretization

parameters (h and 7) and ¢, a small parameter involved in the regularization process.

1.2 Results

The aim of this work is an investigation of some numerical methods for degenerate
parabolic equations. All the schemes considered here rely on regularization techniques
and solve the equation in the better unknown # = f(u). The time discretization is done
by one-step methods, higher order ones not being justified theoretically because of the

properties of the solution. For the spatial discretization an upwind box scheme is con-
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sidered. The usual setting in previous papers dealing with the numerical analysis of such
kind of problems (a Lipschitz continuity with respect to 3(u) of the convection and reac-
tion - as requested, for example, in [60], [66], [73], [74], [67], [88], [89], [4], [51]) is extended
here to be alike the one in [97] without affecting the convergence results. Concretely, the

following relation should be fulfilled for any reals v and v
[r(u) = r(v)]* + |F(u) = F(v)]* < C(u—v)(B(u) — B(v)).

In the following chapter maximum principle based numerical schemes are investigated.
As mentioned before, even though this regularization technique was applied long time ago
in the analysis of some degenerate parabolic equations, we are not aware of some numerical
methods exploiting this possibility. Based on the the idea presented in [98], here we extend
the numerical analysis for a class of problems which include convection and reaction
terms, in the setting mentioned above (see also [77]). Three semi-discrete numerical
schemes are considered (an implicit one, a semi-linear and a semi-implicit linear one),
and they are justified by the maximum principle proven there. For solving the resulting
nonlinear elliptic problems iterative methods are studied, and these are useful also in
showing existence and uniqueness of the semi-discrete solutions. Applying the techniques
proposed in [63] and [29], error estimates are obtained for showing the convergence of
the methods. In the general framework, these are at least as good as the ones for other
schemes. In particular cases, based on the recent result in [85], the estimates can be
proven to be optimal.

The above analysis is extended afterwards to the fully discrete case. In order to
maintain the maximum principle at this level, stable spatial discretization methods have
to be considered. The upwind box scheme proposed in the last part of the chapter respects
the philosophy of the upwind technique for finite differences. Since these methods are of
lower order, the upwind approach is combined with the classical box scheme for gaining
in accuracy in the region not dominated by convection, but without loosing the stability.
However, the theoretical convergence of this procedure still has to be proven.

The setting described before is maintained in the third chapter. Here a regularization
technique relying on the perturbation of the nonlinearity (3 is considered for generating
numerical schemes alike the ones studied in the previous chapter. The resulting schemes
are akin to the ones appearing in the references mentioned before, in a slightly restrictive
framework. The maximum principle is not essential anymore, but makes the analysis of

the schemes easier. The error estimates are similar to those obtained for the maximum
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principle based schemes, including the optimal results. The complete discretization is
performed in the same manner as before and the error analysis is satisfactory, improving
- for example - the results obtained for the linear scheme in [89].

Finally some numerical examples are presented, including model problems describing
the gas diffusion in porous media or phase transfers (melting and solidification). More-
over, the algorithms are tested also on a diffusion-transport process in a heterogeneous
unsaturated porous medium. The theoretical results are confirmed by the examples.

At this point, I would like to express my deep gratitude to Prof. Willi Jager for guiding
me in this interesting topic and giving me the possibility to work at the Interdisciplinary
Center for Scientific Computing of the University of Heidelberg. This work was done dur-
ing my stay in Heidelberg, supported by the Deutsche Forschungsgemeinschaft through
the Sonderforschungsbereich 359 and partially by the Deutscher Akademischer Austausch-
dienst. The research group met there helped me a lot for solving many of the problems
which appeared during my studies. I am grateful to the members of the Department of
Numerical Analysis at the ”Babeg-Bolyai” University and especially to Prof. Gheorghe
Coman for the permanent support and encouragement during my stay in Heidelberg.
Many of the ideas comprised here are owing to the collaboration with Dr. Wen-An Yong.
I am thankful to Dr. Nicolas Neuss for many helpful discussions and observations and his
kind assistance with the software UG, also to Mr. Stefan Schnadt for his remarks. The
suggestions of Prof. J. Kac¢ur and Dr. M. Slodi¢ka were useful for clarifying some aspects
concerning this work. The images obtained in the three dimensional simulations have
been produced by Mr. Catalin Dartu with his volume rendering visualization program.
My parents have encouraged and stimulated me permanently to do this work and I want
to thank them for this. Last, but not least, nothing would have been possible without

abusing of the patience and understanding of my beloved wife Valeria.

13



Chapter 2

A maximum principle based

approach

This chapter contains the presentation of a maximum principle based numerical approach
to a certain class of degenerate parabolic equations. It is based on the maximum principle,
since in the solution of the resulting problem stays away from the values where degeneracy
takes place. This represents an alternative to the usual regularization methods, consisting
in the modification of the nonlinearity for avoiding a vanishing diffusion. After performing
a shift of the data, both linear and nonlinear discretization schemes are proposed and

analysed. The resulting error estimates are optimal.

2.1 Basic setting

Let © be a bounded domain in R%(d > 1) with a Lipschitz continuous boundary and
Qr = (0,T) x Q with 0 < T < oo is fixed. We deal here with the following nonlinear

degenerate parabolic problem

Problem P:
Ou—V - (VB(u)+ F(u)) =r(u), in Qr=(0,T)xQ,
uw(0,2) = up(x) >0, in €, (2.1)
u =0, on 0f),

B : R — R being a strictly increasing smooth function. By degeneracy we mean a
vanishing diffusion, namely ('(u) = 0 for some u. Throughout this chapter we assume,

without loss of generality, that 5(0) = 0. Moreover, a unique degeneracy point is allowed.
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The maximum principle based approach relies on the perturbation of the data, which
allows us to avoid the difficulties due to the degeneracy. This technique, introduced in [75]
for the classical porous medium equation, has been used for the analysis of more general
scalar equations (see, for example, the recent works [48] or [45]), but, to our knowledge,
numerical algorithms relying on it have not been analysed so far.

More precisely, the degeneracy is assumed to appear in 0. As shown in the papers cited
above, if positive solutions are sought, the degeneracy in the equation can be overcomed
by a (local) perturbation of the initial and boundary data - namely a shift with a small
parameter. In this way, the resulting data are away from the degeneracy value. The
maximum principle obeyed by such equations guarantees that the resulting problem has
a solution taking values away from the degenerate point. Thus, the initial degenerate
problem is reduced to a regular parabolic one, which can be solved numerically by different
methods. Based on the idea presented in [98], this chapter enlarges the class of problems
taken into consideration there and in [79].

Throughout this chapter some assumptions on 3 are necessary. These, together with

the ones on F', r and ug are given below.

(A1) B is Lipschitz and differentiable, 5(0) = 0, #'(u) > 0 and (' may vanish at a
single point at most (which is assumed to be 0).

(A2) ug >0, wug € L*°(Q) and B(ug) € Hy ().

(A3) r:R—Rand F: R — R? are continuous in v and satisfy the condition

[r(u) — ()| + [F(u) = F(v)* < Clu —v)(B(u) — B(v))

for any u,v € R, where C' > 0 does not depend on z,¢,u and v. Moreover, it is assumed
here that r is positive for all positive arguments and the graphs of both functions contain
the origin, hence 7(0) = 0 and F(0) = 0.

In some situations it will be necessary to give the constants appearing in the assump-
tions (A1) - (A3) explicitly. The Lipschitz constant of both 5 and 3’ (where this will be
needed) is denoted by Lg, while the growth of F' and 7 is controlled by CF, respectively
C,.

The last part of the assumption (A2) is not essential in the analysis of the implicit
scheme, but is requested for proving the stability of the other two schemes. In some cases
the Lipschitz continuity of ' is requested supplementary. Moreover, if the convective term
is linearized, the derivability of any of the components F},i = 1,d of F is needed. Then,
the assumption (A3) ensures that the derivatives - denoted by f;, with f = (f1,..., fa) -
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are (uniformly) bounded.

Remark 2.1.1 The solutions we are interested in here are positive. As mentioned before,
in this case a maximum principle based reqularization can be applied in order to obtain
reqular problems. In (A2) the initial data are positive and therefore the same property
holds true for the solution of Problem P.

Remark 2.1.2 In order to simplify the analysis we have not considered the dependence
of B, F' and r on the variables x and t. This situation can be treated in a similar manner
under some additional assumptions (see, e.g., [53]). Moreover, the gradient of f(u) in

(2.1) may be multiplied by a symmetric and positive definite matriz.

Remark 2.1.3 In (A3) we have weakened the usual assumption on F and r, namely the

Lipschitz continuity with respect to (w.r.t.) B(u)
r(u) = ()| + |F(u) = F(v)| < C|6(u) = B(v)].

The weaker hypotheses in (A8) is enough for obtaining the uniqueness of the solution (see

[1] or [97]).

Remark 2.1.4 Non-homogeneous Dirichlet or natural boundary conditions fit into the
framework here only if they provide a positive solution. But this restriction s fulfilled in

most of the cases of practical interest.

The assumption in (A1) implies that 3 has an inverse 3!, which is continuously

differentiable everywhere excluding 0. Then there are two positive constants such that
0<Ci(e) < (B7H(0) < Cye) < 00 (2.2)

for any real 0 in [3(c), 8 (MeCT)], if this interval is included in the range of 3. Here M
is a large constant satisfying 6° < B(M) — (3(e) almost everywhere (a.e.) and C is greater
than the constant in (A3). Moreover, C}(g) often depends on ¢ in a regular way. To see
this, we refer to the typical porous medium case, where f(u) = v™(m > 1). This kind of
dependence holds true if 3 is Lipschitz continuous at least on bounded intervals. So we
will use C; to denote Ci(¢) and this is assumed in what follows.

Since the problem in (2.1) is degenerate, the concept of solution should be understood

in a weaker sense, one possibility being given below.
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Problem WP. u is called a solution of the problem in (2.1) iff
we H'(0,T; H (), B(u) € L*(0,T; Hy(2)), u(0)=1wuo (in H™)

and for all ¢ € L*(0,T; H}(Q)) the equation holds true

/0 (Ouult), o(8)) dt + / (VB(u(t)) + F(u(t)), Vo(t))dt = / (r(u(t)), (D))t (2.3)

Existence, uniqueness and boundedness of the solution for the above problem is studied
in several papers (see [1], [25], [49], [52], [76] and the references therein). Since the
regularization approach considered here makes use of the maximum principle, we assume
that the solution is uniformly bounded (a.e.) in the whole cylinder 7. This implies
better regularity properties for u. Particularly, we get v € C(0,T; H~'(f2)), thus Problem
WP can be reformulated in a stronger sense than it was considered in [1] and the initial
condition holds in H1(Q).

2.2 Time discretization

The main goal here is the investigation of some approximation schemes for Problem P.
Because ((u) is more regular then wu itself, it is more convenient to consider the equation
in the unknown 6 = (u) and discretize it correspondingly. This approach was adopted in
several papers (see, for example [60], [46], [47], [53], [70]) and generates effective numerical
schemes which can be analysed easier.

The time discretization is based essentially on the first order Euler method. A higher
order method is effective only if the solution is sufficiently regular, which - in general -
is not the case. Moreover, the time step is kept fixed for the sake of simplicity, but the
analysis can be performed in the same manner also for non-constant steps. This last case
becomes interesting especially in connection with an aposteriori error control (as done,
e. g., in [8], [71], [72]). If n is an integer and 7 = T'/n the time step, the Euler implicit
scheme can be written formally as

Scheme MTTI:

BHOM) = 6705 =TV - (VO + F(B71(6%)) + 7r(871(6%)),
0*|ag =5(c)
for k = 1,n with 6° = B(uo) + (¢)vg, where ¢ is an artificial positive small number and

vy € H'(Q) an artificial function. Here #* approximates 0(t;) = B(u(tx)) (tx = k7) and
therefore u(ty) is approximated by 5-1(6%).

(2.1)
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The choice of vy depends on the given initial data ug(x), so that

Vol {uo>e} = 0, vo < 1 and B(uo) + B(e)vo > B(e). (22)

Here the inequalities hold almost everywhere. A typical example is

vy 1= {1 — ﬂﬂ(éo))} ) (2.3)

+

where [z], = x if # > 0, otherwise [z], = 0. Here the initial data are perturbed only

n
locally, improving by this the efficiency of the method. However, all the results remain
valid also for a global perturbation (for example, when vy = 1).

Scheme MTTI is nonlinear. It can be simplified successively up to a linear version.
First, (871 (08 1) f(B71(6% 1)) - VO* can replace the convective term in (2.1), where f is
the derivative of F'. This makes sense only in the connection with the maximum principle
which, under the assumptions made below, guarantees that §* stays above (3(¢) for any
k, so (371)'(6%) does not explode. An explicit treatment of this part cannot be accepted
because we want to maintain the bound from below. Thus we are led to the scheme

Scheme MTC:
FO%) — 7 OR) =r gt + (57 (64 F(BT ) - V(5T (0Y), (24)

together with the same initial and boundary data as before. The reaction term in the

semi-discrete equations can be treated in an explicit manner, replacing r(371(6%)) by

(B O ).
Now we can give a linear approximation scheme for Problem P,
Scheme MTL:

G (6 = 071) =70 4 7B () F(B7E)) - VO (57 0)),
0 lon =A(2), 25)
o, =(61)'(6%)
for k = 1,n, where 6° = (uo) + 8(c)v and oo = (671)'(6°).
Remark 2.2.1 The linearization of the convection is done by multiplying the gradient of
0 with the ‘speed’ (371) (0) f(871(0)), which can be interpreted as the derivative of F w.r.t

0 = B(u). This term may generally go to infinity because of the derivative of the inverse

of B. In connection with the maximum principle, this situation is avoided due to the lower
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bound for 0. Taking into account the assumption we have made in (A3) on F, a simple

calculation shows that for any 6 above [3(g) the following holds

(B~ @) F(571(9))] < V/CrCile).
If F is Lipschitz continuous w.r.t. 3(u), Cy(g) doesn’t appear in the bound above.

It is worth here to mention some aspects concerning the schemes. First, the necessity of
the regularization step becomes clear in the simplified versions of the nonlinear scheme.
Moreover, in this way only one unknown (§ = ((u)) can be considered and for the
nonlinear schemes the convergence of some iterative procedures can be studied. For
the non-regularized approach u and ((u) have to be computed simultaneously, or the
nonlinearity is treated on the fully discrete level (see, e.g., [28], [29], [51], [71], [72], [86]).

The regularization technique relies on the shift of the data, therefore the boundary
values become nonzero. Thinking at Scheme MTI, in order to turn back to homogeneous
Dirichlet boundary conditions, ) = § — ((¢) can be accepted as the unknown function.
Then the nonlinearity function  becomes f.(v) = B(v + &) = [(u), its derivative being
small, but nonzero in the origin. Therefore this approach is not far from the one in the
Jager - Kacur algorithm (Scheme JK, [46], [47]), where a cut-off procedure is applied - if
the 3’ vanishes, it is replaced by a small nonzero value - and convection or reaction are
discretized explicitly. There, after computing 6, the value of u is given by the relaxation
step in (1.3). For a particular choice of the function A in (1.2) and taking a equal to 1
there - this value not being allowed theoretically, but practical computations show that

the algorithm works good also in this case - the relaxation step becomes
up = 671(6").

There is still an essential difference between the two approaches, even when the particular
form of the Scheme JK is considered. By the shift of the data, a cut-off procedure becomes
unnecessary because of the maximum principle. Analogous, Scheme MTL is related to
the one proposed in [88], under the same remark.

As in the continuous case, it is necessary to give weak forms of the semi-discrete
approximation schemes.

Problem WT. For any 1 < k < n, find 6* € H}(Q)+(¢) such that for all p € H(Q)
one of the equations below (each corresponding to one of the schemes mentioned before)
hold true.
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Problem WMTI.

(B7H(0%) = B7H(0° ), 0) + 7(VO" + F(B7(0")), Vo) = 7(r(57(6%)), ) (2.6)

for Scheme MTI, or
Problem WMTC.

(B7H(0%) = B7H(0"71), ) + 7(VE", V)

(2.7)
= (BT (OHFBHO) - VO +r(B7(08), ¢)
if the convection is linearized, respectively
Problem WMTL.
oe(6F — 051, ) + T(VO*, vV
(o ( ) )+ 7( ¢) 2.8)

= (@57 0) - VOt + (57 (0°7), )

for the linear scheme.
The initial data - 6° - has been already chosen in Scheme MTI, while Scheme MTL
contains the definition of 0. k stands either for £ or for £ — 1, depending on the way the

reaction term is treated.

2.2.1 The elliptic problems

As stated before, the maximum principle plays a crucial role in the discretization method.
For Problem P, this property has been studied in several papers ([75], see also [45], [48]
and the references therein). Our task here is to consider the elliptic problems resulting
from the time discretization.

For each k less then n we define

Vi={pepe)+ Q) : ple) <o < B (M), ae}, (2.9)
where C' > 0 will be chosen below. It is clear that for any & > 0, V} includes any of the
previous sets. We also note that V} is convex and closed due to the Riesz theorem.

The maximum principle

The first step in the analysis of the schemes consists in proving that if a sequence of (weak)
solutions for any of the problems arising in the semi-discrete approximations exists, it

belongs (elementwise) to {Vi}7_,- This will be shown by mathematical induction. The
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proof is fairly the same for any of the schemes considered below, therefore we consider
here only the implicit case. The assumption (A2) guarantees that for M suitably chosen
(e.g. M = ||ug||eo), the initial data is in V. Now, assuming that 0*~' is given in Vj_j,
our aim is to show that if a solution #* of Problem WMTT exists, then it belongs to V4.
In order to make the presentation easier, the indices are skipped for the moment. We
consider the auxiliary problem
Problem AUX. Find 6 € Hy(Q) + ((¢) such that

(B7H0) = B~ (X), ) + 7(V6, V)
= (B W) F(BW)-VO+7r(670)), »)

holds for all ¢ € Hy(Q2).
Here 1) and x are chosen in the spaces defined above, namely ¢ € V. and x € V,_; for

(2.10)

some k > 0 and the solution should belong to Vj. This is shown in the following lemma

Lemma 2.2.1 Assume (A1), (A3), ¥ € Vi, x € Vk—1 and r(u) >0 for all w. Then, if T
15 smaller than 19 - a constant given in the proof - and a solution of Problem AUX exists,

it belongs to V.

Proof. We start with the proof of the lower bound because this is essential in the whole
chapter. This is done by reductio ad absurdum, following the ideas used in [39] for the

proof of the weak maximum principle. Assume that
i%f 0 < B(e),

(here the infimum should be understood as the essential one).
Let ¢ be a positive (a.e.) function in H}(£2). Since r > 0 and y > (3(¢), for any 6 < ¢,
the monotonicity of 3 leads to the inequality

0< (87 (0) = 6,0) +7(r(87(0)), »)
Thus, if # solves Problem AUX, the following holds true
(B71(8) = b,9) +7(V8, V) > 7((67) (V) F(67'(¥)) - VO, )
for all ¢ > 0 in Hg(S2). Taking ¢ = [6(6) — 0] € H;(2) in the above inequality yields

f9<ﬁ(5) (B7H0) = )(B(8) = 0) + 7 f9<ﬁ(6) Vo -V(B(6) —0)
> T Jopsy (B(0) =0)(B ) () (B (¥)) - V6.
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Denoting by €25 the support of [3(6) — 6], and applying the Cauchy inequality, this rela-

tion becomes

Jo,(B7H(0) = 6)(0 = B(8)) + TIIVOI[5 2.0,
< 710 = BO)ozesnsuppiwap (871 (©)f (BT (W) - Vo205,

where supp{V#0} is the support of V@. Since ¢ > ((¢), the assumptions made on [ in
(A1), (2.2) and the boundedness of f give

IV esll5 2.0, < CVCa(@)l@sllo,osnsuppivoy I Vesllo,2,0s

where [3(0) — 0], was replaced by ¢s. Hence, the following holds true (for any ¢ < ¢)

IVsllon,ns < CVCa(e)|l@sllo2.05nsuppivoy-

Next, the Sobolev embedding theorem is applied. If d > 2 (where d stands for the

dimension of the domain ), because @5 lies in Hg (), we get

lesllo, 22 @ < ClIV@slloze < Cv/Cale)llgsllo2asnsuppive)-

Now, the Holder inequality for the last term yields

1@sllo, 24, 0 < CV/Cs(e) (meas{ s N supp{VO}})* [¢sllo, 22 o

where the inclusion €25 C 2 was used. Therefore
meas{Qs N supp{VO}} > C(e), (2.11)

where C' > 0 does not depend on 6.

Analogous, if d = 2, the same property of the above set can be obtained. This shows
that the essential infimum of # is finite. Moreover, since the constant in (2.11) does not
depend on 4, the inequality must hold as 6 tends to igf f. That is, the function 6 must
attain its infimum in €2 on a set of positive measure, where at the same time its gradient
vanishes (since the function is constant almost everywhere there). This contradicts the
inequality in (2.11) and therefore the assumption on the infimum of 6 is false.

A similar argument shows that 6 has a finite essential supremum. The equality in

(2.10) can be rewritten as

— L, o)+ 7(V8,Vy)
= (B0 =L,o)+7((BN) (@) (B (W) - VO+1(610)), ¢),
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for any real number L. Assume now that the essential supremum of 6 lies above G(M eé’”),

then choose an arbitrary L > MeC*"

holds true

and everything follows as before if the forthcoming

(B7(x) = L, [0 = B(L)]+) + 7(r(B71(9)), [0 — B(L)]+) < (B7(0) — L, [0 = B(L)]+).

Since x € Vi_1 and @ is positive (this being proven before), the assumption (A2) on r

yields

(87100 = L [0 = B(L)y) + 7(r(B71(6)), 10 — B(L)]4)
< (MeCRIT— L0 = B(L)]4) + 7C(B7H(0), [0 — BL)]+),

where C' is any constant above ,/C,Ls which will be fixed below. Now, if 7C' < 1, the
desired inequality is implied by

(Me“*VT — L, [0 = B(L)]+) + 7C(L, [0 = B(L)]4) <0,

so that it is enough to take C such that MeC* 17 4 7CL < L for any L > MeC*". Let
C be of the form C = aC, with a > 0. Our inequality becomes

MeC*EDT < 1,1 — aCr)

and it suffices if this is fulfilled for L = Me®*". This situation can be achieved for any

\/C» . . .
a € ( éLﬁ , 1), but implies a restriction on the time step 7 (namely 7 < %)

Remark 2.2.2 For r we have requested supplementary the global positiveness. This was
necessary in order to obtain the lower bounds if the reaction is discretized implicitly, lead-
ing to a problem of the same type as the auxiliary one. Replacing r(37(0)) by r(57(¢))
(with ¢ € V},), the above assumption can be relaxed to a more natural one, namely r(u) > 0
only for positive u. Generally, this can be obtained by a standard trick for parabolic prob-

lems, where u is replaced by ve®® (C' being a constant specified below).

Remark 2.2.3 The upper bound induces some restriction on the time step, which does
not depend on k. If the reaction term is considered explicitly, there is no need to impose
anything on 7. Moreover, in this case the constant C can be taken ezactly C, \/E In
fact, since stability is not affected by the explicit treatment of the reaction term, this way

15 recommendable for practical computations.
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Lemma 2.2.1 can be used in establishing the maximum principle for the schemes MTC
or MTL. The proof is simpler for the implicit discretization since we can deal with the
convection term as follows. Under the assumption (A3), for any real number 6, a vector
valued function G® : R — R? can be defined by

G0 = [ R (sas .12

B(8)
for all i = 1,d. Therefore we have G¢(3(6)) = 0 and V, - G*() = F(37(0))V.0. Now,
for 6 = €, by taking ¢ = [#(¢) — 6], in (2.6) the convective part vanishes due to the Gaufl

integration formula and the proof of the lower bound follows directly from the inequality

0< foepe)(B71(0) = )(0 = B(e)) + TIIVOIIS,
= Jocsy(BHX) —e+r(871(6)))(0 — B(e)).

Because of the assumptions on x and 7, the last term is negative, so that either 8 = (),
or meas{€.} = 0, both leading to the desired lower bound. The upper one results in a

similar fashion.

Remark 2.2.4 Problem P may be degenerate only at w = 0. The above maximum prin-
ciple guarantees that if the (initial and boundary) data are away from 0, then the solution
of any of the semi-discrete approximation defined before stays always away from 0 at all

time steps. This is just the underlying idea of our approach to treat the degeneracy.

Remark 2.2.5 The question of existence and uniqueness of a solution for Problem AUX
(which is related to the nonlinear elliptic problems arising in the time discretization) is not
a direct consequence of the nonlinear Laz-Milgram lemma ([99]) since the form involved
here is unbounded on the whole space H'. Relying on the mazimum principle shown
above, a solution will be obtained further in the subset Vi, while uniqueness is given by

comparison arguments.

Linearization of the nonlinear schemes

Having now the maximum principle, we can continue with a linearization procedure for
the nonlinear schemes WMTI and WMTC. #* € V,, is obtained by iterative methods. To
do so, let K be a constant which will be given below and define, for ¥, ¢ € Hj(Q2) and
) € Vi,

ax (¥, 039) = K, 0) +7(VY, Vo) = (87 () F(B7H(1) - Vi, 9),

k(i) = K 9)+ (87101 = B (x + B(e), ) + 7(r(B~ (x + B(e))), ©),
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which are linear and bounded. Denoting by
Wi = Vi, — B(e) C Hy(Q),

the translation of Vi with ((¢), the iterative scheme is induced through the operator
T : Wy — Wy giving the solution of the following problem
Problem PISm: Let v € Wy. Find Ty € W, such that

ak (T, ;057 = I (¥; ) (2.13)

for all p € Hy(Q).
Now the first iteration can be defined as

Iteration ISm:
P =Ty (2.14)

for i > 0 and ° = 0F~1 — B(e) € Wy_1.

An alternative which is more appropriate for practical purposes (see [46], [47] or [53])
reads

Iteration I1JK:

0" € B(e) + Hy (),
(@1, 0@ — 6"Y), ) + 7(VE, V) — (5~ (@) £ (57(0)) - V', )
= ((6719), o), (2.15)

o (@, %) = /0 (571 (s + (1 — )6%)ds

for all ¢ € H}(Q) and i > 1, where 8° = #*~1, (6°,0*1) = (1) (6*~1). Some aspects
concerning this iteration are discussed at the end of the subsection. Now we concentrate
on Iteration ISm, which needs a more rigorous argumentation. This will help us in the
proof of existence and uniqueness for the solutions of the semi-discrete problems. These
properties cannot be obtained as a direct consequence of a nonlinear Lax-Milgram lemma,
since the form used in the definition of Problem AUX - which is similar to the nonlinear
problems WMTI or WMTC - is bounded only on a subset of Hy(2). For the linearized
scheme MTL, the maximum principle guarantees that the classical Lax-Milgram lemma
can be applied for proving the existence and uniqueness of a solution.
If K satisfies

K > Cy(e), and K> 7%02(6) (2.16)
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(the last inequality being implied by the first one for 7 reasonably small), remembering
the bounds given in Remark 2.2.1, the coercivity of ax follows as a consequence of the

Cauchy inequality

a (P, 0) = K[g[]* + 7[VYII* = 7/ CrCa(e) VY Il]|2]]
> (K = rFCy(e) vl + 51Vl

If ) € Wy, the Lax-Milgram lemma can be applied to get a unique solution T% € H}(Q)
of Problem PISm, which is a linear problem and therefore can be solved easily. In this
way, we have defined an operator T' from W} to H}(Q). In fact, a similar proof as the

one given for Lemma 2.2.1 leads to the following result

Lemma 2.2.2 Assume (A1), (A8) and 01 € V,_y. Then TW,, C W,.

Remark 2.2.6 Problem PISm is related to Scheme WMTC. The same holds also if §*~*
in (2.13) is replaced by ¥ + [(g). This can be used to obtain an iterative scheme for the

implicit time discretization method.

Having defined the iterative scheme ISm, a convergence result for the corresponding
sequence is necessary. Below we will show that, under the restrictions in (2.16), T is a
contraction mapping on the closed set W, with an appropriate norm, so 6% can be taken

as
0F = B() + lim Y.
In this case, assuming the above limit makes sense, it is easy to see that we have obtained
a solution in Vj, of Problem WMTC. The uniqueness of the solution in 3(¢) + Hy(2) will
be discussed below, together with the fully nonlinear scheme, WMTTI.
The existence of lim;_, 1* in W}, can be immediately seen by applying the fixed point

theorem to 7T'. This statement is supported by the following lemma

Lemma 2.2.3 Assume (A1), (A3) and 6*~' € V1. If K and 7 satisfy the inequalities
in (2.16) and TCy(c) < C for a constant C' which is determined below, then there is a

norm on Hy(Q) equivalent to the usual one, such that T is contractive on the closed set
Wi.
Proof. Lemma 2.2.2 shows that W}, is preserved by 7. Note that
CF T
ol = (K = =L@l + 2ol
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is a norm on Hy(Q) and ||¢||x < v/ax(p, @; 0k—1). With this new norm, T is a contraction
mapping on the closed subset Wy, as follows from (2.13)

lag (TY1 — Tihy, 03 0k1)| = |K (1 — o, 0) — (B (1 + B(e)) — B~ (Y2 + B(e)), 9) |
+7(r(B7 (1 + B(e))) — (r(B7 (Y2 + B(e))), ©)
< J(E = (871 00) @1 = 42), ) | + T4/ CrCa(e) [ = ¥allllll
< (K = Cr+7y/CrCo(e)) [ — [l el
for any 14,1, € Wy and x between ¢; + 3(¢) and 15 4+ 5(£). In the above inequalities the
mean value theorem, the growth condition on r and the positiveness of 1;, s have been
used. Hence, if 7(S£Cy(e) 4+ 1/C,Cs(¢)) < C4, since

’

C
lell = /K - el

by taking ¢ = Ty — Ty the proof is completed.

Remark 2.2.7 The restrictions on 7 are due to the convective and reaction terms. If
the Lipschitz continuity in f(u) of F and r is assumed, the limitation on the time step
becomes milder (namely Ct < 1). Moreover, in the absence of the above terms, there is

no need to impose anything on T (see [98]).

Remark 2.2.8 As resulting from the above proof, the convergence rate of Iteration ISm is
of order 1—0(1/C5(¢)), which is close to 1 when € is small. But this approach is useful in
obtaining the existence of the solutions of the nonlinear problems. The reduced convergence
order can be observed also in practical computations, therefore we have considered also
Iteration JK, which is more interesting from the practical point of view. In this case the

theoretical restriction on T is more severe than the one in Lemma 2.2.3 ([53]).

Remark 2.2.9 Iteration ISm relies on the operator T, which has been used in [90], pp.
96. But we show that T is a contraction mapping, at least for the present problems, in
the setting defined in the proof of Lemma 2.2.3. This fact simplifies the context, while the

monotonicity of T can lead to an alternative proof similar to the one in [90].

The above results show that Problem WMTC has a unique solution in Vj. But in the
frame set in Lemma 2.2.3, the uniqueness holds in the whole §(g) + Hj ().

Lemma 2.2.4 Assume (A1), (A3) and 6*~' € V1. If K and 7 satisfy the inequalities
in (2.16) and 7Cy(c) < C for a suitable constant C, Problem WMTC has at most one
solution 0% € () + H3(Q)
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Proof. We consider here only the implicit discretization of the reaction term, the
proof in the explicit case being identical. Let ©,60 € (c) + Hy(2), then ¢ — 6 € Hy(Q).
Assuming that both solve Problem WMTC with the same §*~!, testing with ¢ = 1) — @

and subtracting the corresponding equalities for both solutions yields

(B=H (W) = B710), v = 0) + 7|V(v = 0)|”

(BT (O F(BHOM) - V(W = 0) +r(B7H ) = r(B7H0)), ¢ — 0)
7/ CrCa@)IV (¥ = O)I[1¢ — 6l + 7/ Cr(B7 (%) — B71(8), v — 0)7[|v — 6]
IV =02+ 551 (w) = B710), 4 = 0) + (5CkCale) + TClY — 0|17,

where the monotonicity of § has been used. This, remembering the relation in (2.2), leads

IA A

to
C T 72 T
(- Zercuer+ So ) v - o + ZIvew - o) <o
which, if 7 is small enough (satisfying 72C, +7CrC,(g) < C}), shows that 1 and 6 coincide

a.e. in €.

Remark 2.2.10 The proof of uniqueness in Wy for the implicit discretization scheme
WMTI is similar (the assumption in (A3) on F' has to be taken into account). In this

case, the restriction on 7 changes to Ct < 1, which is more convenient.

As mentioned in the Remark 2.2.6, Iteration ISm can be used to get the solution of
Problem WMTI. More precisely, the Lax-Milgram lemma can be applied again to get a
unique Ty € H(Q) satisfying

a (T, ;0 + () = I (h; ) Vo € Hy(Q) (2.17)

for each ¥ € W. Also Lemma 2.2.2 holds true, but unfortunately we have not been able
to obtain strong convergence in H' without additional assumptions on the convection
term F. However, an uniform bound for the H! norm of the sequence {¢*,7 > 0} can be

easily derived. This follows by taking ¢ = T in (2.17), giving

KT + 7|VTY|? = 7((B7)' (v + B(e) f(B7H (¥ + B(e))) - VTV, TY)
= K@, Ty)+ (8710°Y) = 871 + B(e)), TY) + 7(r(B7H (¢ + B(e))), TY).

Recalling the maximum principle, an upper bound (C') depending on &, the supremum in
Vi and the measure of 2 - but not on 7'7 - can be obtained in the right hand side above.
The last term in the left hand side can be bounded by

(87 (6 + BENS(B™ (¥ + B(e)) - VT, Tw)| < [ VTw]* +C.
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where the constant C has the same properties as C. This shows the uniform boundedness
of {1",i > 0} in H'. Compactness arguments in connection with the uniqueness of the
solution guarantee the convergence of the above sequence weakly in H'(£2), hence strongly

in L*(Q). The statements above can be included in the following lemma

Lemma 2.2.5 Assume (A1), (A3) and 0¥ 1 € Vi_y. If K and T satisfy the inequalities
in (2.16) and T < C for a constant C, Problem WMTI has at most one solution 6% €
B(e) + H (). Moreover,

0" = p(e) + lim ",
and convergence takes place weakly in H*, thus strongly in L.

As seen in Remark 2.2.8, the iteration scheme discussed up to now has a reduced
convergence rate, but relying on it we have been able to show the existence and uniqueness
of the solution for the semi-discrete equations. Iteration JK is more appropriate for
practical purposes. Without giving the proof - which is similar to the one for Lemma
2.2.1 -if ¥ ! € V,_4, then all the elements of the sequence of solutions {6}, given by
this iteration belong to V. Therefore, the regularization based on the maximum principle
works in this case too.

In particular, taking § = #*~! above leads to an iterative method for Problem WMTC,
while the choice § = #~! gives the alternative for Problem WMTI. This method of lin-
earization is proposed in [46] and [47], where a cut-off approach for the regularization is
necessary. The function ¢ here is similar to g in Scheme JK; in the setting mentioned
before. Again, since the problems WMTC and WMTTI admit unique solutions, compact-
ness arguments show that § converges weakly in H' (and therefore strongly in L?) to
the semi-discrete solution ;. Moreover, Theorem 5.9 of [53] can be applied here in order
to obtain the order of convergence in L? provided the time step is small enough, namely
72C0y(¢) < C. Here a < 1 comes from the Hélder continuity of the solution, namely
0% € C% ([58]). As mentioned before, this restriction is merely theoretically, practical
computations showing that Iteration JK is efficient. Most of our numerical examples in

the last chapter were computed using this approach.

2.2.2 Error estimates for the semi-discrete approximation

In this section we will show the convergence of the maximum principle based approach by
proving error estimates for the schemes MTI, MTC and MTL written in the variational

form. To do so, some stability properties are necessary.
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We start here by stating three elementary identities to be used in what follows, which
are valid for all a, by € R? (¢ > 1)

2 " ar(ar — ak-1) = |am|” = lao]® + ) |ax — ax_1 %, (2.18)
k=1 k=1
m k m 2 m
23" N ey = Y ]+ |l (2.19)
k=1 j=1 k=1 k=1
Z ak(bk - bk—l) = ambm — aobo - Z(ak — ak_l)bk_l. (220)
k=1 k=1

The apriori estimates

The following theorem establishes the stability of the implicit scheme.

Theorem 2.2.6 Assume (A1), (A2) and (A3). Then, for p < n, if 6% solves Problem
WMTI, we have

p
Y IVeHPP <, (2.21)

k=1

P P
(G G R e G N A B W b
= ) = (2.22)
+r|VOP|)” + 7Y [[V(6F - 647)|)* < CrCye).
k=1
Proof. By taking ¢ = 6% — 3(¢) € HZ(Q) in Problem WMTI and summing up for

k=0,p we get

D (BTHOF) = BTHOM), 08 — Ble)) + 7Y IVEF|?
k=1 ) ) k=1 (2.23)
= —7Y (F(B71(6%),V6*) +7) (r(B7(6%)),6" — B(e)).

Now, each of the resulting terms is estimated separately. To begin with, observe that

[ s es <bs 0 = 5@ [ (5 Y eas = T
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hold true for any reals a,b (due to the properties of ). Hence, for a.e. z € Q, it follows
that

i (8 (Gk) 5_ (9'“_1))9'c = Y0, 0 s ( )ds
> 1 fek L s(B7Y (s)ds = s(ﬁ ) Yds — fo “1Y(s)ds
> C(Op) — B (90)00.

Since ug, #° € L™, integrating over € the above inequality gives
g g

D (BN = B0, 0%) > Cllen|)? — (B71(6°),6°) > C||* || — € > —C.

k=1
Using the maximum principle in Lemma 2.2.1, the remaining part of the first sum can be
bounded as follows

/4

D (B7HEF) = 57O, Be)| = |(871(67) = 571(6°), B(e))| < CBe).

k=1

Next, the first term in the right hand side vanishes (as in (2.12)). For the last one, since

6% is uniformly bounded (also independently on k)

|3k (r(B71(0%)), 05 = B(e))| < 7 305, Ir(B7HE)IIE* — Ble)ll < C.

Since ¢ is small, we have ((¢) < C. The above inequalities give the first part of the
conclusion.
For the second estimate, ¢ in (2.6) is replaced by 0F — 6F~1 € H}(Q). Recalling the

identity in (2.18) and summing again over k from 1 to p yields

Z (ek—l)’ ek - ak—l)

1

T —
+3 (IIW”II —IvVe°ll + Z IV (0* —0* 1)IIQ)

k=1

= =7 (F(F7(0"), V(" = 0*7"))

(2.24)

+ Y (r(57(8Y)),6" = 6"71) = (I11) + (IV).

For (I), because of the assumptions on 3, the following inequality holds true

Zne’“ 01 + Z( H0F) = 570", 0° — 0",

k‘ 1
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Since V-F(371(0)) = f(57(0))(871)(0) V0, recalling the boundedness of f from Remark
2.2.1, for (III) we have

((IID)| < 730 [(F(B7HOF) (B (0%)VE*, 68 — 65 1)]
< T2 VCRCa(e)||VORI]16F — 6.

Applying here the inequality ab < na®+ ﬁbz forn = é—: and using the first estimates gives

(IT])] < —Zna’“ 08112 + C7Cy(e).

k=1

Now, recalling the maximum principle again, the last term leads in a similar manner to

|(IV)] Znek *1|? + Cr.
k=1

Finally, since 6y € H'(Q), the inequalities above show the remaining part of the theorem.

Remark 2.2.11 [t does not make any difference for the apriori estimates if the reaction

term 1s considered explicitly.

Remark 2.2.12 The large constant Cy(g) appears in the last stability estimate due to
the condition imposed in (A3) on F. As we will see below, this does not affect the error
estimates. In the case F is Lipschitz continuous in f(u), since Cy(e) disappears in (2.22),

the apriori estimates become optimal (as obtained, e.g. in [13]).

Remark 2.2.13 For the analysis of Scheme MTC it will be useful to have apriori esti-
mates without Cy(e). These can be obtained by a different handling of (111)

UID| < 7S (F(57(04), V(0 — )
< CrSILIVE - ) < O S IV - 8,

where the uniform bounds for 0F have been used again. The rest of the proof follows as

before and leads to

P (B71(6%) = BT (047,04 — 07 + T, 16 — 6+
+IVOI? + 7 5 IV (OF = 0P <C.

In this case the results are worser (since T is lost), but still enough for getting the error

estimates.
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In a similar manner, for Scheme MTC we have

Theorem 2.2.7 Assume (A1), (A2) and (A3). Then, for p < n, if 0¥ solves Problem
WMTC, there are constants C' independent on p, T and € such that

p
7Y IVOH|* < CCae), (2.25)
k=1
p p
S (BHO) = BHOR), 0 — 0F )+ |l0F —
k=1 k=1

» (2.26)
+7IVOP| + 7Y IV(0* — 05 H|P < CrCy(e)”.

k=1
Proof. The proof is almost identical to the one for Theorem 2.2.6. The only difference
appears when dealing with the convection. For (2.25), the first term in the right hand

side of the relation in (2.23) is bounded as follows

T2 (B (O D) F(B7HOF1) VO, 0° — B(e))
< 7V CrCa(e) 3ok IVO[I1I6" — B(e)l]

_
< S IVEHIP + CCale),

and the first inequality above is obtained as before.

For the second estimate, the same steps can be done to get a similar relation to the
one in (2.24). The estimate for (/1I) reads

((IID)[ = 735 (871 (0 D) f(B7H(6 1)) Ve, 05 — 651

Ch

S ? Z:l ||9k - 91‘371”2 + 07—202(6) i:l ||V9k||2
C1

< SIS - 0 CrOyep

the last inequality is due to the relation in (2.25). Proceeding as in the former case we

arrive to the remaining estimate.

Remark 2.2.14 As for the implicit case, optimal estimates are obtained if F' is Lipschitz
continuous in B(u). Then, the large constant Cy(e) disappears in (2.25) and (2.26).

Stmalarly, an explicit discretization of the reaction term yields the same results.
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Finally we turn our attention to the linear scheme. In this case we have to assume
more on (3, namely the Lipschitz continuity of its derivative. Still, reasonable estimates

are obtained only if one of the following additional hypotheses hold true

(A1) f:R — Ris a convex function,
or
(A3) F : R — R? is Lipschitz continuous in 3(u).

Even though (A1)’ and (A3)" do not have too much in common, at least one of them
is essential for the stability. More precise, the apriori estimates which can be obtained
without any of the above supplementary assumptions are useless - depending exponentially

on Cy(g) - so the error estimates for Scheme MTL are irrelevant.

Theorem 2.2.8 Assume (A1), (A1), (A2) and (A3). Then, for p < n, if 6% solves
Problem WMTL, we have

7Y VO] < CCy(e), (2.27)

k=1

p p
S lIVEesi (0 — 4P+ o[V + 7 > [[V(6F — 05 |2 < CrCa(e). (2.28)
k=1 k=1

Proof. The proof for Theorem 2.2.6 can be followed in this case too. If we take

o =0F—B(c) € H}(Q) in (2.8) and sum up the resulting equalities for £ = 0, p, the only

difference to the relation in (2.23) consists in the term

()= (ox1(6" — 05,6 — B(e)). (2.29)

k=1

This can be rewritten as

(D) = 3iei((on-1 = o (6%, 0571)) (6" — 6*71), 6% — B(e))
+ 2k (B71(0%) = N0, 0 — B(e)) =: (1) + (Fa),

where o (0%, 0%71) is defined with Iteration IJK. Since 3 if convex and 3 positive,
sign{(871)/(6*1) — (571Y(s6*~1 + (1 — )6*)} = —sign{6*~ — 6*}.

Hence, remembering that #* > 3(¢), it follows that (I;) is positive. The bounds for (I5)

are now derived as above.
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Next, repeating the steps in the proof of Theorem 2.2.7, we need an estimate for (177).
Because o 1 = (871)'(6*71), it follows that

(D) = 7Y (Jamif (87 (01 V6", Jars(6" — 01))
1
< AL Va0 = 0 + O7/Coe) iy IV 0P

1
< Sk IVEmEt = 0P + CrCa(e)e.

Here the boundedness of f and the inequality in Remark 2.2.1 have been used. The rest

of the proof is identical to the previous ones.

Because of the convexity of /3, the estimates obtained above are slightly better then
in Theorem 2.2.7. Without this assumption, the Lipschitz continuity of F' is necessary.

In this case the estimates are given in the following theorem

Theorem 2.2.9 Assume (A1), (A2), (A8) and (A3). Then, for p < n, if 0% solves
Problem WMTL, the following holds

p p
> IVa (0% = 0P + T VOP P+ 7Y V(0 — 05| < O (2.30)
k=1

k=1

Proof. Testing with #* — 0*~1 in (2.8), the only thing we have to deal with is again
(I1I). Here, since F' is Lipschitz in (u), the constant Cp is an upper bound also for

(B7)(0)£(871(6)), so
(1D = C7 35, IVl /a1 (6 — 0571l

1
< G2 VoR(0F = 05 12 + O o VO™

The desired estimate is a consequence of the discrete Gronwall lemma.

Besides we need the following lemma.
Lemma 2.2.10 For u > 0, define
u® = 7 (B(u) + B(e)).
If B satisfies (A1), then
0 <u® —u<e+Cye)s(e), (2.31)
where Cy(g) is defined in (2.2).
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Proof. Because 3~' as well as 3 is increasing and & > 0, we have
u= " (Bw) < B7H(B(u) + B(e)) = s,
On the other hand, it follows from Taylor’s theorem that
ut = B7H(B(u) + B(e)) = B~ (B(max(u, £))) + A(min(u, €))(87)'(6),

where 6 is a convex combination of #(u)+ §(¢) and f(max(u,¢)), which are both not less
than 3(¢) due to w > 0. Thus, it is clear that

B (B(max(u,€))) < u+te, B(min(u,e)) < Ble) and (B 1) (0) < Cale)

and hence
u® < u+e+ Cye)f(e).

Remark 2.2.15 If 3 satisfies
e-inf {3'(z):x € [e, M]} > Cp(e),
which is true if f(u) = u™ with m > 1, then the above inequality become
0<u® —u<Ce.

Similarly, in case [ is super-linear - satisfying B(u) + B(v) < B(u + v) for any u, v -

which holds true again for the typical case mentioned above, Lemma 2.2.10 becomes
O<u —u<e.

Both cases will simplify the error estimates.

Error estimates for the implicit method

Now we turn to the estimates for the error in the semi-discrete case. To do so let us set

for any function f integrable in time and defined in Qr

- 1 kT
o= /( £(s,-)ds,

T J(k—1)r
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if k> 1 and f°:= f(0,-). We will make use of the following notations
65 — gk — ﬁfl(gk)’ 6Z,k — Ek . ﬁfl(ek)’ 6{3 — —ﬂ(u)k _ 919’ e;,k = ﬂ(ug)_k _ 91«3’

where £ > 0. Using the Lemma 2.2.10, because of the maximum principle, we have for
any k>0

(2.32)

Moreover, remembering the definition of #° in (2.1), Lemma 2.2.10 shows that initially

these errors satisfy

—e+Cy(e)fe) <e

0
v 2.33
—B(e) < ep < (233

Because of the definition of u*, for £ > 0
Vek = vt

holds true.

The analysis below combines the approach in [60] with the ones in [29] and [73]. We
have not considered the possibility given by the non-degeneracy property of the solution
(which was taken into account first in [64], [66] and then in several papers like [2] or [28]),
since this kind of results are shown up to now only in some particular cases (see, e.g. [6]

for the porous medium equation, [65] for Stefan problems, or [27]).
In the sequel G : H~1(Q) — H} () denotes the Green operator defined by

(VGY, Vo) = (¥,9), (2.34)

for all ¢ € Hy(2), where 1 is taken in H~*(Q2). In the right hand side (-,-) stands for
the duality pairing between H~' and Hj. Obviously, G is linear. Due to the Poincaré-
Friedrichs inequality, the following

(2, )]
[¥]-1 = sup :
' weHé,go;éO ||V<p||

is a norm in H~'(£2) equivalent to the usual one. Recalling the definition of the operator

G we can easily obtain

IVGY|* = (VGY, VGY) = (¥,GY) <[] IVGY,
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hence ||[VGY|| < ||¢||-1- The inequality in the inverse sense is a direct consequence of the

same definitions. Moreover, if 1 € L*(Q), the inequality

|)l-1 < C|l9||
is a direct consequence of the inequality mentioned above. Thus we have shown that
IVGY| = [[¥] -1, [ll2 < ClIY| (2.35)

(where the last inequality applies only if ¥ € L*(Q2)).
Now we can proceed with the error estimates for the implicit scheme. These are

obtained in the following theorem.

Theorem 2.2.11 Assume (A1), (A2) and (A8) and let u be the weak solution of Problem
WP and 6% solves for each k > 0 Problem WMTI, then

sup. e 112, + Jy (B(u(8) = Oa(t), ws () — B2 (0a(t))dt + [|B(u) = Oall3(q)
< C{r+e +(Ca(e)B(e))'}
where Oa(t) = 0% fort € (t_1,tx) and k =1, n.

Proof. Let x|r be the characteristic function of the time interval I C [0,7]. Choosing
©X|it;_1.¢;) for an arbitrary ¢ € Hj(f) as a test function in (2.3) leads to the semi-discrete

equations satisfied by the continuous solution

(ults) - ult-1), )+ (v [ statina+ [ F(u(t))dt,w)
- ( [ o, 99) ,

for all p € H}(Q2) and j > 0. Subtracting (2.6) from (2.36), taking ¢ = Ge5? € H; in the

resulting difference and summing up for j = 1, k yields

(2.36)

(1) + (12 ulty) —u(tj-1) — BH07) + B0 ), Gey?)

7=1
k
+7 Z(Veg”, VGe:d)
j=1
k

B (/ F(u(t) = P87 (#)d, VGef;j)

k

+Z ( / () - (57 @)t Gefﬂ) = () + (Iy).

Jj=1

(2.37)

38



Now we have to estimate each of the terms in (2.37). First we consider (/;) and

decompose it as follows.

Recalling the elementary identity in (2.20), since u(ty) = @°, (I11) can be rewritten as

k
(Ill) = (U(tk) — ﬂk,Gegk Z ] 1 — U] 1 GC J Gei’j_l) =: (1111) -+ (1112).

j=2
) a? b
Because d,u € L*(0,T; H 1(Q)), using the inequality ab < =t with 6 > 0 we have

1 pte 1 pt th
() < [ () = ut),Geg) [ de < - [ | [ @), Gezyas| as
tp—1 tp—1 |Jt

1 tr 173 1
< [ [ 10l 196 Idsdt < 7 il vy it 59
tp—1 Jt

<T(5111 ||8tu||L2(tk Lt H-1() + 4(5 || E’k||2

with 6117 > 0 given below. The estimation of (I112) goes on similarly
|(I1o)] <= Z / —u(t), Gey? — Geg /™) | dt

§T2 Z ||atu||L2(tj,2,tj71;H—1(Q)) lles? — e | (2.39)
j=2

1
2 . .
ST&IIQ ||atu||L2(0,tk,1;H_l(Q)) + 46—1122 ||e’lEJ,,] — ez’] 1||2_]_;
7j=2

The bounds for (I;5) are obtained in the same manner.

() = (@ =", Gegk) — (2° —w", Ge5®) — S8 (w1 —u¥ ™", Ge? — Geg ™)
(I121) + (I122) + (L123)-
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Employing the relations in (2.32), (2.33), Lemma 2.2.10 yields

(L) <l|a@* = w*[[[|Ge*|| < Cle + Cale)B(e) 1] 1

<C(e + Cy(e)B(e)) %6191 +
[(Li22)| <[17° - w°||||Ge5”|
<C(e + Cy(e) BN Ie5°|-1 < Cle + Cale)B(e))?

e,k|12
eI,

k
. L ) . 2.40
() <390 =7 G — ez | (240)
=1

<C(e+Co(e)f E]VJ e

<C(e + Cy(e)B(e)) 6125 + s Z llez? —es? 12y
123 57

Here we have used the boundedness of €2 and C' is a generic constant.

Using the identity in (2.18) and the properties of G, the estimate of (I3) is a simple

matter.

k
(Iis) =) (VGey? — VGey ™', VGey)
=1

1

k
=3 (||€6k||2_1 —1eg®M2 + D lles? — ei’j_1||2_1) :
7=1

(2.41)

Now we proceed with the second term in (2.37).

(12): TZ] 1(60 ’ u)

= ] i ft L ) — 07)dt, —ft “(s) = B71(07))ds)
= X, -, 5() ﬁ H(67))dt

+308 ftj?'_l (B(us(t)) — 07, - ftjj_l (u(s) — u(s))ds)dt
S ftj,{l(ﬂ (us(t)) — 67, us(t) — u(t))dt

S 0,2 [ (uls) - ult))ds)e
=: (In)+ (122) (]23) + (124)-
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For (Iy), recalling (2.2) we have

1kt , ,
(1) 233 [ () = 0,000 — 57 @)

(2.42)

01 k ] .
s [ 1) - o P
j=1“ti-1
The estimates of (I5;) and (Iy3) are identical and can be done as for (I13).

|(T22)], [(T23)| <C(e + Co(e 18w (2)) — 67| dt

w3 [
gC@+cx@maw%§j([jHMfu»—em%Q (243

j—1

. Co,
<o Z/ 1BG(8)) = 0t + (= + Cale)B(e))

In order to obtain upper bounds for (I54) we repeat the steps for (I;12). Remembering the
apriori estimates in Theorem 2.2.6 it follows that 67 — 3(g) € L%(t;_1,t;; Hy(£2)). Because
O € L*(0,T; H1(Q)) and B(u) € L*(0,T; H}(2)), we have

( e /t S aru(T)dT) dsdt

<§j/ /‘nv ) = )18, u(r)]|rdrdt

|24 <

(2.44)
<7 Z 10l 2ty _y -1 IV (B () = 09| p2ge,_y 15m3(02))
<C'T.

Considering now the right hand side in (2.37), (I3) can be splitted into two terms.

() = =5 f,7 (F(u(t)) = F(u(1), VGei)dt
S S (FE(t) = F(871(09)), VGesd)dt = (Inn) + (Isa).

For the first term, because of the assumption (A3) on F, Lemma 2.2.10 can be used again
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in order to get

<3 [ IPo) - P @)Ivee
<OYNellr [ (ult) = w0, Ba(t) - Bl (1)

=t T ) (2.45)
<CTB(E)H (= + Cae)B(E))F D e+

C LI
< BE) e+ Ca(e)BE) + CTbn Y e |12

31

j=1
Analogous, for (I35) we can obtain
i . t . -
(L) <O ||6Z’J||—1/ (w(t) = B7H(8"), Blus(t)) — 07)=dt
j=1 i1

N =

<Ot Yl ( | w57 @) 500 - 9j>dt) (2.46)

C LY ) . k |
SFZ/ (u(t) = B7(6), Bu*(6)) = ')t + Crbgy D [ler|I2,.

tj_1 j=1

Proceeding exactly in the same manner as before, the inequalities in (2.35) lead to the
same estimates for (I). Inserting all the inequalities in (2.38) - (2.46) in (2.37), recalling
(2.33) and choosing the ¢’s properly, we get

leH 17 1 + D25 llet? = e =17,
+ 5o f (B () = 69, (t) = B7HO))dt + CL 35y f, 18w (1)) — 07)Pdt
< O [10sull32(o, -1y + OT + Cle + Cale) () + CT 4 e |1

Since u € HY(0,T; H 1(Q)), applying the discrete Gronwall inequality yields

tg
”62716”2—1'1_/0 (B(w®) = Oa,u® = B71(0a)) + 18(w*) = OallZ2(0,00;22(0)

<O (1 + (e + Ca(e)B(e))?)

(2.47)

for any £ > 0.

Finally, we notice that

18(u) =07l = [|B(u) — 67 + B(e)|
> [18(u) = 67| = 1B = [[|8(u) — 0[] = CB(e)|
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and therefore
2[|B(u®) — 07]1> > ||B(u) — ¢7]]> — CB*(e).

This, together with (2.47), gives the desired result.

Remark 2.2.16 In the situation described in Remark 2.2.15, the errors in Theorem
2.2.11 are bounded by C (1 + £2), with some positive constant C.

Remark 2.2.17 The above error estimates show that Scheme MTI behaves at least as
good as the algorithms in [60], [13], [46], [4] or [28]. In fact, the schemes in [60], [13]

1/2

or [4] are proved to have a convergence order TV/%, while the order T'/* is demonstrated

in [42], for the method proposed in [46]. For the nonlinear scheme in [28] the same error

0.3

behaves asymptotically like 7°°. The possibility to obtain an optimal convergence rate will

be discussed later.

Remark 2.2.18 An alternative proof is given in [98]. This relies exclusively on the
method proposed in [60] and can be applied only if the Problem P does not contain a
convective term. Having now the result in Theorem 2.2.11, this procedure can be repeated

in order to get error estimates involving H*(Q2) norms (see, e.g., [13]).

Remark 2.2.19 The same result is obtained if the reaction term r is discretized explicitly.

To see this, we notice that the last term in (2.37) becomes

(I = S5 (J2, r(u(®) — (57 (@ )dt, Ge)
= (L) + 725, (r(B7HO) = r(B7(67)), Ges).
Now, the assumption on r in (A3) can be used to estimate the last sum

k

|T)] < (L) + O D e 11 (871 (07) = 87187 ), 07 = 67)z.

Jj=1

Because of the apriori estimates in (2.22) (but in the form mentioned in Remark 2.2.13

for avoiding a T - £ dependence) we get

k
()] < U] +Cr+ 07 ) lleil2

i=1

and the rest follows as before.
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Remark 2.2.20 The error estimates for u are obtained in the H'(0,T; H=*(Q))) norm.

This can be improved if an inequality of the form

(B7HO) = BT W))(O — ) = C(B7H(0) — B ()

holds true for a positive constant C' and an exponent p > 1. Then, using the estimate for
the scalar product in (2.47), an error estimate in the better LP(Q) norm can be obtained.

For example, if B(u) = u™, recalling (2.82), the estimate reads
= 5O I o < € {7+ + (Ca(e)5(E)))
(see, e.g. [73], [28]).

Error estimates with linearized convection

The next result applies to the simplified nonlinear scheme.

Theorem 2.2.12 In the setting of Theorem 2.2.11, the following estimates can be o0b-
tained for Scheme MTC

sup [les*[2; + Jy (B (1)) = 0a(t), w2 () = B (0a(1)))dt + [|B(u) = Oal132(q)

k=1,n
< C{rCa(e)® + 2 + (Ca(e)B())"} -

Proof. The steps in proving Theorem 2.2.11 can be repeated here. First, the estimate

in (2.44) becomes C7Cy(¢) when F is not Lipschitz in §(u), but this does not affect the

final result. The main difference appears when dealing with the convection part, where

we get
(I) = (In)) + (Ins) + 35, [, (F(B7H®) = F(B71(¢)), VGe)dt
— N (BT O (B0 ) V(67 — 67), Gz,
the last terms being denoted by (I33) and (I34). The estimates for (I3;) and (I35) in the

previous theorem are valid in this case too. As in Remark 2.2.19, (I33) gives
()| < OT X5 e |-(B7(89) — B (871), 00 — 671)2
< OTYp(BNE) =B E), 0 =67 + O 00 e |12
Recalling Remark 2.2.1, (I34) can be bounded as follows
(L) < OT/Co(e) 5, [IV(67 = 07 Y)[[l| G|

< Oy [VGed|? 4+ OrCy(e) S5, |V (67 — 677 1)] 12,
Using the apriori estimates in Theorem 2.2.7, the rest of the proof is identical to the one
for Theorem 2.2.11.
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Remark 2.2.21 As before, there is no difference when r is discretized explicitly. In fact,

the remarks for the implicit case can be done here.

Remark 2.2.22 In case F is Lipschitz continuous in f(u), the error estimates are iden-
tical to the ones for the implicit scheme. The factor Cy(£)® multiplying the time step T
appears only due to the behaviour of f.

Error estimates for the linear scheme

Now we turn our attention to the linear scheme, for which the following estimates can be
obtained

Theorem 2.2.13 In the setting of Theorem 2.2.11, assuming additionally the Lipschitz
continuity of 3 and the convewity of 3, if % solves for each k > 0 Problem WMTL, then

sup. e 1121 + o (B(us(£)) = 0a(t),us(t) — B~H(0a(£)))dt + [|B(w) — Ball2aq
< C{r0y(e)} + 22+ (G0)8() }
where Qo has been defined in Theorem 2.2.11.

Proof. The proof is similar to the ones above. Following the same steps, the relation
in (2.37) becomes

k k

> (ulty) —ultj1) — o1 (07 —0°71),Ge?) + 7Y _(Vey?, VGe)

=1 =1

== ( | o) = rE e vaefﬁ')
—7 3 (P57 (6)) — B (7)), VGei) (2.49)

+7Y (B BTV -0, Ge)

=L

/t " r(u(t)) - r(ﬁ_l(ej_l))dt,Gef;j> .

Subtracting and adding in the first sum $7(6?) — 371 (677') = o (67,677 1)(¢7 — 677 1)
(0(67,671) being defined in (2.15)) the only thing we have to deal with in the left hand
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side is the following term

k

T=> (B7167) = 7)) — oy (67 — 0971), Ge).
j=1
The Lipschitz continuity of 8 yields
(67,6971 — 05| = fy (B7Y) (07 + (1= 5)677) = (B71) (677")ds
< LIBCQ(g)QO-j_1|9j — 97'_1|.
This, together with the stability result in Theorem 2.2.8 and the maximum principle
(showing that ||Ges?|| < C) gives

IT| < CTCy(e)3.

Now everything follows as before. Recalling the apriori estimates in Theorem 2.2.8,

for (I33) in the previous proof we get

)| < 7 SEL (6710 = B07), 00 — 07+ Cr oy s
< CrCye) T 109 — 077 + O i led
< CrCye) Ty Iya (e — P+ COr S eI,
< OrCy(e)E +Or T eIy

Similarly, (I34) yields
(Is4)] < CTCy(e)3,

thus the difference due to (ly4) will not affect the result and the error estimates are

obtained as before.

Remark 2.2.23 Like in Theorem 2.2.9, in case F' is Lipschitz in f(u), Scheme MTL is
stable without assuming the convexity of 3. The same steps give slightly improved error

estimates
sup e 112, + fy (B(us(t) = 0a(t), u(t) — B (0a(1)dt + [|B(u) = 0all%2q)
< C{7Co(e)? + 2 + (Cy()B(e))’} -

However, we cannot obtain a result similar to the implicit scheme.

Remark 2.2.24 The linearized case has a reduced convergence order, depending on the

properties of ' and the choice of . For example, if 3(u) = u™, the errors behave like
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T1/2™ which is quite bad when m goes to infinity. But practical computations show that the
above estimates are quite pessimistic since in most of the cases the results obtained with
this scheme were close to the ones generated by the nonlinear ones. The main advantage
of Scheme MTL s due to its linearity, thus no iterations are needed, which compensates

its theoretically worser convergence properties.

Optimal estimates

In this part, Problem P is considered without convection and reaction
Problem P’:

Ou — AB(u) =0, in Qr =(0,T) x Q,
u(x,0) = ug(x) >0, in Q, (2.49)
u =0, on 0f),

the assumptions on [ and ug remaining the same.

One development of semigroup theory for the problem above proceeds by considering
implicit Euler approximations and solving a sequence of degenerate elliptic problems to
estimate the solution of the parabolic problem at discrete times. The Crandall-Ligget
theorem in [23] establishes the convergence of this procedure together with an order
O(7'/?). In spite of numerical evidence, it was long believed that this is the optimal
rate of convergence of the backward Euler method for degenerate parabolic problems.
Recently Rulla (in [85]) has shown that in the special case of a semigroup generated by a
sub-gradient in a Hilbert space, this order of convergence becomes O(7). This result was
used in several papers (see, e.g., [51], [72], [86]) in order to establish better convergence
results for other algorithms based on first order time discretization schemes, or for fully
discrete approximations.

Since ( is maximal monotone, supposing its range is all of R, the operator —AS(+) is

maximal monotone on H (). In fact, it is the sub-gradient of

~+00, otherwise,

@(u):{ Jod(u(@))dz, it u, j(u) € LY(Q)

where j is convex and lower semicontinuous such that [ is its subdifferential - in our
situation, its derivative - [16], Theorem 17.

Recall now the Euler implicit discretization for Problem P’,

47



Scheme EI:

ub — u T =1 AB(UY),

B(u*) | =0 .

for k = 1,n with uy from (2.49). In this case, u* approximates u(k7). Replacing u* with
B71(6%), Scheme MTTI is identical to the one above up to the initial and boundary data. In
(2.1) these are subject to a small shift in order to get a regular parabolic problem, which
is not the case for (2.49). The result in [85] establishing the optimal rate of convergence

for the implicit scheme reads

Theorem 2.2.14 Let {u*, k = 0,n} be the solutions of the implicit scheme EI and u., re-
spectively 0, the piecewise constant functions interpolating {u*, k = 1,n} and {B(u*), k =
1,n}. Then, for any k > 0,

sup [Ju(ty) - WHI2, + [ () = ue(t), B(ult)) — 0. (t))dt
=1n
+7(|8(u) — 97—||%,2(07T;H3(Q)) < Cr?,

where C' depends on the H' norm of 3(uy).

It is worth here to notice that the second term in the above inequality is positive
due to the monotonicity of §. Now, if ug is a positive L>(£2) function, a semi-discrete
maximum principle can be obtained easily, thus u* stays above 0 for any & > 1. Based

on the previous estimates, we can get similar results for Scheme MTI.

Theorem 2.2.15 In the setting of Theorem 2.2.11, if 0F solves for each k > 0 Problem

WMTI without convection or reaction, then
18) — 0al122 gy + T18(w) — 0al2a0 rum ey < C {72+ 2 + (Cale) BE))}
Proof. First, Scheme EI is written in a weak form
(W =™ 9) + 7(VB(W), V) = 0

(for all o € H}(Q2), with j = 1,n). We want to compare the approximations yielded by the
two implicit schemes, EI and MTI. Subtracting (2.6) from the above equality, summing
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—0F = B(uF)+B(e)— 6 € H} in the resulting difference

,m gives

up for j = 1, k, taking ¢ = B(usF

and summing up again for k£ =

(L) + (L) =) (u* = B7'(6%), B(u™*) — 6%)

73 Y (V(B(u) = 09), V(B(uH) — 0)) (2.51)
=" = BTHE°), Bty — %) =: (Iy).

We have to estimate each of the terms above. First, (1) can be decomposed in

n

(L) =) (u*—p7'(6"),8 —0°) +Z - (u™*) — 6°) =: (I1) + (Ia)-

k=1

Recalling the relation in (2.2), (I11) gives

- Ci & C
(In) > Ci Y 1B(u™) = 6%|* > 72 16(u*) = 6°11” = —B(c)”, (2.52)

where the argument ending the proof for Theorem 2.2.11 has been applied here too.
As a consequence of Lemma 2.2.10 and of the maximum principle for the solution of

the implicit scheme, (I1;) can be bounded as follows

[(112)| <C(e + Ca(e) ZIW =) —0*|
(2.53)

Q

—(e +Co(e) +—Z||ﬂ — 0",
For (1) we make use of the identity in (2.19) in order to obtain

Z“V —0M)|* + IIVZ — 6"y (2.54)

Now, because of (2.33), (I3) can be bounded as ([;5). Inserting all the inequalities in
(2.52) - (2.54) in (2.51) and multiplying everything with 7 we arrive at

(o
I CICO R ZHV — P < Cle+ Ca(e)B(e))*. (2:55)

The remaining part of proof can be completed using the above relation, Theorem 2.2.14

and a property of norms (|la + b|| < ||a|| + ||8]])-
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Remark 2.2.25 This result shows that if the implicit Euler discretization has a linear

order of convergence, the same holds also for Scheme MTI.

Remark 2.2.26 The error estimates for the linear scheme MTL can be improved in a
similar manner. In fact, in the results stated in Theorem 2.2.13, the time step T appears

with the exponent 2.

Remark 2.2.27 Even though the above estimates can be extended to other cases (for
example, monotone perturbations of a subgradient, [85]), they cannot cover the whole
range of problems considered in this chapter. Therefore we have maintained the analysis
in the previous sections and complete it here with the optimal results, which are a simple

consequence of the striking result of Rulla.

2.3 Full discretization

Up to now we have been concerned exclusively on the time discretization, which generates
at each time step an elliptic problem. In order to get approximate solutions for Problem
P, we have to proceed with the spatial discretization, leading to an algebraic system.

There are several possibilities to approximate the resulting elliptic problems WMTI,
WMTC or WMTL. The simplest way consists in applying a finite difference discretization
also to the spatial derivatives, as done (for example) in [97] - where an explicit method was
used in connection with the theory of semigroups, or in older papers like [61]. Generally,
it is not so easy to apply this approach in case (2 is a complicated domain, or to non-
Dirichlet boundary conditions. A natural extension of the finite differences are the finite
volumes ([3]). In its strict sense, this method was considered for degenerate parabolic
equations in [35], leading to convergence proofs based on compactness arguments which
exclude any estimates for the error.

Another spatial discretization consists in the finite elements. For theoretical aspects
regarding this method we refer to [19] or [20]. This technique - in its different variants
- is widely used today because of the advantages resulting from the variational formula-
tion of the discrete problems and its applicability to arbitrary domains (in relation with
unstructured and adaptively refined meshes). The classical piecewise linear (and contin-
uous) Galerkin finite element method was analysed in [84] and [50]. Combined with the
optimality results in [85], this analysis was extended in [86]. A Raviart-Thomas mixed
finite element method ([81]) is considered in [4].
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The standard finite element approach creates several problems. First, it requires a
severe restriction on the discretization parameters in order to get stable solutions w.r.t.
maximum norm. This stands out especially in our situation, where the zero order terms
resulting from the time discretization are multiplied with factors which become extremely
large in the degeneracy region. Next, the evaluation of the integrals corresponding to the
lowest order terms creates additional difficulties. This is why the lumped mass version
of the finite element method ([44], [92]) was adopted in many papers dealing with such
types of problems (see, e.g, [8], [22], [29], [43], [71], [68], [69], [73], [74], [89]). This
allows an important gain in stability, provided the convection terms are discretized in an
appropriate way.

Our approach relies on the box method ([40]), which is a combination between the
lumped mass finite elements and the finite volumes. Concretely, the solution is obtained
in the space of piecewise linear continuous functions, while the dual space consists on
the piecewise constant ones, but on a dual mesh (the boxes). In case the convection is
not present, an equivalence between the box scheme and the lumped mass finite element
approach can be proven in particular cases ([40], [15]). Unfortunately we were not able
to obtain a convergence proof for Problem P with convection. Moreover, since a box
method has been applied, the complete discretization applies to convective terms in a
divergence form, which is not the case for the schemes MTC and MTL. Even the analysis
can be carried out in a similar manner for the schemes in the divergence form, we have
not considered this situation because we could not prove a maximum principle under
reasonable assumptions. With the upwind procedure proposed below, this property holds

at the fully discrete level.

2.3.1 Assumptions on the triangularization

We consider S}, a decomposition of Q C R? into closed d-simplices; h stands for the mesh-
size (the diameter of the largest triangle in Sj,). N, represents the number of vertices.
This decomposition is always assumed regular, meaning that the ratio of the diameter of
T € Sj, to the diameter of the largest sphere inscribed in 7" is bounded independently on h.
Moreover, Q = Ureg, T, hence Q is polygonal. Therefore the effect of the approximation
of a non-polygonal domain by a finite element decomposition is neglected, allowing us to
avoid an excess of technicalities (a complete analysis in this sense can be found, e.g. in [29]

or [73]). In what follows V}, denotes the piecewise linear finite element space defined for
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Sh, 50 Vi, = { € C(Q) : |r is linear for all T € S,}. If a Dirichlet boundary condition
is imposed, the elements satisfying it are contained in V4(g) = {¢ € Vi : ¢|aa = glaa}-

The corresponding discrete semi-inner product is defined by

meas(T)

06 = Z /Ih xp)dr = Z THZX AT (AT) (2.1)

TES TES

where the last equality holds if x and ¢ are piecewise linear continuous functions. I
stands for the local linear interpolation operator and AL k = 0, d are the vertices of the

element T'. Restricted to V4, (-, -)s is an inner product equivalent to (-, -) satisfying ([80])

IXI* < O o0m = 1Ixdl; < ClixIl® (2.2)

for any x € Vj, where || - || is the usual L? norm in © and C does not depend on h.

Following [22], the effect of numerical integration is measured by

|06 %) = (6 9)al < CRlIxlsl¥ 1k (2.3)

for any x,1 € Vj, and 0 < s <1 (]| - ||s stands for the norm in H*).
In what follows we make use of the L? projection operator IT, onto V3, which, for any
6 € L*(Q), is defined by

(I1,0,¢)n = (6,7) (2.4)

for all 7 in V}. Starting from the definition of the norm in H !, using the estimates in
(2.3), since ||II,0]| < C||0]|, it is easy to show that IIj, satisfies

10 = L0~ < CR™|6]], (2.5)

where 0 < r, s < 1.

In our approach the maximum principle plays a crucial role. Hence the (weak) acute-
ness of Sy is assumed. In its stronger sense, this property means that the projection of
the vertices of any d-simplex onto the hyperplane containing the opposite face lies in the
closure of this face. This preserves the maximum principle for the Laplacian ([21]), since
the following holds

/V%'V%’SO, /V%"V%>0;
Q Q

where {¢;,i = 1, N, } is the corresponding basis for V}, and ¢ # j. In this case, the stiffness

matrix for the Laplacian is an M-matrix ([93]).
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In fact, if Sy, is acute, the contribution of each element to the global stiffness matrix has
nonnegative diagonal entries and non-positive off diagonal ones. This is not a necessary
condition but certainly a sufficient one. In two dimensions, acuteness can be relaxed to
a weaker one, namely the sum of the opposite angles with respect to the common side of
any pair of triangles does not exceed 7 (see, e.g., [91]). The major disadvantage with this
assumption appears in connection with an adaptive mesh refinement. In general, local
refinements are not allowed at least theoretically. If the weaker acuteness is accepted, an
unstructured mesh following the free boundaries can be generated ([68], [69]), or, if the
triangularization consists only of right triangles, the bisection method can be applied for a
local refinement. Here we consider the (weakly) acute case and the mesh is quasi-uniform.

In the analysis of the semi-discrete approximation the Green operator G defined in
(2.34) is used. For convenience, we assume G is regular ([19], p. 138), namely for any
¥ € L?(Q) we have Gy € H*(Q) and ||Gv||s < C||¢||o- This property holds, for instance,
whenever mixed boundary conditions are avoided. Analogous, the corresponding discrete

operator G, : H ' — V;(0) (the finite element approximation to G) is defined by

(VGrb, Vo) = (¥, ¢), (2.6)

for all ¢ € V4(0) C H(S), where ¢ is taken in H !(Q). Since G and S, are regular,
standard error analysis for finite element approximations of elliptic equations give the

following property
G = Gr)wlls < CR*=7|[¢]] (2.7)

with 0 < 5,7 < 1.

G}, generates on V;,(0) an inner product and a norm related to the one in H~!
(¥, 0)-1n = (Grb, ) and ||¢||2—1,h = (Gnt), ). (2.8)
Similar to the continuous case, if ¢ € V,(0) we have
VGl = 101215 ¥l-1n < ClIYIL (2.9)
Using the approximation error in (2.7) it is easy to get the following
[DI2y < 120, + CRAN and [IR112,, < 19112, + CRAII. (2.10)

For the sake of simplicity we consider the dual mesh given by the Donald diagram,

which is based on the barycentres of the simplices building the initial triangularization
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Figure 2.1: Dual box centered in P.

([3]). The nodal basis for By, - the piecewise constant test function space - consists of
the functions {¢;,i = 1, N} which are equal to 1 inside the box around the node i and
0 outside of it. Figure 2.1 presents the two dimensional dual box Bp centered in the
vertex P, its boundary being denoted by 0Bp. We do not give here the definition of
the fully discrete counterparts to the schemes MTI, MTC or MTL since, as mentioned
above, the spatial discretization uses a divergence form of the equations. Moreover, the
error estimates are obtained only in the absence of F'. This lack in the analysis is due to
the upwinding of the convection term, which does not allow us to write the fully discrete

equations in a variational form.

2.3.2 The fully discrete problems

As seen before, the time discretization leads to a sequence of elliptic problems. The solu-
tions are sought in an infinite dimensional Sobolev space. Here we consider the problems
resulting after performing the spatial discretization. This makes the dimension of each
problem finite, hence the solution can be represented as a finite array (containing the nodal
values of the approximation) and the elliptic problems are transformed in finite systems.
But these systems have to maintain the main features of the semi-discrete problems, like
existence, uniqueness and - in our case - the maximum principle (which is synonym below
with the stability in the maximum norm). Since this plays a crucial role here, we describe
first an upwind method for the convection terms. Afterwards the convergence of the fully

discrete counterpart of Iteration IJK without convection is analysed.

An upwind method

In the setting above, an appropriate discretization of the convection term is requested in
order to obtain a stable scheme. If {¢;,i = 1, N} is the nodal basis for the piecewise
linear finite element space Vj, and {¢;,i = 1, N,} the one for By - the dual piecewise
constant finite volumes, the lumped mass box method for the implicit scheme is obtained
by integrating in (2.1) over an arbitrary box Bp, where P is an interior vertex - since we
deal here with Dirichlet boundary conditions - ([40]). This can be seen as a weak form

of the problem, but the test functions are the elements of Bj. Recalling (2.1) and the
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definition of the nodal basis of By, if ip stands for the index of the vertex P, the first

term (where no derivatives are involved) yields

/B L((B7(0%) = B0 1)) ¢ip )dw = meas(Bp) (B~ (0°(P)) — B~(0°(P)))
P meas(T) (2.11)

= (B71(6"(P)) — pH(0"71(P)))

where Tp contains the simplices in S, having P as a vertex. The reaction term gives

analogously

r /B L (r(B7(6%)) 65,z = (5 (8*(P)))r (2.12)

Next, for the second order term we make use of Greens’s identity

oApdxr = —/ Vo -Vodr + POy pduw,

Bp Bp 9Bp

where n is the outward normal for the box Bp, defined edgewise and 0, the normal

derivative of ¢. Applied to the second order term in (2.1) it leads to

-7 AO* ¢ dx = — Op 0" dw, (2.13)

Bp OBp

the first integral in the previous formula being 0 because ¢;, is constant on Bp.
The remaining part is the convection term, for which we get

[ VFB )65, dz = —r / (n- F(B~(6))duw.

Bp dBp

This is rewritten in a form more convenient for a linearization procedure. First, F(371(6*))

o F(37(0%)) , . . . :
is identical to TO . Next, for any simplex T, the ratio above is replaced by its

mean value in T

dx.

g L)

g =
T meas(T) Jy ok

In practical computations a quadrature formula on 7" substitutes the integral. Denoting

by * the piecewise constant function taking on each simplex T the value 7% yields
g T

—r [ VPG Nda = [ (- (2.14)

Bp
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Here we have to make a brief comment. The degeneracy appears in 0. Since (0) = 0,
some problems may appear in the previous step. This situation is avoided because of the
shift of the data and of the maximum principle.

Up to now we have projected the equation in (2.1) onto Bj. In order to obtain a
complete discretization, a finite dimensional approximation of the solution #* has to be
found. This is denoted by 65 and is sought in V,,(B(¢)). Therefore 6% can be decomposed
w.r.t. the nodal basis {¢;,7 = 1, N} as follows

oy = Z@ o, =08 D (2.15)

where ©F and ® are Nj,-dimensional vectors. The elements of ©F are the nodal values of
Oy (so 0y(A;) = ©F), while ® contains the elements of the nodal basis of V.

Since the boundary value problem P is of Dirichlet type, some of the elements of ©F are
already known (those corresponding to the vertices lying on the boundary of the domain
2), while the others are the unknowns. Testing with the piecewise constant functions
centered in the interior vertices a (nonlinear) system of equations is obtained. The steps
described up to now (especially the one in (2.14)) make sense only in connection with
the maximum principle. Therefore this property should be maintained also at the fully
discrete level.

Now the we can proceed with the discrete counterparts of the relations in (2.11) -
(2.14). Testing with ¢;, the first ones become

Jo, In($i(B71(0R) = 6710, "))dz = meas(B;)(51(0F) — 67(©; 7)),
T [, In(Gir(B71(6F)))dz = 7 meas(Bi)r(8(67)),
where B; is the control volume centered in the vertex A;. In both cases the contribution
to the global stiffness matrix is diagonal and identical to the one obtained when applying
the lumped mass finite element method. Its entries are M;; = 6;;meas(B;), 6;; standing
for Kronecker’s symbol.

The diffusion term gets

Np
—7 / AGFpide = —1 / Onbpdw =—> 7 / Onpjdw OF.
B; OB; j=1 OB;

In the setting mentioned previously, the stiffness matrix due to the diffusion is iden-

tical to the one resulting in a classical Galerkin finite element formulation. In two
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dimensions this statement was proven in [40], while the general case is considered in
[15]. Therefore, the second order term adds an M-matrix to the stiffness matrix, namely
D =—-1 faBi Ohpjdw = 1(Vi, V;).

Finally we have to consider the convection term. Doing as before gives

—T/ VFE(67H6"))pida ~ —T/ (n - 0%)0Fdw = —Zr/ (n-7*)p dw OF,
0B

9B; j=1 i

but 6F replaces #* when computing 4. This can be seen as an approximation of the flux
of A over the boundary of the control volume B;. The convective term contributes to the
stiffness matrix with the entries Cj; = —7 f 9B; (n-7*)p;jdw. Generally, nothing can be said
about the sign of these values. Since a stable discretization is desired, we have to continue
with an upwinding procedure. To do so we notice that a given simplex T € S, intersecting
B; contains d (linear) portions of the box boundaries, denoted by 9Bj, (I = 1,d). By
renaming the vertices of 7' we can say that 0B], separates the vertex Aj = A; from the

vertex AT. Because we work here with d-simplices, for any vertex A of T an index / can
be found such that A = A7. Thus we get

d

[ wetde=—r S S o),
9B; TeSy, TNBi#e 1—1 Y 9B
with n], being the outer normal to B]; (pointing from Af to A["). Therefore the following
holds

Ci= ), Ch= > Z(I)zl’

T€S,, TNB;#d TES,,TNB;#$ 1=1

7.7

where <I>.T is given by ®;/ := —7 f(‘)BT (n], - U3)¢pjdw. This means that the values of 6}
in Ay and A; have the same weight in the approximation of the flux over 0B, 1> which
contradicts the physical point of view requesting that the flux should be approximated
essentially on the basis of the vertices lying against sense of the flow. Therefore in what
follows an upwinding procedure is considered. This is slightly different from the usual
approach in the box method ([15], [9]) and is inspired by the upwinding methods for
finite differences.

For getting a stable discretization we have to consider the sign of the term —T(n-Tl -7k
(denoted by 7%), which is constant inside 7. In case this is negative, the flow over 9B, 118
inside the box B;, while in the opposite situation the flow over B, is outside B;. Since

OB], lies between A; = AJ and A] (vertex indexed in the initial numbering by i, so
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Ay = A]), it is natural to assume that the flow over B]; outside B; is inside B;,. As a
consequence, in building the upwind discretization matrix @Zl’j < 0 is added to the entry

corresponding to the ansatz-function ¢; when testing with ¢;
new — Uold + (I)T,j
ij iy il -

If ~4 is positive, (I)Zij > 0 contributes to the diagonal entry regarding ¢;,. In fact, in this
situation we have
Uil =Ua+ > &,
J, supp(p;)NT#e
since the sign of @Zl’j is the same for all j. Here the following remark is necessary. If 7%
is negative, when testing with ¢;, the same flux over 8BZ » - P being now the index of 4;
when the numbering inside 7' starts at A;, - has the opposite sign because of the change

in the orientation of the normal vector. As a consequence, <D” = —9; l’] > 0 is added to
Ui, for all j, thus
ld ld _ T.j
e = Ugt+ Y et = U > o
J» supp(p;)NT#6 3, supp(p;)NT#e

In this way, the contribution of ¢; to the upwind discretization matrix is lost since the
term @Zl’i is once added to U,, ., and afterwards subtracted from the same element, with
up = i in case vk is negative or up = 4, otherwise. To avoid this we make a further
modification. If 44 < 0 (hence the flow over dB], is inside B;), @Zf < 0 adds to Uy,
otherwise to U;, ;. In fact, if cDZl’i < 0 is added to U, ;,, the opposite will be added to U, ;
because of the change of sign of the flux corresponding to the neighbouring box B;,. This
means that if ¢; contributes to the flow over BBZ-T,I outside B;, the effect is inside B;, and
reciprocally.

Now a more precise formula for the local upwind matrix (denoted by Ur) can be given

— Z me{q)” ,0}, ifi=3j

UT _ < k, supp((pk)ﬂT#¢l 1 (216)

11] ’

mm{tbll ,0} + me{@zl 0}, ifi#j

(

\

where /; stands for the (local) index [ in 1,...,d for which A; = Aj. To be more rigorous
we should make a distinction between the finite elements ¢, corresponding to the vertices

of T' (for which an [; exists) and the other ones. But since only piecewise linear finite
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elements on d-simplices are considered, if A; is not a vertex of T', the support of ¢; does
not intersect this simplex and therefore the corresponding entry in U7 is 0. Adding the
local upwind matrices U” for all simplices T, the global upwind matrix (U) is obtained.

It is easy to see that U” has zero row sums, with nonnegative diagonal and nonpositive
off diagonal entries. For elements with vertices on the boundary, the rows and columns
corresponding to Dirichlet vertices are ignored in computing the global upwind matrix.
Thus U will be an irreducible, diagonally dominant M-matrix w.r.t. its rows, leading to
the discrete maximum principle.

Generally, such upwinding procedures generate schemes of lower order. But we need
this approach only in that regions where the convection dominates the problem. It is
possible to combine the upwind strategy with the original one. If we consider the local
stiffness matrices corresponding to the simplex 7', this is obtained from the local diffusion
matrix DT, the original convection matrix CT and the upwind one UT. As mentioned
above, AT and UT possess the M-property. A possible strategy is to consider a convex
combination of the two convection matrices such that, with the aid of DT, the resulting

local stiffness matrix is still an M-matrix. Thus,
AT = D" 4+ 57CT + (1 — sp)U”,

where 0 < s; < 1 is a local parameter. By requesting for A” to have positive diagonal
entries and negative off diagonal ones we obtain local limitations for sr. Since we want to
obtain an approximation having as much as possible a higher order, sy should be taken
equal to the local upper limit above (but not greater than 1). However, if the convection
dominates the problem - this happens at least around the free boundary - the weight of the
upwind discretization matrix is increasing so sy goes to 0. Therefore the approximation

becomes worser, but still stable.

The discrete maximum principle

In what follows we consider the problem without convection. Since the dual box mesh
is the Donald diagram and mass lumping is used, the box scheme for the semi-discrete
Problem WMTT is equivalent to a modified finite element formulation ([40], [15]).

Problem WMDI. For any 1 < k < n, find 6F € V,(6()) such that for all ¢ € V;,(0)
the following holds true

(710 = 71O n + 7(V85, Vio) = (L (671(60;), 0)ns (2.17)
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where £k is either k or k — 1, depending on the discretization of the reaction term.

Remark 2.3.1 For each k > 0, let uf be the piecewise linear interpolant of B~(0F).

Hence we have
Oy = Ii(B((uy)) and  (uy,0)n = (67(65), ¢)n

for all ¢ € V.

In the above definition the initial data is not given. This is done now, recalling the
perturbed initial data described in (2.1) and (2.3)

up =,(81(0%)), 0 = 1nf(uy) (2.18)

It is easy to show that u) is bounded by € and M (the essential supremum of ug). In fact,
replacing ¢ with an element of the basis of V}, in (2.4), an explicit formula can be given

for the nodal values of u

d+1
= (A4 = e [ 80

"~ meas{y;

for all i = 1, N. Therefore we have ) € V,,(3(¢)) NV, where V; is defined in (2.9).

Remark 2.3.2 This particular choice for the discrete initial data requests some quadra-
ture formula for computing the above integrals. We do not consider the errors induced
by this procedure since they are mostly of the same order as the global one. Moreover, in
the computations we have used the linear interpolation of 6y instead of the one defined in

(2.18) and the results were almost the same.

Now we are able to show the discrete maximum principle.

Lemma 2.3.1 Assume (A1), (A3), 92‘1 e V,nNVi 1 and r(u) > 0 for all u. If Sy, is of
acute type and a solution of Problem WMDI exists, then it belongs to Vi, N V.

Proof. The proof makes use of the properties of the discretization matrices. Since Sy

is acute, The stiffness matrix A of the Laplace operator has the properties

Np,
A > 02> Ay, ZAU >0

i=1
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for all 3,5 = 1, Ny, i # j. Let vf := uf — ¢, ¥F := 0F — ((¢), then the equation in (2.17)

becomes

(Wh, @)+ (VU Vo) = (0 @)+ T(Par(B7(6)): 0)n (2.19)

In order to get the lower bounds for #% it is enough if we obtain the positiveness of v} or
¥k, To do so, let 7,, be the index of the vertex where v} attains its minimum (since v}
is piecewise linear, its minimum is reached in a vertex). Assuming now v} ;< 0, since 3

is monotone and vf, < wi, we get ¢y, < 0and ¢y, < f forall j =1, Nj. Taking

© = @i, in (2.19) yields
Np,
7Y Ai gt = (meas{gi, > 0})(vi", — vk, )+ 7(Par(B71(6))), i )n > 0,
7=1

where for the last inequality the positiveness of v,’i_l and r have been used. Recalling the

properties of A and the minimality of ¢, we get

Np, Np, Np,
DAk =R D A+ Y Ang(Uh —UR) <0
j=1

j=1 =1,j#im

This contradicts the previous result and therefore the assumption on vy, has to be false.

The upper bounds for 6f can be obtained in the same manner. Then we arrive in a
situation analogous to the one in the semi-discrete case, resulting similar restrictions on

the time step.

Remark 2.3.3 Since the initial data described in (2.18) lies in Vi, N Vo, a mathematical
induction arqument shows that the conclusion of the above lemma holds true for the whole

sequence of discrete solutions.

Remark 2.3.4 As in the semi-discrete case, the global positivity of r is not necessary if

r 18 discretized explicitly. Moreover, the restrictions on the time step dissapear here too.

Remark 2.3.5 Lemma 2.3.1 also holds true if the convection term is present, but it has

to be discretized in an upwinding manner.
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An iterative method for the nonlinear discrete equations

Here we consider an iterative method for solving the nonlinear discrete system in (2.17).
In fact this is the fully discrete counterpart of Iteration IJK, which is an alternative to
Iteration ISm, having better convergence properties from practical point of view. The
reaction term is discretized explicitly, while convection is not present here.

For each 7 > 0, the discrete formulation of the problems associated to Iteration IJK
reads

Problem WIJK. Find & € V,,(3(¢)) such that

(00,7, 0,70, — 657 Y), @) +7(V8,, V) = (L (B (071), @) (2.20)

holds true for all ¢ € V},(0), where 89 = 0¥~ 5(69,05~1) = (371)" (6¥7") and 65~ belongs
to Vi(B(e))-
Taking the elements of the nodal basis as test functions in (2.20) gives the linear

System
(Mt 4+ 7A4,)0" = Mj7'eF 4 7 RF1 (2.21)

where ©' and ©*~! are vectors containing the nodal values of 8%, 6. A, represents the
stiffness matrix, while M} is a diagonal matrix obtained from the lumped mass one by
multiplication with the corresponding nodal values of o(f,0F). R;~' is obtained simi-
larly, the lumped mass matrix being multiplied by the nodal values of the reaction term.
Because of the assumptions we have made on the decomposition Sy, M} + TAy, is irre-
ducible and diagonal dominant ([41], p. 51), hence an M-matrix. Therefore, if we have
0% € V,,(B(¢)), the same holds for the entire array {#:,i > 0} and Problem WIJK makes
sense for any ¢. Moreover, a discrete maximum principle analogous to the one stated in
Lemma 2.3.1 is valid also in this case.

Now we want to obtain the convergence of the sequence {©% i > 0}. To this aim the
Lipschitz continuity of 4’ is needed supplementary. Then, the limit

O = lm &

gives the nodal values of 6F.

Let i > 1. Multiplying for each 7 the system in (2.21) by (M; ')~ and subtracting

the result obtained for ¢ — 1 from the one corresponding to 7 yields

(In, + ™D} AL) - (O — O Y =7(D;t — Di7%) - A, - 071, (2.22)
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where Dj stands for the inverse of M} (which is diagonal) and Iy, is the identity matrix.
Denoting by

7 =0 _@-!
the difference between two successive approximations, recalling the assumptions on 3 and

[, it is easy to see that for all i > 2, the following holds true (elementwise)

, - d+1 ,
Dz—l - Dz—2 < L Si—1Y |
(D, )il < ﬂc2(€)meas(Aj)|(e )il

where A; is the support of ¢;, 7 =1, N,,. This is true for any j, hence
1D} = D ?lloe < Ch™"LyCale)||E""|oc- (2.23)

Multiplying (2.22) by (Iy, +7D} ' A,)~! and using the matrix norm associated to the

| vectorial one we obtain
1&lloe < 7y, + 7D A0 Mo lDE = Dy locllAnlloo |67 (2.24)
Because S, is regular, A, satisfies
Al < ChE2 (2.25)

For estimating ||(Iy, + 7D} ' Ay)~!||e We can proceed as in the proof of Lemma 2.3.1 and

obtain
(T, + 7D} " Ap) " loo < 1. (2.26)

Replacing the inequalities in (2.23), (2.25) and (2.26) in (2.24) and recalling the maximum
principle for ||© ||, yields

1€']lec < CTRT?Ca(e)l|E oo (2.27)
Hence we have proven the convergence of the iterations

Lemma 2.3.2 If 7Cy(e) < Ch?, the sequence of solutions of the problems in (2.20)
converges to the solution of Problem WMDI.

Remark 2.3.6 In the above lemma a severe restriction is imposed to the time step 7.

Practical computations show that this appears only theoretically.

Remark 2.3.7 In proving the convergence of the iterations we have used only the fact
that Ay, is irreducible and diagonal dominant. Therefore, if the convection is discretized

using an upwind procedure, the conclusion of the Lemma 2.3.2 still holds true.
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2.3.3 Error estimates for the complete discretization

Finally we consider the convergence of the fully discrete problems. For proving this, the

following lemma will be useful

Lemma 2.3.3 Let uy, € V,, and 0y, = I,f(uyp), where [ satisfies the assumption in (A1).
Then, if v is Lipschitz w.r.t. B(u), we have

IVOL|* <C(Vun, Vs),

1108 (un) = B(un)l| SCh|[VInB(un), (2.28)
7 (un) = 7(un )| SCh|IV O],

where C > 0 s a generic constant independent on h and wuy,.

Proof. The first two inequalities are proven in [22] and [29]. The assumption on 7 is
needed only for the third one. Here we notice that the interpolation makes sense since uy
and r are continuous.

Consider a single element 7" € S;. A linear function on a simplex attains its extreme

values at the vertices. Let A,, and Aj; be these vertices, hence, for every z € T,

un(Am) < up(r) <up(Ay)  and  Bun(Am)) < Blun(x)) < B(un(Awm)),

the last part is due to the monotonicity of #. Similarly, there are two vertices B,, and

By in which the extremal values of I,7(uy) are attained,
r(un(Bm)) = Inr(un(By,)) < Inr(up(2)) < Ir(un(Ba)) = r(up(By)) Vo eT.

Moreover, the continuity of r(u;) on the compact set T yields the existence of two points

Cp, and Cyy in T (not necessary vertices) such that the following holds true
r(un(Cm)) < r(up(x)) < r(up(Cy)) Vo eT.

The above inequalities together with the assumption (A3) on r show that for any

x € T we have

r(un(2)) = Inr(un(2))* < (max{r(un(Cwm)) = r(un(Bmn)), r(un(Bu)) — r(un(Cin))})?
< Cr(max{B(un(Cum)) = B(un(Bn)), B(un(Bum)) — Bun(Cn))})?
< Cr(Bun(Am)) — B(un(An)))?
= Cr((Am = An)'(VOy)|r)?
< CR|(VO)|r]*.
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Integrating over T yields the inequality for the simplex 7. Summing up for all simplices

in S, completes the proof.

Remark 2.3.8 The last inequality in the lemma above is proven only if the reaction term
is Lipschitz continuous in G(u). We were not able to get a proof for the more general
situation assumed in (A3). As it will be seen below, the existence of an estimate of the

type above 1s essential in obtaining bounds for the fully discrete scheme.

Error estimates for the fully discrete nonlinear scheme

Now we need some stability results for the fully discrete implicit scheme.

Theorem 2.3.4 Assume (A1), (A2), (A3) and F = 0. Then, for k < n, if 6F solves
Problem WMDI and uf = I, 371(0F), we have

p P
DMk =P+ Y IVEF < C (2.29)
k=1 k=1

Proof. Since uf — ¢ € V,(0), (2.17) implies

1
5 (el = 1™ IR + Mk = i~ 1R) + 7(VOE, V)

= T(Ihr(BOy)), ul — ) + (uf — uf ™" €.

Summing up over k, recalling the inequalities in (2.28) and the maximum principle for u}
(hence the boundedness of I,7(4~'(6%)) leads to the inequality in (2.29).

The error estimates in the fully discrete case are using the results in the semi-discrete

approximation. The following notations are related to the ones proposed there
en" = B7H0") — LBTHO) = BTHON) — i, e =08 -0,

where k£ > 0. Remembering the definition of ? in (2.18), the initial error satisfies the

following inequality
lea"]l -1 < Ch. (2.30)

The analysis below follows the ideas in [29] and [73] and continues the one for the
time discretization. Having already the result in Theorem 2.2.11 for the semi-discrete
approximation, it is enough if we estimate the error due to the spatial discretization of

the elliptic problems. This is done in the following theorem.
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Theorem 2.3.5 Under the assumptions (A1), (A2), (A3), if F = 0, r is Lipschitz con-
tinuous in B(u) and 6%, OF solve, for each k > 0 Problem WMTI, respectively Problem
WMDI, then

h2
sup [lel™(| +C7 Yy, les" P <C | h+—],
k=1n T

provided T is reasonably small.

Proof. Taking ¢ = Gel" € H} in Problem WMTI and ¢ = Grel? € V,(0) in (2.17),

subtracting the last equality from the first one summing up for j = 1, k yields

k

(L) + (L) = ) (" — e, Gel™)

=1

k
+7 Z {(V0,VGel) — (VO],VGrel™)}

=—Z Il (G = G)edh)

) . ) ) . . 2.31
" Z {0 — o, Gl — (]~ i, Grel)} (220

+TZ{ ). Gel") = (Iur(B71(8))), Grel) }

+ TZ{ Iir(B ), Grel") = (L (872(07)), Gnel )}

:3(13) + (14) + (15) + (16)

We go on with the estimates for each term appearing above. Using the identity in

(2.18) and the properties of G, (I;) becomes

1 L .
(L) =5 (||€k "2 e 2+ Y Nl — 6%‘1’h||2_1> : (2.32)
j=1
The second term in (2.31) is decomposed into two sums

(Iy) = TZf (87, 6”) (9 TOEE DDA CUNTD |
= 730 {09 = B(ud), B7H07) — uh) + (B(uf) — InB(u3), B71(67) — i)}
=: (Iy) + (I52).
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For (Iy;) we recall the relation in (2.2), Lemma 2.3.3 and the apriori estimates in order

to obtain

k k
(In) 2Cir Y16V = B(u)|* > Cur Z(Ilﬁj =03l = 167, = B’

j=1
>—Z 167 — 61° — ClTZ 167, — B(up)|I?
17’ . . .
> TS o = g7 — o 3 [0
7=1 7=1

017' k . .
>0 = 6iF — Cu,

=1

Similarly, (I32) yields

(2.33)

k
|(L22) \<TZII9J up B~ 07) = w |l < Crh > (IVOIIBT (%) — wj|

j=1

<Chr Z |IV#|? + Ch < Ch.

j=1

Using (2.20), (I3) can be rewritten as

(Is) = (up, (G = Gr)ey™) = (up, (G = Gr)ey") + Z(Ui LG = Gr)(eh" —e

This implies the following estimates

((I)] = Nuklll(G = Grew™ | + Ilupll[(G = Gr)en |

k
+ ) [lu NG = Ga) (el — el M|
7=1

k
<CR*+ChY_ |lef" — el M-
7=1
2

h e
<Ch* + O+ Oty ) |le — el ™12,
3 .
7=1
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where the approximation property in (2.7) and the maximum bounds for ufl have been

used. Analogous, (I4) gives
()] < [(up, Grey™) = (uh, Guey™nl + [(uy, Grey™) — (up, Grey" )l
k
+ ) (™ Galeh — ) = (a7 Galel” — el M)l
j=1
<Ch(|luplllIVGhey "Il + IlupllIIV Grey™ 1)

k
+ORY g VGl - i)

=1

. (2.36)

<Ch (IIeﬁ’hII—l e -+ > el — ef;‘l”’ll—1>

7=1

k
<Ch+ChY_ e — el
7j=1
h2 k
j,h _j—1,h2

<Ch+ 07_54 +C6 Y el — el

i=1

(I5) can be splitted into three sums

(I5) = TZle(T(ﬂ_l(W)_) —r(B7H8))), Gelh) + 7 325 (I — In)r(B7(6))), Gei™)
+7 Ele(fhr(ﬁ‘l(ﬁi)), (G = Gp)ed) =: (Is1) + (I52) + (I53).

Recalling (A3), for (I51) we get

k
()] <O Y1107 = GllIGeR"|

=1
- .y (2.37)
. . T .
<Cré 3116 = G + 5> llellI%4.
7=1 j=1

Now, since r is Lipschitz continuous in ((u), Lemma 2.3.3 and the apriori estimates in
Theorem 2.3.4 yield

k . _ k . ork .
(Is2)] SCTR Y [IVOIIIGel™|| < Crh*650 Y IVOLII* + @Z llel™]1%

=t =t =t (2.38)
Cr

k
<Ch%85 + — 3 [|eZh|[2,.
ot g I
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Recalling again the inequality in (2.7), (I53) leads to

k k
(Is3)] <CT ) NG = Ga)el| < Crh Y |l

j=1 7j=1

(2.39)
<Ch2(553 + gzk: I|€j’hl|2 .
— 653 = u I1-1
Finally, for (Ig) the relations in (2.3) and (2.8) give
[(Z6)] <CTR Y wr(B7 @IV Gres" | < OTh Y llek | -1,n
7=1 7j=1
(2.40)

k k
, . Cr .
<OTh Y- (e ll-s + K5 ) < OR28s + 5= 3 [l
j=1 j=1
Inserting all the inequalities in (2.32) - (2.40) in (2.31), recalling (2.33) and choosing

the 6’s properly, we get

k i - k j,h
lew 12y + 205 el — el MM 12y + 305 lleg™|I?

2
< Ol ht— |+ 0T [l

The inequality above can be obtained provided 7 is not bigger then C', a constant de-
pending on the problem but not on the discretization parameters. The discrete Gronwall

lemma concludes the proof.

Remark 2.3.9 As in the semi-discrete case, an explicit treatment of the reaction term

does not affect the results above.

The error estimates for Scheme WMDI are a direct consequence of the Theorems 2.2.11
and 2.3.5

Theorem 2.3.6 In the setting of Theorem 2.3.5, if u is the weak solution of Problem
WP and 0% solves for each k > 0 Problem WMDI, then
sup Ju(te) = u**|2y + C S0, [

t—1
k=1mn

18(u(t)) — 6%*||*dt

h2
<C|7+h+ —+ e + (Cy(e)B(e))”

69



Remark 2.3.10 Taking above h = O(7) we can notice that the order of convergence for
the fully discrete approximation is the same as in the semi-discrete case. But this choice
may not be always convenient, especially when a nonuniform mesh or a locally refined one
1s considered. Moreover, it contradicts the convergence condition for the iterations defined
through Problem WIJK. But the restriction on h appears only theoretically. Different
approaches in proving the convergence of the fully discrete scheme (see, e.g. [88]) do
not request any relation between the discretization parameters, but the estimates depend
additionally on Cy(g) resulting a lower order of convergence compared with the semi-

discrete case. This was avoided in the previous result.

Error estimates for the fully discrete linear scheme

Here we extend the analysis for the semi-discrete linear scheme MTL to the fully discrete
case. Analogous to the nonlinear one, if the convection term is not present, the linear
scheme can be brought to a finite element formulation

Problem WMDL. For any 1 < k < n, find 8} € V,(3(¢)) such that for all ¢ € V},(0)
the following holds true

(Ge—14(05 — 057), @0 + T(VOR, Vo) = 7(Lr(B7(0;7)), ©)n,

(2.41)
orn = (81 (05).

with ag, = (671)/(69).
For the implicit scheme, the choice of the initial data in the form proposed in (2.18) was
accepted in order to avoid a worsening of the convergence order. But other possibilities

may be considered. For example, if §° is continuous,
up = I(B71(60°)), Oh = Inf(up)

is more convenient here. Again, 19 is bounded by € and M (the essential supremum of ),
but now we have also 69 = I,,6° and consequently ||V < ||[V8°|| < C, not depending
on h. This choice is better for the apriori estimates, but the bounds for the initial error

ed" depend on ¢ as follows
lew"ll-1 < Cllex™ (| < CRIVBTHE)|| < ChCs(e).

Due to this the estimates in Theorem 2.3.5 become

2

sup [lef*|2y + O iy lleg P < C | bt —+ B2Co(e)? |
k=1,n
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and the same change appears in Theorem 2.3.6.
The maximum principle stated in Lemma 2.3.1 remains valid in this case too, therefore
the scheme defined above makes sense. Since convection is not present here, stability

results can be obtained as in Theorem 2.2.9.

Theorem 2.3.7 Assume (A1), (A2), (A8) and F = 0. Then, for p < n, if 0% solves
Problem WMDL, the following holds

p P
> Iaeta O — 057018 + TV +7 Y IIV(0F — 57 H)I” < Cr. (2.42)
k=1 k=1

Using this result, the error estimates for the fully discrete linear scheme are given in

the theorem below.

Theorem 2.3.8 In the setting of Theorem 2.3.7, if u is the weak solution of the Problem
WP and 6§ solves for each k > 0 Problem WMDL, then

sup [[u(te) — w2, + Cr iy fiF | 1B8(u(t) — 0%*|*dt

k=1,n

< C | 7Co(e)” + hCale) + — + 6" + (Cale) B(e))?

Proof. The proof is identical to the one for the nonlinear scheme, but because of the
apriori estimates above the estimation of the terms (I5;), (I52) and (I53) yield ChCy(g)?

instead of C'h. Moreover, an additional term has to be considered, namely

k
T =Y (If50)) = B0, = 0516 = 0,7), Gael -

j=1

As in the semi-discrete case, the Lipschitz continuity of 3, the apriori estimates and the
maximum principle gives

T| < CrCae)?,

which concludes the proof.

Remark 2.3.11 Taking again h = O(7), the estimates in the semi-discrete case are

recovered.
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Chapter 3

Regularization by modifying the

nonlinearity function

In this chapter we proceed with the analysis of a different regularization method which
can be applied to more general situations, including also two phase Stefan problems. This
relies on the modification of the nonlinearity function such that its derivative is uniformly
bounded by a (small) nonzero constant. As mentioned at the beginning of the chapter
before, this is the underlying idea of most of the regularization procedures for degenerate

equations. Again, the convergence of the algorithm is shown by proving error estimates.

3.1 Basic setting

In order to avoid additional complications and to keep the proofs in the same framework as

before, the basic setting defined in the previous chapter is maintained here. Hence, Q2 is a

bounded domain in R?(d > 1) with a Lipschitz continuous boundary and Q7 = (0,7) x Q,

where 0 < T' < o is fixed. Problem P defined Chapter 2 is also considered here
Problem P:

Ou—V - (VB(u)+ F(u))=r(u), in Qr=(0,T)x1Q,
uw(0,x) = up(x), in Q, (3.1)
B(u) =0, on Of.
The function 3 : R — R is monotone increasing and smooth, but may now vanish on

sets of nonzero measure. Again, degeneracy means no diffusion, namely ' (u) = 0 for some

u. It is worth to notice that in this case there is no need to have an unique degeneracy
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point. Moreover, the approach works also if the diffusion vanishes on intervals, therefore
it applies, e.g., to two-phase Stefan problems (in the enthalpy formulation).

Before writing a numerical method for solving Problem P we consider a regularization
procedure for it. As mentioned in the previous chapter, the resulting problem becomes
non-degenerate and therefore any discretization method for nonlinear parabolic problems
can be applied for solving it numerically. Roughly speaking, the approach considered
here relies on the perturbation of the nonlinearity #. This idea has been widely used
in the analysis of such kind of problems and became an important source for numerical
algorithms.

There are several possibilities to do this step. The simplest way is to construct a strictly
increasing function (. which approximates 3, but its derivative is bounded from below by
the small parameter ¢ > 0, (as done, e.g., in [84], [50], [31] or [88]). Another possibility
consists in the regularization of the inverse of the nonlinearity, v = 37!. A justification
for this approach appears when the numerical method is written in terms of the more
regular unknown, § = ((u), since at least the time derivative for v = $7(6) has to be
considered. In this case, because the derivative of v is infinite in the points of degeneracy,
7L is bounded by a large constant (like 1/¢). Numerical methods based on this procedure
are proposed in [63], [66], [67] or [73]. The last category of regularization algorithms is
akin to the nonlinear Chernoff formula ([17]) and gives rise to some relaxation schemes.
Again, the more regular unknown is considered, but the modification appears only in the
derivative of the nonlinearity function, not in the function itself. This possibility was first
observed by Berger, Brézis & Rogers ([14]) and improved in [60] and [70]. The resulting
schemes are linear, but the accuracy is affected especially around the free boundaries.
This drawback is avoided through a nonlinear version of the scheme in [46], [47] or [54].

The assumptions on 3, F', r and uq are similar to the ones in the previous chapter.

(A1) G is Lipschitz and differentiable, (0) =0, §'(u) > 0.
(A2) ug € L>*(Q) .
(A3) r:R—Rand F: R — R? are continuous in v and satisfy the condition

[r(u) = r()[* + |F(u) = F()[* < C(u = v)(B(u) - B(v))

for any u,v € R, where C' > 0 does not depend on z,¢,u and v. Moreover, it is assumed
here that r is positive for all positive arguments and the graph of both functions contain
the origin, hence r(0) = 0 and F(0) = 0.

Again, Lipschitz continuity for ' or the existence of a function f = F’ are requested

73



in some cases additionally to (A1) or (A3). Moreover, then [(ug) should be more regular,
belonging to H{(£2). Sometimes the constants appearing above are mentioned in a distinct
way. The Lipschitz constant of both 5 and 3’ (where this will be needed) is denoted by
Lg, while the growth of F' and r is controlled by Cp, respectively C.

Remark 3.1.1 The positivity of the initial data requested in the maximum principle al-
gorithm is abandoned here, thus the solution may become negative. However, we still
consider only essentially bounded solutions, therefore a maximum principle for Problem P
15 assumed. This allows us to avoid some technical difficulties, but may not be necessary.
For the sake of simplicity, B, F' and r do not depend on the variables x and t, but this
would not affect the results significantly (see again [53]). Moreover, this approach can be

extended also for nonlinearities 3 which are not Lipschitz continuous.

Remark 3.1.2 The assumptions on F' and r are - as in the previous chapter - weaker

than the usual ones, namely a Lipschitz continuity w.r.t. f(u)
r(u) = r(v)| + [F(u) = F(v)| < C|B(u) = B(v)].

Remark 3.1.3 Non-homogeneous Dirichlet or natural boundary conditions may be con-

sidered without any problem here.

The schemes we want to consider here rely on the first regularization approach de-
scribed above. The nonlinearity is approximated by a function £, satisfying 3 > . There

are several possibilities to obtain the approximation. The simplest one is given by

Be(u) = B(u) + eu, (3.2)

hence a global perturbation is added to the derivative of the original function,

and thus we have
Bu(u) = / 5 (s)ds. (3.3)
0
Other possibility is given by a local perturbation of ', namely

Bi(u) = max{f'(u),}.
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In any case, two main features should be fulfilled, namely
Bi(u) >e and 0<pfl(u)—F(u)<e (3.4)

for any real u. Clearly, these are carried out by any of the two constructions proposed

above. In this framework, the elementary lemma below can be proven easily.

Lemma 3.1.1 If § satisfies the assumption (A1) and its approximation (. fulfills the

relations in (8.4), the following inequalities hold true for any reals w and v.

)
sgn(B.(u) — B(w)) = sgn(u), (3.5)
|

IA
=
£

|
=
S
_l_
o

IS

|
=

Proof. Since f.(u) > ¢, the first inequality is trivial. For the second one the identity in
(3.3) can be used in order to get

xuw—mw=lﬂﬂ@—a@@,

so the identity of the signs follows since the integrand is positive. For the last part we

proceed in a similar manner and obtain

B(u) — Blv) = /uﬁ’(s)ds and  fu(u) — fu(v) = /uﬁ;(s)ds.

Applying now the inequalities in (3.4) the conclusion is immediate.

Clearly, . is a strictly increasing function and admits a differentiable inverse. The

next result is a direct consequence of the previous lemma.

Corollary 3.1.2 In the setting above, if the assumption (A3) is satisfied by F' and r, an
wnequality of the same type holds for B.,

[r(u) = r(v)]* + |F(v) = F(v)|” < Cu = )(B:(u) = Be(v))

for all u,v € R. Moreover, the Lipschitz continuity in B(u) implies the same in terms of

B., namely
r(u) = r(v)| + [F(u) = F(v)| < C|B:(u) = B:(v)|

for any real numbers u and v.
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As done in the previous chapter, we deal here with the variational formulation of
Problem P since a solution in the classical sense does not generally exist.
Problem WP. u is called a solution of the problem in (3.1) iff

we H'Y(0,T; H (), B(u) € L*(0,T; Hy(2)), u(0)=wug (in H™)

and for all ¢ € L*(0,T; H}(Q)) the equation holds true

/0 (Grult), o(t)) dt + / (VB(u(t)) + Flu(t)), Vip(t))dt = / (r(u(t)), p(t)dt.  (3.6)

Beyond the frame stated in the chapter before, existence, uniqueness and regularity
of the solution for this problem without convection and reaction has been established in
several papers (see, e.g. [49] or [36] and the references therein). Moreover, a maximum
principle can be proven. There are no significant changes if a reaction term is added,
provided this is Lipschitz continuous w.r.t. (3(u). If F has this property too and its
graph passes through the origin, the existence of a weak solution has been shown in
[18]. Under similar growth conditions for the convective and reactive terms, an existence
result can be found in [1]. However, there are less uniqueness results. It is easy to
imagine situations when the problem becomes purely hyperbolic, therefore the existence
of a unique solution cannot be expected. Since our aim here is the analysis of some
schemes based on regularization procedure described above, we assume Problem WP
admits an unique solution which is uniformly bounded (a.e.) in the whole cylinder Qr.
As mentioned in the chapter before, in this case u belongs to C(0,T; H '(£2)). Moreover,

the notations used there are maintained here too.

Remark 3.1.4 The existence of an unique solution makes the error estimates possible. If
uniqueness does not hold true, convergence can be obtained proceeding from compactness
arguments (the basic ideas can be found in [46], [47]; see also [35]).

3.2 Time discretization

The main goal here is the investigation of some approximation schemes for Problem P.
We go on with the equation written in the more regular unknown, 3(u). Since in the
regularization step a perturbation of the nonlinearity function has been introduced, the
numerical schemes are given w.r.t. [, instead of (3 itself. Therefore, after computing the

unknown #, v can be obtained by inverting (. in 6.
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As done in the previous chapter, due to the lack of regularity, the time discretization
relies on first order methods. The time step is denoted again by 7 and we have 7 = T/n
for some integer n. Correspondingly, an Kuler implicit scheme reads

Scheme RTT:

BHO%) = B0 =7V - (VO* + F(B1(0%)) + mr (5.1 (0%)),
0% |50 =0

for k = 1,n where 0° will be given below.

Remark 3.2.1 Looking at the relations in (3.2) or (3.8), an explicit formula for the
inverse of B. may not be available. In fact, even for [ itself, computing the value in
some point u can be a quite tedious (this problem appears also in case  has a complicated
form). Moreover, any function call increase the computing time significantly. Therefore
in the implementation of the schemes the values of (3. in some points are inserted into a
look-up table, with an additional memory requirement. Surely, this involves also a simple
(linear) interpolation step for obtaining values which are not included in the table, but
now the computing time s significantly reduced and the errors can be controlled through
an appropriate choice of the interpolation knots. Because of the monotonicity of the
function, searching in this table is fast and therefore the values of (. or its inverse can be
obtained efficiently.

To simplify the nonlinear scheme RTI, the convection term VF(3.1(6%)) can be lin-
earized by (B71) (0% 1) f(BH(0F 1)) - VO*, with f(u) = F'(u). A fully explicit discretiza-
tion of this term can be also considered (as done, e.g., in [73], [47], [51]), but then some
stability problems may appear especially near the free boundaries, where convection be-
comes dominant. Since L* bounds are used in the forthcoming estimates, we have not

considered this approach. The scheme becomes
Scheme RTC:

BHO%) = BHOF ) =T A + (B (08 D F(BOF ) - VO + (81 (0)),  (3:2)

together with the initial and boundary data. Replacing r(3.1(6*%)) by 7(8-(#*71)), an
explicit discretization of the reaction term is obtained.

Now a linear approximation scheme for Problem P can be given,
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Scheme RTL:
o1 (0% = 0°1) =TAG" + 7(B1)(0° ) F(B (0N ) - VO + e (B0 ),
#*lon =0, (3.3)
ox =(B1)'(6%)
for & = T.m, where oy = (8:1)'(6°).

Remark 3.2.2 In the linearization of the convection term, (6-1)(0)f(3-1(0)) multiplies

g [

the gradient of 0F. Lemma 3.1.1 and the assumption (A3) on F assure the boundedness

Cr
(B @) (B O] < \/;

Moreover, if F' is Lipschitz continuous in 3(u), the bound above becomes v/Cl.

of this ’speed’, namely

Up to now we did not gave the initial data. For stability reasons, if the convective
term is linearized, §, should belong to H}(Q2). In any case $-'(fy) has to approximate
up in some sense. Concretely, in obtaining the error estimates, these depend on the
initial approximation error in H~', namely ||ug — 8- (6)||_1. If uo belongs to H'(Q),
the choice fy = (.(ug) fulfills both requirements since there is no initial error for v and
H' boundedness for 6 follows from the one for uy and the upper limits of 3.. Moreover,
these bounds do not depend on ¢.

The previous choice works in the implicit case even if ug is not a H' function since
6° needs not to be in H*(2). In fact, the assumption uy € H*(2) is quite restrictive and
fails to hold true in important cases. But € H'! is essential for obtaining useful apriori
estimates for the schemes RTC and RTL. Therefore, if the regularization given in (3.2)
is considered, we can proceed as follows. Let p be a C$°(R?) positive function defining a
mollifier sequence {p,}1>>u0,

1 x
supp p C B(0,1), / p(r)dr =1 and pu(r) = — (—) )
R K H
Now 6y = [(ug) +epu *ug is a H ! function, where * stands for the convolution operator.
From practical point of view there is no need to compute the convolution since this can
be simulated by taking the solution of the heat equation after one (small) time step with

the initial data ug. We have
VO]l < [[VB(uo)ll + £lIV (py * uo) || = [[VB(uo)[| + £[[(Vp) * woll-
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The first term above is bounded since 3(uy) € H'. For the second one we have

(Vo) * woll < IV

1 C
lo,1l[woll = =1V ollo,1[luoll < —.
1 0

Therefore, if 1 is of the same order as ¢, the H! norm of ; is uniformly bounded w.r.t. «.

The initial error due to this step goes to zero as follows from

1
luo = B (B0l < 160 = Bo(wo)| = llpu * wo = woll-

Since ug is a L? function, the last term goes to zero together with p. It is worth noticing
here that convergence to 0 takes place in a stronger norm as necessary, but unfortunately
we did not succeed in getting a convergence order.

In particular cases it is possible to find other perturbations of the initial data for
which estimates of the above error are possible. For the porous medium equation, the

nonlinearity 3(u) = u™ yields for any real u,

B1(B(u)) — u| < Cemmr,

where [, is the regularization defined in (3.3). This shows that the choice 6y = [(ug) may
be considered, but theoretically the global error estimates are affected by this step.
Thinking at the Stefan problem, if an initial non-degeneracy property for the temper-
ature holds true (meas{z € Q / 0 < fy(x) < e} < Ce?), it is possible to give initial data
satisfying
18" (80) — woll < Ce,

as proposed by R. Nochetto in [63].

Before giving the weak forms of the schemes defined above, some remarks can be
formulated. The regularization is necessary when simplified versions of the implicit scheme
are considered. This step is useful also when some linear iterations are applied for solving
the nonlinear problems. As already mentioned in the previous chapter, up to the explicit
treatment of the non-diffusive terms, Scheme RTI is akin to Scheme JK ([46], [47]) in a
particular form, for which the proof there does not apply. The difference appears due to
the fact that in the Jager-Kacur method only the derivative of the nonlinearity function
is modified, while in the schemes above this applies to the function itself. Moreover, if
the spatial discretization in [32] is completed by a backward Euler method in time, the

resulting scheme is a fully discrete counterpart for RTI. Regarding the linear scheme RTL,
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this was proposed in [88] again in a simplified framework (Lipschitz continuous reaction
terms and no convection), while the nonlinearity is perturbed globally.

Similar to the continuous case, a rigorous formulation for the schemes RTI, RTC and
RTL can be given only in a weak sense.

Problem WT. For any 1 < k < n, find % € H}(Q2) such that for all ¢ € H}(Q) one
of the equations below (each corresponding to one of the schemes mentioned before) hold

true.
Problem WRTI.

(B1(0%) = B (0°71), ) + 7(VO" + F(5.7(6%)), Vo) = 7(r(57(6%)), ) (3.4)

for Scheme RTI, or
Problem WRTC.

(B(0%) = B (0" 1), ) + 7(VO*, Vo)

(3.5)
= 7((B71)' (0" F(B1(O") - VO + (671 (64)), 9)
if the convection is linearized, respectively
Problem WRTL.
op(0F — 6571), ) + 1(VOF, Vv
(o ( )s) +7( ¢) (3.6)

= (B (O FB(O") - VO + (671 (0F7)), )
for the linear scheme.
The initial data - 6° - has been already chosen in Scheme RTI, while Scheme RTL
contains the definition of 0. k stands either for £ or for £ — 1, depending on the way the

reaction term is treated.

3.2.1 The elliptic problems

Now we proceed with the analysis of the elliptic problems arising in the time discretization
process. This follows essentially the lines mapped out in the chapter before, therefore the
proofs are limited to the cases where some differences occur.

Recalling the setting for the continuous problem, we deal here with essentially bounded
solutions. Therefore a similar property is interesting also for the numerical approximation
of the solution. Hence, for each k& less then n, solutions of the semi-discrete problems are

sought in the space

Vi= {0 € Hy(): el < B (M), ae.}, (3.7)
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where || - ||o stands for the L>(Q) norm and C' > 0 is a constant appropriately chosen.
Clearly, for any £ > 0, V; includes all the previous sets and is convex and closed. It
is worth noticing that also negative solutions are admitted here. But if the solution of
Problem WP is positive, the sets above can be restricted to their positive halves.

As done in the chapter before, a maximum principle for the semi-discrete approxima-

tions can be proven. To do so we make the following notations

a0, 0;9) = (B1(0), ) + 7(VO, V) — (B () f (B (W) - VO +7(8.1(0)), 0),
ey x) = (B1(x), 9)-

Both a and [ are linear w.r.t. ¢ € H;. If 1 and x are essentially bounded, the form a is
bounded on H x H}, while [ becomes continuous on H!. If the perturbation parameter
¢ satisfies the inequality ¢ > C'1 for an appropriate constant C' depending on F', r and
the L*° norm for ¢/ and x, coercivity can be easily proven for a. Based on these notations
an auxiliary problem can be defined,

Problem AUX. Find § € Hj(Q) such that

a(8, o;¢) = U(e; x) (3.8)

holds for all p € H(Q).

If v and yx are essentially bounded, existence and uniqueness of the solution for the
above problem is guaranteed either by the nonlinear Lax-Milgram lemma or by the theory
of monotone operators (see, e.g., [56]).

Clearly, Problem AUX is related to the elliptic problems produced by the nonlin-
ear schemes RTI and RTC. It is easy to write the corresponding for Scheme RTL. The

maximum principle is stated in the following lemma.

Lemma 3.2.1 Assume (A1), (A3), Y € Vi and x € Vi_1. Then, for reasonably small T,
the solution of Problem AUX belongs to V.

It is enough here to repeat the proof for the upper bounds in Lemma 2.2.1. Moreover,
if x is positive a.e. in Q and r(u) > 0 for any u, the solution 6 is bounded from below by
0. In fact, the additional assumption on r (global positivity) is necessary only when the
reaction term is discretized implicitly and the same can be said regarding the restriction

imposed to the time step.

Remark 3.2.3 The above lemma establishes a maximum principle for the schemes RTI

or RTC. Similarly, essential boundedness can be obtained for the linear scheme.
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In order to solve the nonlinear problems arising in the schemes RTI or RTC, the
iterative procedures defined in the previous chapter can be applied here too. However,
the regularization step - modifying the original nonlinearity function 3 - implies little
modifications. For defining a correspondent to Iteration ISm let K be a constant above
1/e and define, for 1, p,9 € Hj(Q2)

ax (Y, 039) = K, 0) +7(Ve, Vo) = 7((B71) () f (B (1) - Vb, ),

Ik(¥io) = K, 0)+ (B71(0"1) = B71(1), ) + 7(r(B7(¥)), ¢),

which are linear and bounded. The iterative scheme relies on the operator T : H} — H}
giving the solution of the following problem
Problem PISm: Let ¢ € Hy. Find Ty € Hj(Q) such that

ak (T, ;057 = I (s ¢) (3.9)

for all p € Hj(Q).
Now the first iteration can be defined as

Iteration ISm:
P =Ty (3.10)

for i > 0 and ¢° = 0F1 € H}.

For 7 reasonably small, yielding K > C7/e, the Lax-Milgram lemma ensures the
existence and uniqueness of a solution for Problem PISm. Moreover, if #¥~! is taken in
Vi_1 defined above, the set V} is invariant w.r.t. the operator 7', the proof for this being a
simple reproduction of the one for Lemma 2.2.1. Moreover, Lemmas 2.2.2 and 2.2.3 have

a correspondent here, namely

Lemma 3.2.2 Assume (A1), (A3) and 7' € Vi_y. If K is greater than C/e and
T < C'e for appropriately chosen constants C and C', then there is a norm on H}(Q)
equivalent to the usual one, such that T maps V), in itself and is contractive on the same

set.

Proof. The proof is identical to the ones for the two lemmas mentioned above.

Remark 3.2.4 Problem PISm is related to Scheme WRTC. The same holds also if 61
in (8.9) is replaced by 1, in order to obtain an iterative scheme for the implicit time
discretization method. In this case we can obtain only weak convergence in H*, but without

imposing any relation between T and €.
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Remark 3.2.5 The above lemma states a convergence result (in H') for the sequence
{W"}iso C V. It is easy to see that its limit solves the problem WRTC, therefore we have

6% = lim ¢".

71— 00

As already noticed in the previous chapter, Iteration ISm has a bad convergence rate.
For practical computations we have used the following
Iteration 1JK:

0' € Hy(Q),
(@1, 6*) (@ — 6"Y), ) + 7(VE, V) — (5~ (@) F(5(0)) - V', )
= 7(r(871(0)), 9), (3.11)

a(éf,ek):/o (51 (s + (1 — 5)6%)ds

for all o € H}(Q) and i > 1, where 8° = 6%~ o(8°, 0% 1) = (31 (4*~1).

Iteration JK is more appropriate for practical purposes (see [46], [47] or [53]). Without
giving the proof - which is similar to the one for Lemma 3.2.1 - if #*~! € V,_;, then all
the elements of the sequence of solutions {#:}2°, given by this iteration are in V;. Since
the problems WRTC and WRTI have unique solutions, compactness arguments can be
considered for showing that #* converges weakly in H' to the semi-discrete solution 6y,
a function in Vj. Particularly, taking § = #*~! above leads to an iterative method for
Problem WRTC, while the choice § = #~! gives the alternative for Problem WRTI.
Because we deal here with a perturbation of the nonlinearity (., there is no need to

consider a a cut-off approach for the regularization, as done in [46] and [47].

3.2.2 Error estimates for the semi-discrete approximation

In order to show the convergence of the schemes considered here it is enough to obtain
some error estimates. Thinking at the maximum principle based algorithms, there are no

essential changes in the proofs, the basic ideas being the same.

The apriori estimates

The first step in getting some bounds for the errors consists in proving apriori estimates
for the semi-discrete solutions. For the implicit scheme, this is done in the following

theorem.
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Theorem 3.2.3 Assume (A1), (A2) and (A3). Then, for p < n, if 6% solves Problem
WRTI, we have

p
Y IVeHP < C, (3.12)
k=1
p p
(BT = O, 00— 0+ )10k - 0P < C (3.13)
k=1 k=1

Proof. The first inequality can be proven in the same manner as done for the implicit
scheme MTI. Here 3 should be replaced by its perturbation ., having similar properties.
Now ¢ = 6% € H}(Q) can be taken as a test function in Problem WRTI. Summing up for
k=0,p we get

P

2(551(9'“) — BTN O*),0%) + 7 Z IVe8|?

= —TZ H(6%)), V¥ +TZ (6%)),6%).

For estimating the first term we proceed as in Theorem 2.2.6 with (. instead of § and

(3.14)

obtain
p

D (BH(8%) — e, 64 = —C.

k=1
By taking a primitive function for F(3-1(-)) it can be shown that the first term in the
right hand side disappears (as done in (2.12)). The last sum is also uniformly bounded
w.r.t. k since ||0x|| < C for any k. This gives the first part of the theorem.

For the second estimate, if £ > 2, ¢ in (3.4) can be replaced by 6F — 9*~1 € H}(Q) for
any k greater than 2. Summing up again over k£ from 2 to p and applying the elementary
identity in (2.18) yields

Z (ek 1) ok _ekz—l)

2

T —
+3 (IIW”II — Ve + Z IV (6* —6* 1)Il2)

k=2

= =7 (F(6:1(6"), V(" = 0*))

+ (B (6%)), 64 = 0*71) = (I11) + (IV).

(3.15)
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The first inequality in (3.5) gives

P

>OZ||9’“ 0" + Z( H0F) = B0, 08 — 0.

k: 2

As a consequence of the first part of this theorem we get

P
T E—1y12
D2 3V -0 -

for a generic constant C. For (I1]) we go on as in Remark 2.2.13 in the chapter before
and obtain
< k pgk—1y|[2
(I < C+ 5; V(6" = 6% DI,
Based on the essential boundedness of the semi-discrete solutions, the estimates for the
last term are trivial,
vy <c.

The above inequalities applied into (3.15) show the remaining part of the theorem. Here

the sum can be taken from 1 since both #° and 8' are bounded in the L? norm.

Remark 3.2.6 It does not make any difference for the apriori estimates if the reaction

term 1s treated explicitly.

Remark 3.2.7 The estimates obtained here are worser than those for the implicit scheme
in the previous chapter. But now the assumptions on the initial data are weaker. However,
if 0° is taken in H' (as mentioned in the previous section), a similar approach lead to
estimates similar to those for the mazimum principle based algorithm (Theorem 2.2.6).
The bounds in the second inequality there become CT/c. Moreover, if F is Lipschitz

continuous in 3(u), the apriori estimates are optimal, namely CT.

For the remaining two schemes proposed in the beginning we have to take the initial
approximation #° in H'(Q2). Now the methods are completely the same as in the previous
chapter. Analogous to Scheme MTC, Scheme RTC yields

Theorem 3.2.4 Assume (A1), (A2), (A8) and 6° in H'. Then, for p < n, if 0 solves
Problem WRTC, there are constants C' independent on p, 7 and € such that

P C
Y _IVeH|” < - (3.16)
k=1
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M=

(BH(0%) — B7H(O81), 08 — 0 + > 1ok — 642
k=1

Eal

1
P . (3.17)
+7 |V (6% — 65 1)||> < 05_2'
k=1
Proof. The proof is almost identical to the one for Theorem 2.2.7. The only difference

appears in the estimates, where 1/¢ replaces Cs(¢), because of the bounds in Remark

3.2.2 for the term (8-1)(0) f(B-1(9)).

3 £

Remark 3.2.8 As for the implicit case, optimal estimates are obtained if F' 1s Lipschitz
continuous in [(u). Then e disappears in the above inequalities. Moreover, an explicit

discretization of the reaction term gives the same results.

Now our attention turns to the linear scheme. Yet the Lipschitz continuity of f’ is
necessary. The estimates in the previous chapter were obtained either assuming F' to
be Lipschitz w.r.t. [(u) or for convex nonlinearities. The last alternative works only if
positive solutions are sought, and positivity is needed for the approximate solutions too
(this property is assured by the maximum principle for the elliptic problems). In this case
the perturbation (. should be also convex, which is guaranteed only in the construction

proposed in (3.2).

Theorem 3.2.5 Assume (A1), (A2), (A8) and one of the alternatives mentioned above.
Then, for p < n, if 6% solves Problem WRTL, we have

p p
> Ve (0F = 65 HIP +7IVeR|P + 7Y IV(eF -6 P < Cr (3.18)
k=1

k=1

if F is Lipschitz w.r.t. B(u), or

P C
N I R (3.19)
k=1 €
P P -
> Va1 (0F = DI + 7IVERN + 7D IV0F - 0P < C— (3.20)
k=1 k=1 €2

for convex B and positive initial and boundary data in Problem P.

86



Proof. Here we can follow the proofs for Theorems 2.2.8 and 2.2.9. In the first case,
Corollary 3.1.2 shows that F' is Lipschitz w.r.t. [.(u) too, hence the constant Cp is
an upper bound for (371)'(#)f(371()). As mentioned in Remarks 3.2.7 and 3.2.8, the
estimates become optimal.

Working with the global perturbation defined in (3.2), if # is convex, the same holds
for (.. If the solution of Problem WP is positive, its semi-discrete approximation have
similar properties (as stated in Lemma 3.2.1). In this case ¢ = 6% € H;(Q) is a positive
test function in (3.6). Replacing § by . in the proof of Theorem 2.2.8 for the maximum

principle based approach we get the desired results.

Error estimates for the implicit method

As mentioned before, the convergence of the schemes is shown by obtaining error esti-
mates. This is done in the framework proposed in the previous chapter. Therefore most

of the notations are the same, e.g.
_ 1 kT
e [ fss
T J(k=1)r
for any function f integrable in time and defined in Q7 - if £ > 1 - and f° := f(0,-). The

errors are obtained in terms of eX and e} given below

eh =t — BIN0N), b= Blu) — 0,

u

where k£ > 0. Again, G : H~'(Q2) — H}(£2) denotes the Green operator defined by

(VGY, Vo) = (v, ), (3.21)
for all ¢ € HF(Q), where 9 is taken in H~1(Q), so

VG = [¢]]-1, W]l < Cll]] (3.22)

(where the last inequality applies only if ¥ € L%*(Q)).

The error estimates for the implicit scheme are given in the following theorem.

Theorem 3.2.6 Assuming (A1), (A2) and (A8), if u is the weak solution of Problem
WP and 6% solves for each k > 0 Problem WRTI, then
sup [lef|2, + fy (B-(u(®)) — 0a(),u(t) — B (0a(£))dt + [|B(u) — 0all32(q)

k=1n
<C{r—+¢},

where Oa(t) = 6% fort € (tr_1,tx] and k =1, n.
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Proof. We follow here essentially the steps done when proving Theorem 2.2.11. If x|,

is the characteristic function of the time interval I C [0,T7], choosing ¢x|f;_,..,] for an

arbitrary ¢ € H; () as test function in (3.6) gives

(ult;) — u(t; ( / Bu(t))dt + / lF(u(t))dt,Vgo)
=(/ (())dt,w)

for any j between 1 and n. Taking ¢ = Ge! € H{ in (3.4) and (3.23), subtracting the

(3.23)

first from the second one and summing up for j = 1, k yields

(L) + (L) := Z(u(tj) —u(tjy) — 61(07) + 87107, Gel)
+7 Z(Veg, VGé)

7=1
; (3.24)

=- (/:j F(u(t)) — F(B1(67))dt, VGe{;)

k

2 ( [ rtuton = o @ Gez;) = (1) + (1)

=1

The terms in (3.24) are estimated as done in the proof of the corresponding theorem

for Scheme MTL. (I;) can be decomposed as follows.

(L) = Xj(ulty) =@ —u(ty) + @, Gel) + 35 (¢, — e, Gel)

7j=1

= (Iun) + (L12)-
Recalling the steps performed in (2.38) and (2.39), since d,u € L*(0,T; H (Q)), (I11)

gets

1
2
()] £ 7o [|0ullz2, , am-100) + o ||€k||2
(3.25)

k
2 - -
+ Téu2 |0l 20,0, 100 T —46112 E lles, — el 7%
=2

where 6111 and 0119 are positive constants chosen below.
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For (I;5) we make use of the identities in (2.18) and (3.22) and obtain
k

(f12) = Z(ei —e 1, Gel) = Z(VG'@ZL — VGel ™, VGel)

(3.26)

(I|eu||2 — lleal® +Z||e’ 62‘1”21)-

Now we go on with the second term in (3.24).

(L) = 735 _1(epeh)
= 2= 1(ﬁ " (Bu(®) — 0%)dt, —L ﬂgl(Hj))d8>
= Xl )= 07, u(t) — BH(67)) dt
+Z§:1L&?_1 5(U(t))—9j,; S (u(s) = u(t))ds | dt

=: (Iy1) + (I22).

(I31) can be decomposed into two sums

(In) = 3o f,7, (Be(u(t)) — 07, ult) — B71(67)) dt
+ 35 0, (Blult) = Be(u(t)), U(t) B1(07)) dt
=: (L) + (In2)-

The properties of . stated in Lemma 3.1.1 are useful in the estimates for the two terms

from above.

1.k s , .
() 253 [ (Batt) - 0utt) = 5 (07)
=17 (3.27)

C k.ot -
=23 ICCORRE

For (I512), since u is essentially bounded in the parabolic cylinder Qr, it follows that u

belongs to L*((tj_1,t;) x Q) for any j > 0. Because of the maximum principle for the
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semi-discrete approximations, we can go on as follows

(I <Z / 18.(u(t)) = BluCe)lllut) — 6489 e

Z(/ 13- (1)) <u<t>>||2dt) (/ ||U(t)—ﬂ§1(9j)ll2dt>

= ]

326312; /t;n@(u(t)) Buo) dt+ﬂz / lu(t) — (67|t

||u||L2(QT) + Co1.
(3.28)

For 6919 = 7 the bound above become Ck.
(I52) can be treated as done in (2.44).

tj s
|(22)] ( ) — ¢, / / (9Tu(7“)drd5> dt
tj— tj_1 Jt
Z/ / V(5 — ) ||/ 10, u(r)||_1drdsdt (3.29)
t
<TZ [ v ) ~ )t <

where the regularity properties of the solution u and the apriori estimates in Theorem
3.2.3 have been used.
Considering now the right hand side in (3.24), because of the assumption (A3) on F,

Corollary 3.1.2 can be used again in order to get

) <3 L Pty P @ v e

<CZ||e I / (u(t) = B7(0), B (u(t) — )t

1

<cr Z led -1 ( / (ult) = 6. 2(67), B.(u(t)) - ejw)

j_

(3.30)

SEZ [ =@ 000 - e ors I

=1
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Proceeding exactly in the same manner as before, the Poincaré inequality applied to
GeJ leads to the same estimates for (I,). Inserting all the inequalities in (3.25) - (3.30)
in (3.24) and choosing the §’s properly, we get

ek 12y + 325, lled — ed™12,
+ 35 S (Be(u(®) = 07, u(t) = BN (O7)dt + C 05, [ 18- (ult)) — 07 dt
< OT |00l o, 511-1(c) + O(7 + 2+ llebI)) + Cr 325 lled |1

As noticed in the beginning of the chapter, the semi-discrete initial data can be chosen as

0° = .(up), therefore the initial error € is zero. Since u € H*(0,T; H™*(f)), applying

u

now the discrete Gronwall inequality yields

lenllZs + /0 (B:(u) = Oa,u = B (0a)) + 18 (u) = OallLz0 020 < C (7 +2)  (3.31)

for any £ > 0.

Now we observe that

18<(w) — 071 > [[|8(w) — 07| = || Be(w) = B(u)|| > [l|B(w) — 67]| — C¥l,
and so
2[|5:(u) — 07]1> > || B(u) — ¢7||* — C&™.

This, together with (3.31), gives the desired result.

Remark 3.2.9 As for the implicit scheme MTI in the chapter before, the above error
estimates, O(77), are at least as good as those for the algorithms in [60], [73], [46], [4] or
[28]. Howewver, in particular cases, it is possible to get better estimates which are discussed

later.

Remark 3.2.10 An explicit discretization of the reaction term r does not affect the es-

timates. Then, the last term in (3.24) becomes
()= 5 (2, ru(®) = r(8, 10 1)dt, Ged)
= (L) +7 35, (r(B7(07) = r(571(67)), Gel)-
Recalling the assumption on r in (A8), the last sum yields
k
(I < T+ O Y llelll 1 (87(07) = 67 (6771), 67 — 6771)2.
7j=1
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The apriori estimates in (3.13) give

k
(I)| < [(L)| + Cm+CT ) lledll2,

j=1

and the rest follows as before.

Remark 3.2.11 The error estimates for u are obtained in the H'(0,T; H *(Q2)) norm.
If an inequality of the form

(B7H0) = B~ ()0 — ) = C(B7(0) — B~ ()

holds true for a positive constant C' and an exponent p > 1. Lemma 3.1.1 allows us
to rewrite the above inequality in terms of B.*. Then, using the estimate for the scalar
product in (3.31), an error estimate in the better LP(Q) norm can be obtained. For

example, if B(u) = u™, the estimate becomes

lu = B0 Frtsgpy < C(7 + )

LmtH(Qr) =
(see, e.g. [73], [28]).

As we have already mentioned, the estimates obtained here are not optimal. Based
on the semigroup theory, if the generator is a subgradient in a Hilbert space, the order of
convergence of the implicit Euler method becomes O(7) ([85], see also Theorem 2.2.14).
An example in this sense is Problem P without convection or reaction, if 4 is maximal
monotone supposing its range is R. This result may be used here in order to obtain
optimal estimates for the implicit scheme RTI. The approach is identical to the one for
the maximum principle based algorithm and relies on the comparison between Scheme EI

defined in (2.50) and RTI, in a variational formulation.

Theorem 3.2.7 In the setting of Theorem 3.2.6, if 6% solves for each k > 0 Problem

WRTI without convection or reaction, then

1800) = 0all2gy + Tl18(u) = OalZaorims ey < € {7 +2}.

Proof. Recalling the estimates in for the Euler implicit scheme EI (Theorem 2.2.14), it
is enough to compare the semi-discrete approximation generated by Scheme RTI with the
one corresponding to the above mentioned. To do so, Scheme EI is rewritten in a weak

form
(U] - uj_la QO) + T(V/B(u])’ VQD) = 01
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for all ¢ € H}(Q), with j = 1,n. Subtracting (3.4) from this equality, summing up for
j = 1,k, taking ¢ = B(u*) — #* € H} in the resulting difference and summing up again

for k = 1,n gives

(1) + (I2) : Z(U , B(u*) — 6%)

+r Z Z — %), V(B(u¥) — 64)) (3.32)

= (W’ = B.1(6%), B(uF) — %) =: (Iy).

If we take 8° = (.(up) as initial data in Scheme RTI, the right hand side above vanishes.

Hence it is enough to estimate the first two terms. First, (I;) can be decomposed in

n

(L) = Z(Uk - Bs (Gk) Gk )+ Z u* — 1(491c B(u k) - 5s(uk)) =: (In) + (L12).

k=1

Recalling Lemma 3.1.1, (I11) gives

(1) = C Y |1B:(u*) — 65|” > 52 |6(u*) — %2 — —". (3.33)
k=1 k=1

As a consequence of the maximum principle for the solution of the implicit scheme, (I5)

gives

(115 \<CaZ||u 1) < CsZHﬂE ) — 0|
(3.34)

<_ 2, kY _ k|12,
<o St o
k=1
For (1), the elementary identity in (2.19) yields
T n
= 52 IV (B(uk) — %)]|* + ||VZ — %)% (3.35)
k=1

Inserting all the inequalities in (3.33) - (3.35) in (3.32) and multiplying everything with

T we arrive at

C n
7 2 Tla") = 64| + Z IV(B(ur) — 6%)|)* < Ce2. (3.36)

The rest of the proof results from Theorem 2.2.14.
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Remark 3.2.12 This result shows that if the implicit Euler discretization has a linear
order of convergence, the same holds also for Scheme RTI. Therefore, from theoretical

point of view, the implicit scheme RTI behaves at least as good as other schemes.

Error estimates for the simplified schemes

Here we consider the simplified schemes RTC and RTL. Since the apriori estimates were
obtained under the assumption §° € H!, this is assumed to hold true here. Hence the
initial data should be taken in a special way, as mentioned, e.g., in the first section of
this chapter. Moreover, the initial error ||€%]|_; plays also an essential role in the error
estimates. For the implicit scheme RTI, its effect was neglected because of the choice for
6°, namely S.(ug). But in general this function does not belong to H'(2) and therefore we
had to consider other alternatives, as mentioned before. In the forthcoming, the estimates
depend on the initial error ||e®||_;. For any of the situations discussed in this chapter,
this error vanishes as ¢ goes to 0, but theoretically the convergence order may not be so

good. The next result applies to Scheme RTC.

Theorem 3.2.8 In the setting of Theorem 3.2.6, if 0° € H!, the following estimates can
be obtained for Scheme RTC

sup [lek|2, + Jy (B(u(t)) = 0a(t), u(t) — B (0a(8)dt + [|5(u) = bal3(q)

k=1n

-
<C g‘i‘g"‘ lleall” 1

Proof. The steps in proving Theorem 3.2.6 can be repeated here, but some estimates
are not the same. First, because of the apriori estimates in (3.16), |(I52)| is bounded
from above by C7/e in (3.29). But the main difference appears when dealing with the

convection part, where we get

(I) = (Is) +35 [ (F(B7H0°Y) = F(574(67)), VGe )t
+ 05 S (BT O FBTH 0TV (0 — 07), Ged ),

the last terms being denoted by (I31) and (I3;). The estimates for (I3) in Theorem 3.2.6

are valid in this case too, while (I3;) gives

((T)l < 07 325 el 1 (B (87) = B (677), 00 — 0971)2
< CT YL (B1(07) — BN (67 1) 67— ) + O 05 Nledl%
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Recalling Remark 3.2.2 and the apriori estimates in Theorem 3.2.4, (I3,) can be bounded

as follows

- T ) , .
|(Is2)] < Cﬁzgll IV (67 = 671l Gel

. T . .
< Or YL IVGe” + 022521 IV (67 — 67=)|I?

.
& .
< Cr Zj:l ledl1%: + 05_3'

Now, the proof continues as the one for Theorem 2.2.11.

Remark 3.2.13 As before, there is no difference when r is discretized explicitly. More-
over, if F' is Lipschitz continuous w.r.t. 3(u), the error estimates are identical to the ones

for the implicit scheme.

Yet our attention turns to the linear scheme. The following theorem give the error

bounds for the semi-discrete approximation provided by Scheme RTL.

Theorem 3.2.9 In the setting of Theorem 3.2.8, assuming additionally the Lipschitz
continuity of F w.r.t. 3(u) and the same property (w.r.t. w) for 3', if 0% solves for each
k > 0 Problem WRTL, then

sup [lek 12, + Jy (B(u() = 0a (), u(t) = B (0a()))dt + [15(u) = 013

k=1mn

;
SCq gHetlleal o

with Oa being defined in Theorem 2.2.11.
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Proof. The proof is similar to the ones above. The same steps lead to

]Z:(U(tj) —u(tj 1) — o 1 (07 — 0771),Gel) + 7 jé(VeZ,, VGel)
—- Z ( [ r) - re @ VGez;)
- T]Z: (F(B=H(07)) = F(B71(6°71)), VGel,) (3.37)
+ T; (BB 1)V =07, Gel)
+ ]Zi; ( /t tjl rult)) — r(B71 67 )dt, Geﬂ) .

Following the proof for Theorem 2.2.13 - where (3 is replaced everywhere by (. - we
get

k
J]=

(BH(07) = BH(07) — 0y (67 — 0771), Gel))| < Cglz,
1

and anything else is as before.

Remark 3.2.14 Similar to the apriori estimates in Theorem 3.2.5, if F' does not satisfy
the stronger assumption, error bounds can be obtained for a convex nonlinearity 3, but
only if the solution is positive a.e.. In this case the result is worser, namely

sup [lesl|y + fo (B(ul®)) = 0a (), u(t) = B (0a(8))dt + [|5(u) = 0172,

k=1n

-
SO —+e+ el ¢,
€2

Remark 3.2.15 FEven though the theoretical results are not so good for Scheme RTL, its
importance appears in practical computations. The results obtained are comparable to the

ones provided by the implicit scheme RTI, but require less computational effort.

Remark 3.2.16 As mentioned before, Scheme RTL was proposed by M. Slodicka ([/88])
i a more restrictive framework. By our analysis we have obtained the same order of
convergence up to the presence of the initial error - ||€||_1, which is due to the convective

term.
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3.3 Full discretization

For solving Problem P numerically, the semi-discrete approximations provided by the
schemes RTI, RTC and RTL considered here should be completed by the spatial discretiza-
tion. As already being discussed in the previous chapter, there are several possibilities to
do this step. Even though the maximum principle is not essential here (from theoretical
point of view), in practical computations a stable discretization is useful. Therefore we
maintain the frame defined in the chapter before, resulting an upwind box method. More-
over, this helps us to keep the proofs here similar to the ones for the maximum principle
based algorithms. Again, convergence of the fully discrete schemes is obtained only in
the absence of the convective terms. Consequently, this part is not of interest for Scheme
RTC.

In the sequel, Q C R? is decomposed into closed d-simplices (this set is denoted by Sy,
where h stands for the mesh-size). S, contains N, vertices and is assumed regular and
weakly acute. This guarantees a discrete maximum principle for the Laplace operator
([21]), since its finite element discretization matrix is irreducible and diagonal dominant.
Again, (2 is assumed polygonal, hence the decomposition is exact. V) includes the piece-
wise linear finite element space defined for S, while Vi,(g9) = {¢ € Vi : vlsa = glaa}
contains those elements of V}, satisfying a Dirichlet boundary condition. {¢;,i = 1, N,,}
is the usual finite element basis for V},. We recall here the definition of the discrete semi-
inner product in (2.1) together with its properties mentioned in (2.2) and (2.3). As before,
I;, denotes the local linear interpolation operator, while II, stands for the L? projection

operator defined in (2.4).

For obtaining the error estimates for the fully discrete case in the manner proceeded
up to now, regularity of the Green operator G - defined in (3.21) - is assumed ([19], p.
138). Correspondingly, the discrete Green operator Gy, : H=' — V},(0) is defined by

(VGr, Vo) = (¥, 9), (3.1)

for all ¢ € V,(0) C H}(Q), where 1 is taken in H~*(Q2). The error done when approx-
imating G by G}, is given in (2.7). Other properties related to G, have already been
mentioned in (2.8), (2.9) and (2.10).
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3.3.1 The fully discrete problems

After performing the time discretization, the algebraic systems corresponding to the fully
discrete problems are obtained by applying the upwind box method described in the
previous chapter. The dual mesh is generated by Donald diagrams. The nodal basis for
By, - the piecewise constant test function space - is denoted by {¢;,i = 1, N}, and its
elements are 1 inside the box around the node 7 and 0 outside of it.

As mentioned before, for obtaining error estimates we consider Problem P without
convection. In this case, because the dual box mesh is the Donald diagram and mass
lumping is used, the box scheme for the semi-discrete Problem WRTI can be written in
a finite element formulation ([40], [15]).

Problem WRDI. For any 1 < k < n, find 8} € V},(0) such that for all ¢ € V}(0) the

following holds true

(B (08) = B (6571), @)n + 7(VOE, Vi) = T(Lur (B (67)): @), (3.2)
where £k is either k£ or k — 1, depending on the discretization of the reaction term.

Remark 3.3.1 For each k > 0, if u} is the piecewise linear interpolant of B71(0F), we

have
O = In(B-((ur))  and  (up, ©)n = (671 (0R), ©)n

for all ¢ € V.

The above definition has to be completed by the initial data. If 6, is the one involved
in the time discretization (with the particular choices mentioned in the beginning of this

chapter), the following construction can be considered
up, = IR (B1(0%)), O = InB(up). (3.3)
Since ug is essentially bounded, the same holds for «{ (and the bounds are the same).

Remark 3.3.2 This particular choice for the discrete initial data involves a quadrature
formula for computing the above integrals, inducing some additional errors which have the

same order as the global ones. Therefore they are not taken into consideration here.

Because of the assumptions on the triangularization, the fully discrete approximations

satisfy a discrete maximum principle.
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Lemma 3.3.1 Assume (A1), (A3), 9,";’1 € VinVi1 andr(u) > 0 for allu. If a solution
of Problem WRDI exists, then it belongs to Vi, NV, (where Vi has been defined in (3.7)).

Proof. The proof is identical to the one for Theorem 2.3.1, where [ has to be replaced

by its approximation [..

Remark 3.3.3 As in the semi-discrete case, the global positivity of r is not necessary if

r 1s discretized explicitly.

Remark 3.3.4 Lemma 2.3.1 also holds true if the convection term is present, but it has

to be discretized in an upwinding manner.

The algebraic nonlinear system arising in (3.2) can be solved by a fully discrete coun-
terpart of Iteration IJK, defined in (3.11). Having k fixed, for any 7 > 0, the iteration can
be formulated as follows

Problem WIJK. Find i € V;,(0) such that

(08,05 F, — 05), )n + (VB Vo) = 7(Lr (8765, 00 (34)

holds true for all ¢ € V;,(0), where 89 = 0871 ¢(69,0¥~1) = (8-1) (0¥71) and 65! belongs
to V4(0).

Proceeding in the same manner as for the maximum principle based approach, assum-
ing the discretization parameters satisfy the relation 7 < Ceh?, we can show that the
sequence of solutions of the above problems converges to the solution of Problem WRDI.
The restriction on the time step 7 is severe, but appears only theoretically. Moreover,
since the proof relies essentially on the properties of the discretization matrix, the same
holds true also if a convective term is present, but it should be discretized using an upwind

procedure.

3.3.2 Error estimates for the complete discretization

In the remaining part of the chapter we seek for some error estimates for the fully discrete
approximation of the solution of Problem P. Because (3. has the same properties as (

(stated in the assumption (A1)), the results in Lemma 2.3.3 are still valid here
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Lemma 3.3.2 Let u, € V), and 0, = I,5.(up). Then, if r is Lipschitz w.r.t. ((u), we

have

||V6h||2 SC(Vuh,VGh),
1218 (un) — Be(un)|| <Ch||V LB (un)]|, (3.5)
[[Znr(un) = 7(un) || SCR[[VO]],

where C > 0 s a generic constant independent on h and uy,.

Error estimates for the fully discrete nonlinear scheme

We start with the implicit scheme WRDI, for which some stability results can be obtained.

Theorem 3.3.3 Assume (A1), (A2), (A3) and F = 0. Then, for k < n, if 0 solves
Problem WRDI and uf = I,3-(0F), we have

p p
Do llak =P+ Y IVEIF < C. (3.6)
k=1 k=1

Proof. The result can be easily obtained taking ¢ = uf € V;,(0) in (3.2) and using the

first inequality in Lemma 3.3.2.

Now the errors due to the space discretization are estimated. To do so, we consider

the following notations

en" = B (0%) — LB (0) = B7N(0%) —up, ey =08 =0,

u

where k£ > 0. Because of the definition of 9 in (3.3), the initial error fulfills
le -1 < Ch. (3.7)
The lemma below gives the estimates for the spatial discretization errors.

Theorem 3.3.4 Under the assumptions (A1), (A2), (A3), if F =0, r is Lipschitz con-
tinuous w.r.t. B(u) and 6%, OF solve, for each k > 0, Problem WRTI respectively WRDI,

then
h2
n k,h
sup [lel |2, +Cr 305 lleg" P < C L h+—]
k=1,n

provided T is reasonably small.
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Proof. Again replacing # by ., using Lemma 3.3.2, the proof is exactly the same with
the one for Theorem 2.3.5. Moreover, an explicit treatment of the reaction term does not
affect the result.

Yet the error estimates for Scheme WRDI are a direct consequence of the Theorems
3.2.6 and 3.3.4.

Theorem 3.3.5 In the setting of Theorem 3.3.4, if u is the weak solution of Problem
WP and 6f solves for each k > 0 Problem WRDI, then

sup [lu(te) — a2y + O35 i1 18(u(t) — 6|1 dt

k=1,n

h2
<Cl7+e+h+—
-

Remark 3.3.5 The same result has been obtained also for Scheme MDI, provided T, &
and h are of the same order. The above estimates hold also for the schemes in [29] or
[78], while in [86] they become optimal.

Error estimates for the fully discrete linear scheme

We continue now by extending the above analysis to the fully discrete counterpart of the
linear scheme RTL. As for the nonlinear one, if the convection term is not present, the
spatial discretization can be brought into a finite element formulation
Problem WRDL. For any 1 < k < n, find 6f € V,(0) such that for all ¢ € V,(0)
the following holds true
(or-10(0 = 037", 0 +7(V8, Vo) = T(Iar (B (6571))s ),
. (3.8)
orn = (8.7)(0r)-

with oo, = (671 (69).
As done in the previous chapter, the initial data are given by

up = In(8.1(0°)), Oh = Inf:(up).

Again, ¢? is uniformly bounded (w.r.t. k) in the H' norm and the initial error becomes

h
lea" -1 < COllea|| < C—.
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Now the estimates in Theorem 3.3.5 change to

sup [lu(ty) — w2y + O30 fiF, 18(u(t) — 64| dt

k=1,n

R*  h?
<Cl7+e+h+—+—
T ¢

Similarly to Lemma 3.3.1, a maximum principle can be proven in this case too. More-

over, proceeding as for Theorem 3.2.5 we get

Theorem 3.3.6 Assume (A1), (A2), (A8) and F = 0. Then, for p < n, if 0F solves
Problem WRDL, the following holds true

p p
Y IV = 0 OE +TIVEIP +7 > IV -6 DIP <Cr (3.9)
k=1 k=1
Now the error estimates for the fully discrete linear scheme become

Theorem 3.3.7 In the setting of Theorem 3.3.6, if u is the weak solution of the Problem
WP and 6§ solves for each k > 0 Problem WRDL, then

sup [Ju(te) = w2+ C 5 [ 18(u(t) — 65" Pdt

k=1mn
2

T h o
SC €—2+6—2+7+€+“6u“_1

Proof. The result follows directly from Theorem 3.2.9 if we can estimate again the
errors due to the spatial discretization. The proof is identical to the one for Theorem
2.3.8, but 1/¢ should replace Cs(¢) in the final result.

Remark 3.3.6 The error estimates here are similar to the ones for the semi-discrete
linear scheme RTL. Taking above h = C71 and ¢ = CT%, the order of convergence for
the linear scheme WRDL becomes T%, up to the error due to the approrimation of the
initial data. This improves the result obtained in [89], where the spatial discretization
brings forth a loss in the power of T, namely 5. Howewver, for particular nonlinearities

modelling the Stefan problem, the linear scheme proposed in [67] behaves better - O(T%).
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Chapter 4
Numerical examples

In this chapter we give some examples appropriate to the algorithms analysed up to
now. The applications have been implemented in UG ([11], see also http://www.ica3.uni-
stuttgart.de), a software toolbox providing tools for the generation and manipulation of
unstructured meshes in two and three space dimensions and for the implementation of
different algebraic solvers (including parallel adaptive multigrid methods) on the resulting
grids. The fully discrete linear problems are solved by multigrid procedures provided
by the above mentioned package. All calculations have been carried out on a SGI O2
computer with a MIPS R5000 processor. AV'S ([100]) was used for the representation of
the two-dimensional data, while in the three-dimensional case this is done by a volume

rendering visualization program ([24]).

The first two examples are considered for testing purposes. The problems are simpler
and do not include convection or reaction. Therefore the linear schemes have provided
approximations of similar quality as the ones produced by the implicit methods. In
this cases the resulting discretization matrices are symmetric and a Gauf-Seidel V-Cycle
with two pre- and post-smoothing steps are enough for obtaining good approximations
for the solutions of the discrete linear systems. Since exact solutions are available, the
convergence order of the methods can be evaluated. To this aim we approximate the
L*(Qr) errors in terms of w and ((u) by

E, := ZT(‘uk’h(Ai)—U(kTaAi” meas(BAi))Q ’

103



respectively

Nh 2
Ep:= |7 (104"(A) = B(u)(kr, Ai)| meas(Ba,)"|
=1
where {A;, i = 1,N,} are the nodes of the triangularization and B, stands for the

dual box centered in A. Assuming the above errors are of order 7¢ - more precisely
E, = Cum* and Ey = Cyr* for some exponents «,, oy and constants C,, Cy - a
reasonable evaluation is offered by the computation of approximations corresponding to
different sets of discretization parameters 7;, h; and £;. Now the convergence order can
be estimated from the relations

o = ln(Eul/EuZ) ln(Egl/Egz)
Y In(my /) In(m/m)

We have avoided a comparison with other discretization methods because this always de-

and ay =

pend on the particular choices of the parameters. However, tests in one spatial dimension
show that for the porous medium equation, the results obtained with the methods con-
sidered here are similar to the ones produced by the Jager-Kacur scheme (more details
can be found in [98]).

The last example is a model for a one-phase flow in unsaturated porous media. The
simulation is done both in two and three spatial dimensions. Because of the strongly oscil-
lating diffusion coefficients, the simplest multigrid procedures are not efficient anymore.
In this case an algebraic one-level procedure ([82]) has been applied with satisfactory

results.

4.1 The porous medium equation

The first example considered here models the diffusion of a gas through a homogeneous
porous medium. The process takes place in the time interval [0, 7] in a domain Q € R¢.
The flow is governed by Darcy’s law ([12]),

1
V= __vpa
v

where  is the permeability of the porous medium, v the viscosity of the gas and p its

pressure. Denoting by p the density of the gas, the conservation of mass implies that
kOp + V - (pv) = 0.
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Here k stands for the porosity of the medium (the fraction of the volume of the medium
available for the flow). Because both the gas and the porous medium are homogeneous,
v, it and Kk are positive constants. For relating the density of the gas to the pressure, the
following equation of state is assumed to hold true for some real constants p, > 0 and
a>1

p = pop™.
Eliminating p and v from the above equations and scaling p properly, the porous medium

equation is obtained
Ou = A(u™), (4.1)

with m = 1 + a. Together with suitable initial and boundary data, the above equation
has been analysed in several papers (see, e.g., [5] for a detailed discussion). Whenever u
vanishes, the above problem looses its parabolic character and as a consequence the free
boundary - which separates the region occupied by the gas from the one where no gas is
present - is propagating with finite speed.

Explicit solutions can be given in some particular cases. We have considered here a
famous example given by G. I. Barenblatt ([10]), namely

2 m—1
m—1 T

d
t = (¢ 1) md+2=9) 1 — 3 4.2
u(t,z) = (t+1) 2m(md + 2 — d) (t—|—1)m (42)

_|_

where d denotes the dimension of the space.

The domain 2 is taken sufficiently large in order to include the support of the above
solution, namely (—7,7)?>. The boundary conditions are of Dirichlet type and homoge-
neous, while the initial data is exactly the value of u above at t = 0. All the results
presented here are obtained at ¢ = 1.0s. The semi-discrete nonlinear problems are solved
by applying the iterative scheme IJK 2 to 6 times at any time step.

The largest time step is 7 = 0.04, the same as the perturbation parameter . We
start with a uniform spatial grid which is refined three times first. A finer computation
halves 7 and ¢ and refines the mesh once more. The refinement level is denoted by i, in
the first column of the tables. Table 4.1 presents the errors E, and Ejy for the maximum
principle based approach together with the estimated order of convergence for the fully
discrete schemes - denoted by WMDI and WMDL in the second chapter. Here o, and a4
stand for the order of the errors E,, respectively Fy. The upper half corresponds to the
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) E, Ey Qy ay 1 E, Ey Oty ay
0 504-1071 | 3.06-10"2 | =« * 0| 7.47-1071 | 7.89-1072 | « *
1 246-1071]9.31-107% | 1.03 | 1.71 1] 5.38-1071 | 4.33-1072 | 0.47 | 0.86
21| 1.23-1071 | 3.93-1073 | 1.00 | 1.24 2| 3.10-1071 | 1.47-1072 | 0.80 | 1.56
0 5.03-107% | 3.04-1072 | =« * 0 7.52-107 | 7.24-1072 | =« *
1 245-107" | 8.40-1073 | 1.04 | 1.85 1| 546-107! | 4.06-1072 | 0.46 | 0.84
2 || 1.22-1071 | 2.86-1073 | 1.01 | 1.55 2 || 3.27-107 | 1.57-107% | 0.74 | 1.37
Table 4.1: L? errors for Schemes WMDI and WMDL, m = 2 and m = 6.
1 E, Ep Qu, ay 7 E, Ey Qg ay
0 1.00-107 | 292-1072 | =« * 0 6.17-107 | 1.72-10°1 | =« *
1 423-1072|1.15-1072 | 1.24 | 1.35 1 487-107!|836-1072 | 0.34 | 1.04
2 || 1.57-1072 | 5.39-103 | 1.43 | 1.09 21| 2.76-1071 | 3.39-1072 | 0.82 | 1.30
0 1.05-107% | 296-10"2 | =« * 0 6.19-107 | 1.62-10°1 | = *
1 516-1072 | 1.27-1072 | 1.02 | 1.22 1| 4.86-101 | 7.84-1072 | 0.35 | 1.05
2| 224-107% | 5.78-1073 | 1.22 | 1.14 2 280-10"1 | 3.14-1072 | 0.80 | 1.32

Table 4.2: L? errors for Schemes WRDI and WRDL, m = 2 and m = 6.

nonlinear scheme, while the lower one to the linear method. Similarly, Table 4.2 displays
the results for the schemes WRDI and WRDL defined in the previous chapter, with the
same discretization parameters. As we can see in the tables, the convergence rates for the
more regular variable (5(u)) lie above the estimated one, 1. A better behaviour can be
noticed if the nonlinearity is milder, namely m = 2. Then u itself is H' w.r.t. the spatial
variable (see, e.g., [48]), implying better convergence orders also for E,. The situation is

different for m = 6, when only Ej is of O(7) order.

The exact solutions u and [(u) are presented in Figure 4.1 for m = 2 and Figure 4.2
for m = 6. The pictures are zoomed 15 times in the z direction. We give here only the
results on the finest mesh. For m = 2, the differences between the exact solution and its
approximation provided by any of the schemes are not significant, at least graphically.
It is worth here to notice the steep gradients of u appearing in the second case (for
m = 6). Figure 4.3 contains the approximation of u in this last case, obtained with the
implicit schemes WMDI and WRDI (the linear ones providing similar results). Due to

the regularization step, Scheme WRDI smoothes the gradients of the numerical solution.
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Figure 4.1: Exact u (left) and §(u) (right) after 1.0s, m = 2.

Figure 4.4 displays the absolute error (zoomed 30 times in the z-direction) for the
fully discrete implicit scheme WMDI after 1.0s, where the nonlinearity is f(u) = u?’.
They range until 2- 1072, respectively 1-1072. The results for m = 6 are shown in Figure
4.5. The errors are less than 0.13, respectively 2-1072. It becomes clear that in this case
the errors are larger, because of the missing regularity of the solution u. It is worth here
to notice that the errors appear mainly around the free boundary (namely inside a region

covered by two, maximum three elements).

As it comes out from Figures 4.6 and 4.7, we have the same situation for the scheme
WRDI (and also for WRDL). Now the maximal errors in u are 2.2-102 and 0.35, while in
B(u) they become 1.5-1073, respectively 4.0-1073. Again, the errors are localized around
the free boundary, but now, because the regularization parameter was chosen rather large,
the spreading area is covered by 4 to 6 elements. A reason for this is the smoothing of

the gradient of the solution u, as we have already noticed in Figure 4.3.

The maximal values of the errors are less relevant here, at least for u. Because this
solution develops infinite gradients, errors having the same magnitude as u itself can
appear around the free boundary and the only thing a finer approximation does is to

make this region thinner.

Similar results are obtained for the linear schemes. It is difficult to distinguish them
from the ones produced by the implicit methods (at least graphically), so we skip the

corresponding pictures here.

107



Figure 4.2: Exact u (left) and f(u) (right) after 1.0s, m = 6.

4.2 The Stefan problem

The second example is a simple model of a melting-solidification process ([36], [30]). A
substance occupies a domain 2 € R? during the time interval [0,7]. The phase change
takes place at a fixed temperature, assumed 0. €2, is the part of the domain where the
temperature 6 is positive (and consequently occupied by the liquid), while in 2 the solid
phase - having a negative temperature - is present. The two sub-domains are separated by
a free boundary I' which is assumed smooth, with the normal nr pointing in the outward
direction of Q. If the phase changes appear strictly due to the heat conduction (thus
no heating or cooling sources are present and there is no transport of the substance), the

conservation of energy implies the equation
patH-l-VU:O inQ_UQ+,

where p is the density of the substance (assumed constant for simplicity), H denotes the
heat content while v describes the heat flux. The Stefan condition relates the velocity
Vr of the free boundary in the normal direction nr with the jumps of H and v at the
interface,

[0]"“np = p[H]" Ve on T,

sol

Hence the phase change takes place at the temperature # = 0 with release or uptake of a

latent heat L = [H ]Zfl Fourier’s law describes the heat flux in terms of the temperature
v=—k(0)V0,
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Figure 4.3: Approximation of u for m = 6, Scheme WMDI (left) and WRDI (right).

Figure 4.4: Errors in u (left) and @ (right) for Scheme WMDI, m = 2.

where x(6) denotes the thermal conductivity. Introducing the specific heat ¢(6), the heat

content can be expressed in terms of the temperature

0 0 if # <0,
H(O) = / «@)d0+1{ [0.1] ifo=o0,
° L if9 >0,

thus the enthalpy function H is multi-valued.
For simplicity, the specific heat and the thermal conductivity are assumed constant
over the two phases, namely c_, ¢y, k_ and x,. Taking into account the above equations

and applying a normalization to the enthalpy and the temperature, the two-phase Stefan
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Figure 4.6: Errors in u (left) and 6 (right) for Scheme WRDI, m = 2.

problem reads

with

O = AB(u),

)

K_

— u, if u <0,

pc_

0 if u, € [0, pL),

K+

— (u— pL), if u > pL.
\ PC+

This equation is completed by suitable initial and boundary conditions.

Here we have taken an example from [14], where  := (0,0.5) x (0,0.25) and T := 0.4.
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Figure 4.7: Errors in u (left) and @ (right) for Scheme WRDI, m = 6

1 Eu E9 Qlyy Qg ) Eu Ea Qlyy Qg
0| 250-1072|350-10"2| =« * 0 2.34-1072 | 3.67-1073 | =« *
1 194-10"2|1.73-10"2 | 0.36 | 1.02 11 2.02-1072 ] 1.86-10~23 | 0.21 | 0.98
2| 1.46-102 | 8.60-1073 | 0.41 | 1.01 2 1.62-1072 | 9.67-10~* | 0.32 | 0.94
Table 4.3: L? errors for Schemes WRDI (left) and WRDL (right).
k- Kt .
The constants above are taken such that — = —— = pL = 1. The exact enthalpy is
pc—  pcy
e2tzy) 1 if ®(t,z,y) <0,

u(t,z,y) = {

where ®(t,z,y) := 2t — z — y + 0.1. Obviously, the free boundary is given by the points

2[641(75,.70,?}) — 1] + 1’ if @(t,ﬂ:,y) 2 O’

where ® becomes 0. We have considered again Dirichlet boundary conditions, and the
values are those provided by the exact solution.

For this problem, only the algorithms based on the second regularization approach
can be applied (Schemes WRDI and WRDL). The nonlinearity is stronger here than the
one in the previous case. At each time step, the first iteration step reduces the residuum
significantly, while afterwards the convergence rate goes above 0.1. Moreover, this rate
is affected by the choice of the discretization parameters. In order to make the iterative
method effective, € should be chosen in relation to the values of 7.

Table 4.3 contains the L? errors for the enthalpy (E,) and the temperature (Ej,) for
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the parabolic cylinder mentioned above, together with the estimated order of convergence.
As done in the previous section, we have started with a particular choice of parameters
and a number of uniform refinements of the coarse grid (namely 3). Afterwards 7 and
¢ are halved, while the grid is refined once more. At the beginning we have 7 = 0.02.
As mentioned before, in order to make the iterations for the nonlinear scheme WRDI
effective, we have chosen ¢ significantly larger (0.2), but the proportion to 7 is maintained
also on the finest level. However, some time steps have required more iterations (10 was
the maximal number admitted here). For the linear scheme we have taken ¢ = 7.

Since the enthalpy has a jump at the interface, we can expect that the errors are
large there (attaining even the order of magnitude of the jump). This affects also the
convergence order of both schemes w.r.t u, which is significantly lower than the one for

the temperature.

Figure 4.8: Enthalpy error for Scheme WRDI (left) and WRDL (right).

Figure 4.9: Temperature error for Scheme WRDI (left) and WRDL (right).

Figures 4.8 and 4.9 display the absolute errors for both schemes after 0.1s on the finest
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mesh. For a better visualization the domain is rotated around the z-axis with 180°. As
mentioned before, due to the jumps of the enthalpy the corresponding errors are large (up
to 1) at the interface, but restricted mainly to a region covered by two or three elements.
The errors for the temperature appear mainly in the domain occupied by the liquid (where
the temperature is positive), and this happens because of the regularization procedure.

The range of values here are 0.05 (in fact £) and 0.01.

4.3 The Richards equation

The last application we want to present here appears as a model of a one-phase flow in
unsaturated porous media. Some basic ideas in modelling such kind of phenomena are
given here briefly, for a a comprehensive presentation we mention books like [12], [13].
The same model has been considered in [95] or [94] (see also [78]). A unsaturated porous
media wetted by a liquid (water) of density p is considered. The whole domain © € R?
is partitioned in representative elementary volumes (REV), each of them containing a
volume of the wetting phase V,,. This fact is expressed through the saturation (fluid
content) 6 defined as

Vi
0= ,
Vrev
where Vggy is the volume of the REV. The flow is governed by Darcy’s law,

where ¢ stands for the specific flow rate and K for the hydraulic conductivity. The
piezometric head @ is given by the sum of the capillary pressure head ¥ and the vertical
coordinate z,

P =—-V+z.

The continuity condition
0i(p0) +V - (pg) =0

combined with Darcy’s law leads to Richard’s equation
0(pd) — V - (pK(0)V®) = 0.

Assuming the wetting phase has a constant density, this equation contains two un-
knowns, the saturation and the piezometric head. Moreover, a relation between the hy-

draulic conductivity and the saturation is necessary in order to solve the above equation.
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To do so, the dimensionless fluid content (reduced saturation) is introduced,

where 6, is the residual fluid content (the volume of the wetting phase always remaining
in the porous media) and 6, the saturated fluid content. A class of retention curves for
describing the capillary pressure - saturation relation was suggested in [3§]

m

1
S=|—F——
1+ ()]
where o > 0, m € (0,1) and n > 1 are parameters depending on the media. As done in [3§]
(see also [94] and [95]), we assume here the relation n = —= holds true. One possibility

for predicting the hydraulic conductivity knowing the saturation and the pressure head

K = K,S? [/Osﬁdu//olﬁu)dur,

where K, denotes the hydraulic conductivity of the saturated porous medium. In this

is given in [62]

setting, the dependence of the hydraulic conductivity on the reduced saturation can be
given explicitly

K(S) = K, S [1 (- an)m]z.

Now the Richard’s equation can be rewritten in terms of the reduced saturation, namely

K(S)

8,5 =V - (D(S)VS + -——

Vz) =0,

with the moisture diffusivity D(S) defined by
ov (1 - m)Ks 11 1\ ™ 1\m

In the simulations below we have considered a heterogeneous porous medium. This
character is given by a variable hydraulic conductivity at saturation (K), which is gener-
ated randomly with a log-normal distribution ([83]; the implementation is based essentially
on the procedures from [87]). The mean value of the decadic logarithm is logK, = 0, for

the standard correlation we have 0,5k, = 0.4, while the correlation length is A = 0.02. In

2
the model we have taken m = 3 Figure 4.10 displays the decadic logarithm of K, both
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Figure 4.10: Decadic logarithm of Ky, 2 (left) and 3 (right) dimensions.

in two and three dimensions. These values start near -2 (in the blue colored regions) and
go up to 2 (in the red part).

The above equation is completed with zero initial data (thus the medium is completely
unsaturated). The boundary data are homogeneous and of Neumann type everywhere
excepting the bottom part of the domain. There we assume the medium is in contact
with the wetting phase, so the reduced saturation is maximal - 1 - in any moment. The two
dimensional domain is a test stripe of length 5 and width 1, while in the three dimensional
case we have considered the unit cube.

For the implementation of the numerical schemes we have approximated the primitive
function of the moisture diffusivity divided by the hydraulic conductivity at saturation

§ D(u)

D(S) = du.
(5)= | T

In fact we solve the problems with respect to the unknown ¥ = D(S) and recover the

reduced saturation afterwards by inverting the function D. Because of the form of D, its
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primitive (and the corresponding inverse) are approximated by a quadrature method.

An elementary calculus shows that D(.S) is positive (in fact it is also strictly increas-
ing). We have now two degeneracy points, namely at 0, where D vanishes, and in 1, where
the moisture diffusivity goes to infinity. Thus, for applying the maximum principle based
algorithm, a shift of the initial and boundary data should be performed both from below
and above. Even though a rigorous justification of the maximum principle is difficult
because of the presence of the spatially dependent coefficient K, in the convective term,
we were able to apply Scheme WMDI without any problem.

In order to work also with Scheme WRDI we have approximated D(S) by D.(S),

where

1 D(u)

'K, du.

s
D.(S) = / max { €, min
0
The two dimensional results (namely the reduced saturation) provided by both schemes
are displayed in Figures 4.11 - 4.13 (where the pictures have been rotated with 90°), while
the figures 4.14 - 4.16 contain the three dimensional results. The approximations provided
by the two schemes are similar, but the effect of the strongly oscillating coefficients are

milder in the case of the maximum principle based approach.

Figure 4.11: Reduced saturation, 20 time steps, Scheme WMDI (left) and WRDI (right).

< «

Figure 4.12: Reduced saturation, 60 time steps, Scheme WMDI (left) and WRDI (right).
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Figure 4.13: Reduced saturation, 100 time steps, Scheme WMDI (left) and WRDI (right).

Figure 4.14: Reduced saturation, 10 time steps, Scheme WMDI (left) and WRDI (right).
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Figure 4.15: Reduced saturation, 20 time steps, Scheme WMDI (left) and WRDI (right).

Figure 4.16: Reduced saturation, 30 time steps, Scheme WMDI (left) and WRDI (right).
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Chapter 5
Conclusions and perspectives

In this work we have considered two regularization methods for some degenerate parabolic
equations. We are interested here in the possibility to apply them for numerical purposes.
While the perturbation of the nonlinearity was widely exploited for this purpose, we are
not aware of the existence of some numerical schemes relying on the maximum principle
based regularization. In both cases, the resulting algorithms are quite simple. We have
proven the convergence of the approximation schemes by obtaining some error estimates.
Due to them, the theoretical behaviour of the nonlinear schemes is at least as good as
the one of other schemes appearing in the literature. We have done also an analysis of
some linear algorithms, where the price for simplicity is a lower convergence order - at
least theoretically. The analysis is completed by some examples of applications on which
the methods are tested. On simpler problems - like those on which we have estimated
the convergence order of the method - the linear schemes provide good approximations,
so the iterations have not improved the results significantly. We do not expect the same
situation on more complex problems, including reaction and - especially - transport.

The degenerate problems may have regions where the convection part dominates the
flow. For stability purposes, an upwind method in connection with a box discretization
method has been proposed. We were not able to show the convergence of this approach
because of the missing regularity of the convective terms. Another possible candidate for
a stable discretization is the method of characteristics (see, e.g., [96] or [34]), where a
dominating transport influences the orientation of the time-stepping scheme. This is one
of the directions we want to follow in the future.

The framework considered here is restricted to scalar equations where a maximum

principle holds true (this property is not essential, but makes the analysis easier). How-
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ever, there are several problems of practical interest which do not fit in this setting and
therefore an extension to more general situations would be desirable. Among them we
mention the systems of equations, arising, e.g., in chemistry or biology. At least one of
the above methods (the one relying on the regularization of the nonlinear diffusion) could
be applicable there if the system has a diagonal form (as shown in [46)).

Several free and moving boundary phenomena can be formulated as variational in-
equalities. We have not considered this type of problems here, but this may be an-
other subject to be studied in the future. The applicability of the Jager-Kacur time-
discretization scheme to degenerate parabolic inequations is studied in [7]. For solving
the resulting elliptic problems, monotone methods are essential (see [55], where an ap-
propriate multigrid method is proposed). The situation becomes more complicated in the
presence of some transport terms, which alter the symmetry of the problem.

Another important direction of improvement consists in the adaptive discretization.
Our analysis considers only equal time steps and uniform refinement of the spatial mesh.
Even though some difficulties in maintaining a discrete maximum principle can occur, it

is worth considering this approach due to its efficiency.
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