This is a “closed book” exam. The parts add up to 50 points, the grade is obtained by dividing the total number of points by 5. Motivate your answers!

Assignment 1. Given is the following context-free language:

$$L = \{a^kb^ne^n \mid k, n \geq 0\}.$$

a. Give a recursive specification over Sequential Algebra that generates this language. Use S for the initial variable. Give derivations for $S \triangleright 1$ and $S \triangleright a.b.c.1$.

b. Give a pushdown automaton that has this language.

(12 points)

Assignment 2. Given is the following automaton.

a. Give a linear recursive specification for this automaton.

b. Give an iteration expression that is language equivalent to this automaton.

(11 points)
Assignment 3 Consider the following recursive specification.

\[S = a.S \cdot T + b.1 \]
\[T = c.1 \]

Using the operational rules, give the transition system for \(S \). Argue why \(S \) is not a regular process. (11 points)

Assignment 4. Two students \(A, B \) are always talking on the telephone, unless they sleep. Define

\[A = i?\text{call}.i!\text{talk}.(i?\text{talk}.i!\text{talk.}1)^* \cdot \text{sleep}.A \]
\[B = i!\text{call}.i?\text{talk}.(i!\text{talk}.i?\text{talk.}1)^* \cdot \text{sleep}.B \]

a. Determine the automaton for \(A \) and for \(B \) that is generated by the operational rules.

b. Give an automaton for \(\partial_i(A \parallel B) \). You may use laws and bisimulation to simplify the automaton.

c. Give an automaton for \(\tau_i(\partial_i(A \parallel B)) \). You may use laws and branching bisimulation to simplify the automaton.

(16 points)