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Preface

Computer science is the study of discrete behaviour of interacting information
processing agents.

Here, behaviour is the central notion. Computer science is about processes,
things happening over time. We are concerned with an agent that is executing
actions, taking input, emitting output, communicating with other agents. More-
over, this behaviour is discrete, takes place at separate moments in time, and
we can observe separate things happening consecutively. Continuous behaviour
is treated by dynamics or mechanics in physics, and does not belong to com-
puter science. (However, when we talk about software control of a machine, the
interplay of continuous behaviour and discrete behaviour becomes important.)
Thus, the study of analog computers is no part of computer science.

An agent is simply an entity that can act. Primarily, we think of a computer
executing a piece of software, but an agent can also be a human being when we
consider his (her) behaviour discretely. Techniques from computer science are
increasingly applied in systems biology, where we consider behaviour of a living
cell or components of a cell. Also, an organisation or parts of an organisation can
be considered as agents, for instance in workflow. In mechanical engineering, the
behaviour of a machine can be modeled discretely. The study of components
of an agent, their structure and their design can also be considered part of
computer science.

Interaction is also a central notion in computer science. Agents interact
amongst themselves, and interact with the outside world. Usually, a computer
is not stand-alone, with limited interaction with the user, executing a batch
process, but is always connected to other devices and the world wide web.

Information is the stuff of computer science, the things that are processed,
transformed, sent around.

Given this definition of computer science, we can explain familiar notions
in terms of it. A computer program is a prescription of behaviour, by trans-
formation it can generate specific behaviour. An algorithm is a description of
behaviour. In this book, we will give a much more precise definition of what
an algorithm is. Computation refers to sequential behaviour, not considering
interaction. Also this notion will be explained much more precisely here. Com-
munication is interaction with information exchange. Data is a manifestation of
information. Intelligence has to do with a comparison between different agents,
in particular between a human being and a computer.

This book is an introduction to the foundations of computer science, suit-
able for teaching in any undergraduate program in computer science or related
fields. It studies discrete behaviour, both with and without taking interaction
into account. It presents an abstract model of discrete behaviour, called an au-
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tomaton or transition system. An abstract model is a mathematical structure
that captures the essential features, leaving out all irrelevant detail.

A more elaborate abstract model is that of the Turing machine. This model
provides us with the notion of computability and the notion of an algorithm.
These are central notions in computer science: a problem class that is com-
putable can in principle be calculated by a computer, provided certain limita-
tions on speed and memory are met; on the other hand, a problem class that
is non-computable can never be solved on any computer, no matter how fast it
is or how much memory it has. Thus, we can assert what a computer can do.
More importantly, we can assert what a computer cannot do.

The classical Turing machine model has an important drawback: it does
not consider interaction. Thus, a computer is studied as a stand-alone machine,
with no connections to other computers and the world, and a computer program
can be seen as a function that transforms input into output. Adding interaction
leads to a modification of a Turing machine, the so-called Interactive Turing
machine. Alongside the notion of a computable function, this gives us the
notion of an executable process.

Important notions: formal language and communicating process, automaton
and transition system, language equivalence and bisimulation, grammar and
recursive specification, Turing machine, Chomsky hierarchy.

Main references for the part about formal languages and automata theory
are [10], [9] [14] and [1], main reference for the part about process theory is
[2] (see also [11], but also older textbooks [8], [12] can be consulted). More
specialized references are [3], [13], [4], [6], [7], [5].
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Chapter 1

Introduction

What makes something a computer? When do we call something a computer?
Well, color, size and brand do not matter. Nor is it important whether it has a
monitor, a mouse or a keyboard.

Finite Control MemoryExternal World

Figure 1.1: Abstract model of a computer.

Figure 1.1 presents an abstract model of a computer. It contains the follow-
ing ingredients:

1. A finite control. A computer is in essence discrete: it evolves not by
continuous change along a trajectory (as a physical phenomenon), but by
a discrete change from one state to the next. Thus, the control has a
finite number of states, modes it can be in. Each time the computer does
something, performs an elementary action or instruction, it can change
state, go from a given state to another state (or the same state). The
control may be finite, but not a priori bounded : we can assume we have
as many states as necessary in order to tackle a given problem.

2. The memory is a facility where things can be put and retrieved. There
are always a finite number of things in memory, but the memory is not
bounded : there is always room to put more things, if this is needed.

3. The control and the memory interact, can exchange information. The
control can store something in the memory, and can retrieve something
from the memory.

4. The control interacts with the external world. This external world is not
part of the computer, and includes a user, other computers, the world wide
web. From the external world, something can be input into the computer,
and from the computer, something can be output to the external world.

1



2 CHAPTER 1. INTRODUCTION

Several times in this enumeration, the notion of a thing, an action, instruc-
tion or a datum, a piece of information is used, the ‘stuff’ that is sent around
between different parties. We do not specify what this ‘stuff’ is exactly, but
just assume throughout some given non-empty finite set A called the alphabet,
which is not further specified. In a similar vein, we assume a given non-empty
finite set of states called S. The set of states contains an initial state, the state
at startup, and a subset of final states, where termination can take place.

A finite control over a given alphabet and a given set of states with an initial
state and a set of final states is called a finite (non-deterministic) automaton.
The memory will be modeled by a particular process, the Turing tape. The
tape holds a sequence of things called data, and at every moment is active at an
element of the sequence, the focus. At the focus, the datum can be output or a
new datum can be input, or the focus can shift one element to the right or left.

Now the abstract model to be considered in this book is the model of the
Interactive Turing machine: there is a finite control denoted as an automaton,
interacting with the external world, and a memory denoted as a Turing tape,
interacting with the control. Schematically, this is presented in Figure 1.2.

Automaton

Tape

Figure 1.2: Interactive Turing machine.

This is the model that concerns the part of this book about processes. In
the part about formal languages, we simplify this picture even further. We do
this by hiding the notion of interaction.

First, we limit the interaction with the external world by only allowing input
at the initial state, and only allowing output at a final state. This means we
consider the computer as a stand-alone device, that does not interact with the
external world during computation. We consider the computer as a device that
transforms input into output, a function from input to output. Thus, we have
a batch process such as they existed before the advent of the terminal. Finally,
we still have the interaction with the memory, but will hide this interaction in
our description.

Due to these limitations, it is possible to assume that input and output
consist of a finite sequence of actions or data, a string. The content of the
memory will also be a string of actions at any given time (but it can grow or
shrink over time). This leads to the abstract model of Figure 1.3, which is called
the classical Turing machine.

When interaction is involved, this picture of separating input and output
is not adequate any longer. Consider an airline reservation system. It is not
the case that a user interacting with this system will have a series of actions
ready at the start of the interaction, rather, the user will have an initial action,
the system responds with a webpage containing a number of choices, the user
will select a number of options, the system reacts, etc. This means a series of
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AutomatonInput Output

Tape

Figure 1.3: Classical Turing machine.

actions as input eventually leading to a series of actions as output is not adequate
to describe this interaction. In particular, the airline reservation system may
not have a final answer, it may be always on. Thus, it is important to keep
information about actions, even when these actions do not lead to a final state.
Moreover, it is also important to keep track of the moments of choice passed in
the course of the interaction. Therefore, considering interaction, we will use the
interactive Turing machine rather than the classical Turing machine.

In the next chapter, we simplify Figures 1.2 and 1.3 even further, by leaving
out the memory altogether.

We use the following notations: elements of A are denoted with lower case
letters from the beginning of the alphabet a, b, c, . . .. A finite sequence of ele-
ments of A is called a string or a word and denoted by juxtaposition, so e.g.
aabb and bca are strings. If w, v are two strings, then wv is the concatenation
of the two strings, the string consisting of w followed by v, so if w = aabb and
v = bca then wv = aabbbca. The empty string consisting of no letters is denoted
ε, and the set of all strings is denoted A∗. This set can be inductively defined
as follows:

1. (basis) ε ∈ A∗, the empty string is a string;

2. (step) For all a ∈ A and all w ∈ A∗, the string that starts with a and
follows with the string w is a string, aw ∈ A∗.

Every string can be made in this way, starting from the empty string, and each
time adding one element of A in the front. Adding an element of A in front of
a string is called prefixing the string with this element. Instead of aε, we often
write just a for the string consisting of just the letter a.

Concatenation is inductively defined as follows:

1. If w = ε, then wv = v;

2. If w = aw′, then wv = a(w′v).

A subset L of A∗ is called a language.
The length of a string is the number of elements it contains, and is defined

inductively as follows:

1. |ε| = 0;

2. For all w ∈ A∗ and a ∈ A we have |aw| = |w| + 1.

A string v is a prefix of string w iff there is a string u such that vu = w, and
v is a substring of w iff there are strings u, x such that xvu = w. The number
of a’s in w, #a(w), can again be defined inductively:
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1. #a(ε) = 0;

2. For all w ∈ A∗ we have #a(bw) = #a(w) if a, b ∈ A, a 6= b, and #a(aw) =
#a(w) + 1.

The reverse of a string w, denoted wR is the string read backwards. Defined
inductively:

1. εR = ε;

2. For all w ∈ A∗ and a ∈ A we have (aw)R = (wR)a (the concatenation of
string wR and string a).

Exercises

1.0.1 Prove by induction on |u| that for all strings u, v ∈ A∗ we have |uv| =
|u| + |v|.

1.0.2 Define for string u ∈ A∗ and natural number n the power un by induc-
tion on n:

(a) u0 = ε;

(b) un+1 = uun.

Use induction on n to show that |un| = n|u| for all u ∈ A∗ and n ≥ 0.

1.0.3 Prove that (uv)R = vRuR for all strings u, v ∈ A∗. Also, prove (wR)R =
w for all strings w ∈ A∗.

1.0.4 The set of strings {w}∗ consists of the string w repeated an arbitrary
number of times n (n ≥ 0). Prove {a}∗ = {an | n ≥ 0}. Find four
elements of {ab}∗.



Chapter 2

Finite Automata

2.1 Automata and languages

Starting from the abstract model of the Turing machine in the previous chapter,
we remove the memory and the interaction with the memory, and we just have
a finite control that transforms the input (an element of A∗) into output (again,
an element of A∗).

We make one further simplification: we limit the set of outputs to yes or no.
If a certain input string leads to yes, we say the machine accepts the string. See
Figure 2.1.

AutomatonInput yes/no

Figure 2.1: Abstract model of an automaton.

An automaton has a given set of states S, a given alphabet A, a transition
relation that explains how to get from one state to the next state, an initial
state and a set of final states.

Definition 2.1 (Automaton). An automaton M is a quintuple (S,A,→, ↑, ↓)
where:

1. S is a finite set of states,

2. A is a finite alphabet,

3. → ⊆ S ×A× S is the set of transitions or steps,

4. ↑ ∈ S is the initial state,

5. ↓ ⊆ S is the set of final states.

If (s, a, t) ∈ →, we write s
a

−→ t, and this means that the machine, when it is
in state s, can consume input symbol a and thereby move to state t. If s is a
final state, s ∈ ↓, we write s ↓.

Writing s
a,b
−→ t means that both s

a
−→ t and s

b
−→ t.

5



6 CHAPTER 2. FINITE AUTOMATA

Notice that it is possible that there are states s, t, u ∈ S and a ∈ A with
s

a
−→ t and s

a
−→ u and t 6= u. Occurrence of this is called non-determinism.

It means that from a given state, consuming a may lead to different states, the
outcome is not determined. It reflects uncertainty about the exact circumstances
of a step, or hiding of the details of determination (just like the input of a string
into a search engine will never give the same answer).

Notice that between two given states, there is at most one step with label
a, such a step either exists or not.

Example 2.2. Let us consider an example. The automaton in Figure 2.2 has
the initial state labeled by a small incoming arrow, and the final states labeled
by small outgoing arrows. All transitions are labeled by a ∈ A. Notice that
names of states are often not given as they cannot be observed. We will consider
two automata that only differ in the naming of states or the layout to be the
same. Stated formally, we say we consider isomorphic automata to be the same.
We will not define isomorphism on automata, instead, we will address more
extensively when two automata are considered the same in the next section.

Notice that from the initial state, there are two different outgoing transi-
tions with the same label, which means there is non-determinism: executing a
from the initial state may lead to two different states. Notice that the state
on the bottom right can never be reached from the initial state by executing
transitions. Such a state, and its attached transitions, will be called unreach-
able. Unreachable states and transitions will not play a role in the following
considerations.

a

a

a a

a
a

a

Figure 2.2: Example automaton.

We make precise the notion of a reachable state in an automaton.

Definition 2.3. Let automaton M = (S,A,→, ↑, ↓) be given. We generalize
the transition relation → to paths, by an inductive definition. Let w ∈ A∗ be a
string, and s, t ∈ S. Then s

w
→−→ t denotes a path from s to t with label w, and

s
w
→−→ t holds exactly when it can be derived by means of the following clauses:

1. For all s ∈ S, we have s
ε
→−→ s;

2. For all s, t, u ∈ S, if s
a

−→ t and t
w
→−→ u, then s

aw
→−→ u.

If there is a path from s to t, we say t is reachable from s, and write s →−→ t.
A state s is reachable in M iff ↑ →−→ s.
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For example, in the automaton shown in Figure 2.2, if s is the final state on
the top right, then ↑

aaa
→−→ s, and if t is the final state on the bottom, then ↑

aa
→−→ t,

↑
aaaa
→−→ t, etc. In general, ↑

an

→−→ t for every even n > 0.
If we have given a certain automaton, then it will accept those input strings

for which there is a path from the initial state to a final state with this series
of letters as labels, consecutively. So the automaton in Figure 2.2 accepts the
strings aaa and an for every even n > 0, and no others, so the set of strings
{an | n > 0, n is even or n = 3}. We make this precise in the following definition.

Definition 2.4. The automaton M accepts the string w, if there is a state
s ∈ S with ↑

w
→−→ s and s ↓. In this case we also say the path from ↑ to s is a

trace of M .
Finally, the language of M is the set of all strings accepted by M , L(M) =

{w ∈ A∗ | ∃s ∈ S : ↑
w
→−→ s, s ↓}.

A consequence of this definition is that if a string w is not in the language
of an automaton M , then it holds that whenever w is the label of a path of the
automaton, then either it does not start from the initial state or it does not end
in a final state. But it can also happen that w is not the label of any path of
the automaton.

Example 2.5. We give another example. Consider the automaton M in Fig-
ure 2.3. Then its language is L(M) = {anb | n ≥ 0}. In the initial state, the
action a can be executed an arbitrary number of times, remaining in the same
state, until at some time the edge labeled b is taken to the final state. The
right-most edge, labeled a, has no influence on the language at all, since taking
it can never lead to a final state. The right-most state is a so-called deadlock
state, where no activity whatsoever is possible.

a

b a

Figure 2.3: L = {anb | n ≥ 0}.

Thus, given an automaton, we can determine its language. It is also inter-
esting to consider the reverse direction: given a language, find an automaton
that accepts this language. We start with a simple example.

Example 2.6. Consider the set of all strings over A = {a, b} that start with
the prefix ab. To find an automaton that accepts this language, just make a
path from the initial state to a final state with label ab. Upon reaching this
final state, allow any step, i.e., add a step with label a and label b from this
state to itself. See Figure 2.4.

Example 2.7. To give a more complicated example, consider the set of all
strings over A = {a, b}, that do not contain a substring aab, so L = {w ∈ A∗ |
aab is not a substring of w}. To begin with, trace out the string aab from the
initial state, but now make all the states except the right-most state final states,
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a b

a

b

Figure 2.4: L = {w ∈ A∗ | ab a prefix of w}.

see Figure 2.5. The left-most state denotes the state where no initial part of
a string possibly leading to aab has occurred. There, any number of b’s can
take place, but as soon as one a occurs, we move one state to the right. There,
executing a b cannot lead to the string aab any longer, so we move left again, but
executing an a leads to a state where two consecutive a’s have occurred. There,
executing a b leads to deadlock (the b-step could also have been left out), but
executing an additional a makes no difference: still, two consecutive a’s have
occurred, and the next step cannot be b.

b

a

a

b
a

b

Figure 2.5: L = {w ∈ A∗ | aab is not a substring of w}.

Thus, we see that for a number of languages, we can find an automaton that
accepts this language. However, this is by no means true for all languages, there
is only a very limited number of things that can be done by a computer without
a memory.

One thing that a computer without memory cannot do is counting. We
illustrate this as follows. Take the alphabet A = {a, b} and consider L =
{anbn | n ≥ 0}. We can draw a picture for this language as shown in Figure 2.6.
Notice that the initial state is also a final state. This system can take in any
number of a’s, remember how many a’s it has received, and then count off just
as many b’s. Thus, it can check whether the number of a’s and the number of b’s
is the same, it can compare quantities. As it can remember any given number,
we can call this machine a simple counter.

Notice that this is not an automaton, as the number of states is infinite. We
call a system that is like an automaton, but may have infinitely many states a
transition system. We claim there is no automaton that accepts this language.

Theorem 2.8. Let L = {anbn | n ≥ 0}. There is no automaton that accepts
L.

Proof. Proof by contradiction, so suppose there is an automaton

M = (S,A,→, ↑, ↓)

that accepts L. Then for each n ≥ 0, there is a path in M from ↑ to a final
state with label anbn. Fix such a path for each n, and call sn the state this path
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a a a

b b b

bb

a

b

Figure 2.6: Simple counter.

is in after the a’s and before the b’s. This gives us states s0, s1, . . . , sn, . . . in
S. Since S is finite, at least two of these states must be the same, say sk = sm

for certain k 6= m. Then there is a path with label ak from ↑ to sk and a path
with label bm from sm to a final state, from which it follows that there is a path
with label akbm from ↑ to a final state, and akbm is accepted by M . This is a
contradiction, so such an automaton M cannot exist.

Later on, we will present a more general technique in order to prove that
some language is not accepted by any automaton.

Definition 2.9. Let L ⊆ A∗ be a language. L is called regular iff there is
an automaton M that accepts L. If two automata M, M ′ accept the same
language, L(M) = L(M ′), we say the automata are language equivalent, and
write M ≈ M ′.

The theorem above implies that L = {anbn | n ≥ 0} is not regular. Earlier,
we saw examples of languages that are regular. It will turn out that the set
of regular languages is very limited, or, stated differently, computers without
memory cannot do much.

Language equivalence is indeed an equivalence relation.

Theorem 2.10. Language equivalence is an equivalence relation on automata.

Proof. 1. Reflexivity: M ≈ M as L(M) = L(M), so we have reflexivity for
every automaton M .

2. Symmetry: if M ≈ M ′ for two automata M, M ′, then their languages are
the same, so also M ′ ≈ M , and we have symmetry.

3. Transitivity: if M ≈ M ′ and M ′ ≈ M ′′, then L(M) = L(M ′) and
L(M ′) = L(M ′′), so L(M) = L(M ′′), which implies M ≈ M ′′ so we
have transitivity.

Example 2.11. Many real-life processes can be conveniently modeled by an
automaton. A university that organises a colloquium could draw the following
automaton for its internal process, see Figure 2.7. Registration starts by the
receipt of a filled-in webform. It is checked whether or not this webform has all
the necessary information. If it does not, the customer is asked to complete the
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form. If it does, it is checked whether or not the registration has a VIP-code.
If it does, the registration is complete and an invitation is sent. If it does not,
the customer has to pay e150 before the early registration deadline, and e195
after this date. When the money is received, a code is sent to the customer and
an invitation is sent.

rec.webform complete

VIPcode nocode

afterdate

beforedate

e195

e150

sendcode

sendinvite

not completeasktocomplete

Figure 2.7: Registration process.

Example 2.12. The control flow of a program can be modeled as an automaton.
Consider the following PASCAL program to calculate factorials:

PROGRAM factorial(input,output);

VAR i, n, f: 0..maxint;

BEGIN

read(n);

i := 0; f := 1;

WHILE i < n DO

BEGIN i := i + 1; f := f * i END;

write(f)

END

The control flow of this program can be modeled as an automaton as shown in
Figure 2.8.

Exercises

2.1.1 Let A = {a, b}. Construct automata that accept exactly:
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read(n) i:=0 f:=1

i<n

i:=i+1

f:=f*i

i>=n write(f)

Figure 2.8: PASCAL program.

(a) all strings with exactly one a;

(b) all strings with at least one a;

(c) all strings with at most one a;

(d) all strings with no more than three a’s;

(e) all strings with at least two a’s and at most two b’s.

2.1.2 Let A = {a, b}. Construct an automaton for each of the following
languages:

(a) The language of all strings in which each occurrence of a is imme-
diately followed by an occurrence of b;

(b) The language of all strings in which each maximal a-substring has
even length;

(c) The language of all strings in which both aa and bb do not occur
as substrings;

(d) The language of all strings in which the number of a’s is even and
the number of b’s is odd;

(e) The language of all strings in which neither ab nor bb occur as a
substring;

(f) The language of all strings where the number of a’s and twice the
number of b’s is divisible by 5;

(g) L = {anbam | n ≡3 m}, i.e., the language of all strings of the form
anbam where n and m are equal modulo 3.

2.1.3 Give an automaton for the following languages:

(a) L = {abwb | w ∈ {a, b}∗};

(b) L = {abnam | n ≥ 2, m ≥ 3};

(c) L = {uabv | u, v ∈ {a, b}∗}.

2.1.4 Find an automaton for the following languages, A = {a, b}:

(a) L = {w | |w| mod 3 = 0};

(b) L = {w | #a(w) mod 3 = 0}:

(c) L = {w | #a(w) − #b(w) > 1}:
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2.1.5 Give an automaton for the language of all strings over {a, b, c} where
the first a precedes the first b or the first b precedes the first a.

2.1.6 Consider the set of all strings on {0, 1} defined by the requirements
below. For each, construct an accepting automaton.

(a) Every 00 is immediately followed by a 1. Thus, strings 0001 or
00100 are not in the set.

(b) All strings containing 00 but not 000.

(c) All strings of which the leftmost symbol differs from the rightmost
symbol.

(d) All strings that contain two consecutive identical symbols, but
never three consecutive identical symbols.

2.1.7 Give an automaton that accepts the language that contains all strings
representing floating point numbers. Assume the following syntax for
floating point numbers. A floating point number is an optional sign,
followed by a decimal number followed by an optional exponent. A
decimal number may be of the form x or x.y where x and y are nonempty
strings of decimal digits. An exponent begins with E and is followed by
an optional sign and then an integer. An integer is a nonempty string
of decimal digits. Make sure that any superfluous leading 0’s are not
allowed. E.g., the string 007 should not be allowed.

2.1.8 Give an automaton that accepts all strings over the alphabet {a, b, c, . . . ,
x, y, z} in which the vowels a, e, i, o, and u, occur in alphabetical
order. The language should thus accept strings abstemious, facetious,
sacreligious, and apple. But it does not contain tenacious.

2.1.9 Give an automaton that accepts all strings over the alphabet {a, b, c, d}
such that at least one of the symbols of this alfabet does not occur in
the string.

2.1.10 For each of the statements below, decide whether it is true or false. If
it is true, prove it. If not, give a counterexample. All parts refer to
languages over the alphabet {a, b}.

(a) If L1 ⊆ L2 and L1 is not regular, then L2 is not regular.

(b) If L1 is regular, L2 is not regular, and L1 ∩ L2 is regular, then
L1 ∪ L2 is not regular.

2.1.11 Suppose that a certain programming language permits only identifiers
that begin with a letter, contain at least one but no more than three
digits, and can have any number of letters. Give an automaton that
accepts precisely all such identifiers.

2.1.12 In the roman number system, numbers are represented by strings over
the alphabet {M, D, C, L, X, V, I}. Give an automaton that accepts
such strings only if they are properly formed roman numbers. For sim-
plicity, replace the “subtraction” convention in which the number nine
is represented by IX with an additional equivalent that uses V IIII
instead.
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a a a

b b b

a

b

Figure 2.9: Counter.

2.1.13 Construct an automaton that accepts a string over {0, 1} if and only
if the value of the string, interpreted as a binary representation of an
integer, is divisible by 5.

2.1.14 Let us define an operation truncate, which removes the rightmost sym-
bol from any string. The operation can be extended to languages by

truncate(L) = {truncate(w) | w ∈ L}.

Prove that, in case L is regular, also truncate(L) is regular.

2.1.15 Design an automaton with no more than five states that accepts the
language {ababn | n ≥ 0} ∪ {aban | n ≥ 0}.

2.1.16 Find an automaton with three states that accepts the language {an |
n ≥ 1} ∪ {bmak | m, k ≥ 0}. Can this be done with an automaton with
fewer states?

2.1.17 Show that the language L = {vwv | v, w ∈ {a, b}∗, |v| = 1} is regular.

2.1.18 Show that the language L = {an | n ≥ 0, n 6= 3} is regular.

2.1.19 Show that the language L = {an | n is a multiple of 3, but not a multiple
of 5 } is regular.

2.1.20 Suppose the language L is regular. Show that L − {ε} is regular.

2.1.21 Suppose the language L is regular and a ∈ A. Show that L ∪ {a} is
regular.

2.1.22 Suppose M is an automaton with states s, t ∈ S such that s
vw
→−→ t. Show

that there is a state u ∈ S with s
v
→−→ u and u

w
→−→ t.

2.1.23 Suppose we change the definition of an automaton so that more than
one initial state is allowed. Give this definition formally. A string w
is accepted by such an automaton if from every initial state, there is a
path with label w to a final state. Show that every language accepted
by such an automaton with multiple initial states is regular.

2.1.24 Let the language L over alphabet A = {a, b} be defined as follows: L =
{w ∈ A∗ | #a(w) = #b(w) and for all prefixes v of w we have #a(v) ≥
#b(v)}. This language is sometimes called the bracket language (to see
this, interpret a as open bracket, and b as close bracket). Argue that
this language is accepted by the transition system shown in Figure 2.9.
This is a counter, interpreting a as an increment and b as a decrement.
Show as in the proof of Theorem 2.8, that this language is not regular.
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2.2 Automata and processes

In the previous section we looked at an automaton as generating a set of strings,
a language. But widely different automata can generate the same language. Just
looking at an automaton as an input-output function, considering the language
is sufficient, but when we consider the model of interacting automata, more can
be observed of an automaton.

The basic observations of an automaton are the execution of an action (a

step .
a

−→ .) and a termination (. ↓). Automata that have the same observations
can be considered to be the same. But we have to take care in formalising this.

First of all, we already stated we do not find the names of states to be
relevant. States cannot be observed directly, they can only be distinguished by
the steps they do or do not allow.

Second, all the reachable states of an automaton are relevant, not just the
states that can lead to a final state. Also steps that lead to a deadlock can be
observed.

Third, two states that have the same observations can be identified. If
there are two states that only allow a step a followed by a step b followed by
termination ↓, then there is no observation that can tell the two states apart.

The fourth point is the most subtle one. It states that the moment of choice
is relevant. We illustrate with an example.

Example 2.13. We have a look at Frank Stockton’s story “The Lady or the
Tiger?” (see [15]).

open open

eat marry

open

eat marry

Figure 2.10: The lady or the tiger?

A prisoner is confronted with two closed doors. Behind one of the doors is a
dangerous tiger, and behind the other there is a beautiful lady. If the prisoner
opens the door hiding the tiger he will be eaten. On the other hand, if he opens
the door hiding the beautiful lady, the lady and he will get married and he will
be free. Unfortunately, the prisoner does not know what hides behind what
door.

This situation can be described as an automaton depicted in Figure 2.10 on
the left-hand side, using the following actions:
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1. open representing the act of opening a door;

2. eat representing the act of (the tiger) eating the young man;

3. marry representing the act of the beautiful lady and the prisoner getting
married.

This automaton models the fact that after a door has been opened the
prisoner is confronted with either the tiger or the beautiful lady. He does not
have the possibility to select his favorite, which conforms to the description
above. Note that step marry ends in a final state, whereas step eat does not.
This can be interpreted to mean that the marry step results in a successful
termination of the process, and that the eat transition results in unsuccessful
termination. A non-terminating state in which no actions are possible, such as
the state resulting from the eat transition, is often called a deadlock state.

Now have a look at the right-hand automaton in Figure 2.10. As the left-
hand automaton, it has the language {open.marry}. However, there are good
reasons why the situation modeled by the right automaton of Figure 2.10 is
different from the situation described by the other automaton. In the right
automaton, the choice between the tiger and the lady is only made after opening
a door. It could describe a situation with only one door leading to both the
tiger and the lady; in this case, the prisoner still has a choice after opening a
door. Clearly, this situation differs considerably from the situation described
above.

The set of observations of the automata differs: in the left-hand automaton,
a step open can be observed leading to a state where only the observation eat
is possible, and a step open can be observed leading to a state where only
the observation marry is possible. On the right-hand side, there is only the
observation of step open to a state where both observations eat and marry are
possible. Thus, the middle state on the right differs from both middle states on
the left, as its set of observations is different. Thus, if for some reason action
eat is impossible, is blocked, then the automaton on the left can become stuck
after the execution of an open action, whereas the one on the right cannot. The
choice whether or not to execute eat or marry in the left automaton is made
(implicitly) upon execution of the open action in the initial state, whereas the
same choice is made only after execution of the initial open action in the right
automaton. It is said that the automata have different branching structure.

It is often desirable to be able to distinguish between automata with the
same strings of actions that have different termination behavior or that have
different branching structure. In order to do this, a notion of equivalence is
defined that is finer than language equivalence, in the sense that it distinguishes
automata accepting the same language but with different termination behavior
or branching structure. We will focus on bisimulation equivalence. However,
there are many other equivalence relations in between language equivalence and
bisimulation equivalence, that could also serve the purpose. In literature, there
is a lengthy debate going on as to which equivalence is the ‘right’ one to use in
this situation. We will not enter this debate, and just note that bisimulation
is the one most used and most studied, and bisimulation will certainly meet all
the requirements that we might come up with.
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Exercises

2.2.1 Give an automaton for a traffic light. The actions are the colours of the
traffic light: red , yellow , green. Initially, the traffic light is red.

2.2.2 Give an automaton for a crossing of two one-way streets, where each
street has one traffic light. The actions involved are red1, yellow 1, green1,
red2, yellow2, green2. Make sure that collisions cannot occur, assuming
that drivers respect the traffic lights. Initially, both traffic lights are
red.

2.2.3 Give an automaton for an elevator. The elevator serves 5 floors num-
bered 0 through 4, starting at floor 0. The actions are up, down denoting
a move to the next floor up resp. down.

2.2.4 Consider a stopwatch with two buttons and one display. Initially, the
display is empty. As soon as the start button is pressed, the stopwatch
starts counting time in seconds from zero up. Pushing the stop button
results in stopping the counting of seconds. After stopping the counting,
on the display the amount of time that has elapsed is displayed. Use
actions start , stop, tick , display(s) (s a natural number). Draw a tran-
sition system. What happens when the start button is pushed while
counting? Can termination occur?

2.3 Bisimulation

We established that language equivalence is not sufficient to capture the be-
haviour of an interacting automaton. In the previous section, we argued that
it is important to observe the difference of states that have a different set of
outgoing actions: we can see the difference between a state that has both an
outgoing a- and b-action, and a state that has just one of the two. Thus, we can
see whether or not a state exists with a certain set of outgoing actions, but not
how many times such a state occurs. The notion of bisimulation does exactly
this: related states have the same set of outgoing actions, but duplication of
states is disregarded.

Definition 2.14. Let M = (S,A,→, ↑, ↓) and M ′ = (S′,A,→′, ↑′, ↓′) be two
automata with the same alphabet. The automata M and M ′ are bisimilar,
M ↔ M ′, iff there is a relation R between their reachable states that preserves
transitions and termination, i.e.

1. R relates reachable states: every reachable state of M is related to a
reachable state of M ′ and every reachable state of M ′ is related to a
reachable state of M ;

2. ↑ is related by R to ↑′;

3. whenever s is related to s′, sRs′ and s
a

−→ t, then there is state t′ in M ′

with s′
a

−→
′
t′ and tRt′; this is the transfer condition from left to right

(see Figure 2.11);
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4. whenever s is related to s′, sRs′ and s′
a

−→
′
t′, then there is state t in M

with s
a

−→ t and tRt′; this is the transfer condition from right to left (see
Figure 2.12);

5. whenever sRs′, then s ↓ if and only if s′ ↓′ (see Figures 2.13 and 2.14).

The relation R links states in the two automata that have the same behavior.

s

t

s′ s

t

s′

t′

a a a

Figure 2.11: Transfer condition from left to right.

s s′

t′

s

t

s′

t′

a a a

Figure 2.12: Transfer condition from right to left.

s s′ s s′

Figure 2.13: Transfer condition for final states from left to right.

One can think of the notion of bisimilarity in terms of a two-person game.
Suppose two players each have their own automaton. The game is played as
follows. First, one of the players makes a transition or move from the initial
state. The role of the other player is to match this move precisely, also starting
from the initial state. Next, again one of the players makes a move. This does
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s s′ s s′

Figure 2.14: Transfer condition for final states from right to left.

not have to be the same player as the one that made the first move. The other
must try to match this move, and so on. If both players can play in such a way
that at each point in the game any move by one of the players can be matched
by a move of the other player, then the automata are bisimilar. Otherwise, they
are not.

Example 2.15. In Figure 2.15, an example of a bisimulation relation on au-
tomata is given. Related states are connected by a dashed line.

a a

b b

a

b

Figure 2.15: Example of bisimulation.

Example 2.16. Figure 2.16 recalls two by now well-known automata. It should
not come as a surprise that they are not bisimilar. States that can possibly be
related are connected by a dashed line. The states where the behaviors of the
two systems differ are indicated by dashed lines labeled with a question mark.
None of the two indicated pairs of states satisfies the transfer conditions of
Definition 2.14.

So far, bisimilarity is just a relation on transition systems. However, it has
already been mentioned that it is meant to serve as a notion of equality. For
that purpose, it is necessary that bisimilarity is an equivalence relation. It is
not difficult to show that bisimilarity is indeed an equivalence relation.

Theorem 2.17 (Equivalence). Bisimilarity is an equivalence.
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a a

b c

a

b c

?
?

Figure 2.16: Two automata that are not bisimilar.

Proof. Proving that a relation is an equivalence means that it must be shown
that it is reflexive, symmetric, and transitive. Let M = (S,A,→, ↑, ↓) be an
automaton. First, it is not hard to see that the relation R = {(s, s) | s ∈ S, ↑ →−→
s} is a bisimulation relation. This implies that M ↔ M .

Second, assume that M ↔ M ′ for automata M, M ′. If R is a bisimulation
relation relating the reachable states of M and M ′, then the relation R′ =
{(t, s) | sRt} is a bisimulation relation as well, and sRt if and only if tR′s.
Hence, M ′ ↔ M , proving symmetry of ↔.

Finally, for transitivity of ↔, it must be shown that the relation composi-
tion of two bisimulation relations results in a bisimulation relation again. Let
M, M ′, M ′′ be automata, and let R1 and R2 be bisimulation relations between
the reachable states of M and M ′, respectively M ′ and M ′′. The relation com-
position R1 ◦ R2, defined by sR1 ◦ R2t iff there is a u with sR1u and uR2t, is a
bisimulation relating the reachable states of M and M ′′, implying transitivity
of ↔.

Two automata that are bisimilar are certainly language equivalent.

Theorem 2.18. If M ↔ M ′, then M ≈ M ′.

Proof. Take a string w ∈ L(M). By definition, this means there is a path ↑
w
→−→ s

to a state s in M with s ↓. Take a bisimulation relation R between M and M ′.
For each state in the given path, we can find a state in M ′ that is bisimilar to
it, and is connected by the same step. In particular, R relates ↑ to ↑′ and s to

some state s′ in M ′ with ↑′
w
→−→

′
s′ and s′ ↓′. This means w ∈ L(M ′). The other

direction is similar.

Obviously, the reverse of this theorem does not hold. This means that the
set of automata is divided into a set of equivalence classes of automata that
are language equivalent, and that each of these language equivalence classes
is divided into a number of bisimulation equivalence classes. A bisimulation
equivalence class of automata is called a regular process.
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We can use the definition of bisimulation just as well on (infinite) transition
systems. Consider again the transition system of the simple counter presented
earlier (2.6), reproduced here.

a a a

b b b

bb

a

b

Figure 2.17: Simple counter.

Notice that no two states of this transition system can be related by a bisim-
ulation relation (every state on the top row is uniquely characterized by the
number of consecutive b-steps that can be executed, together with the possi-
bility to execute an a-step, every state on the bottom row also has a unique
number of consecutive b-steps possible, and no possibility to execute a). Thus,
this transition system is not bisimilar to any finite automaton, the system does
not denote a regular process.

Definition 2.19. A regular process is a bisimulation equivalence class of transi-
tion systems that contains a finite automaton. We say that a transition system
that is bisimilar to a finite automaton denotes a regular process.

It can also be seen from Theorem 2.8 that the transition system of Fig-
ures 2.17 and 2.6 does not denote a regular process: since the language of this
transition system is not regular, it cannot be language equivalent to a finite
automaton, and thus it cannot be bisimilar to a finite automaton.

Another characterization of bisimulation is in terms of coloring.

Definition 2.20. Let C be a given finite set, the set of colors. A coloring of
an automaton M = (S,A,→, ↑, ↓) is a mapping c from the reachable states of

M to C. Given a coloring, and a path s
w
→−→ t from s to t with label w, say

w = a0a1 . . . an, the colored path from s to t is the alternating sequence of steps
and colors c(s)

a0−→ c(..)
a1−→ . . .

an−→ c(t). We can also denote that the endpoint

of a path is final, in this case also c(s)
a0−→ c(..)

a1−→ . . .
an−→ c(t) ↓ is a colored

path. We call a coloring consistent if every two states that have the same color
have the same colored paths starting from them.

Theorem 2.21. Any consistent coloring on automaton M is a bisimulation
between M and M (an autobisimulation on M). Any autobisimulation on M
gives a consistent coloring, by coloring any related states the same.

We can also color any pair of automata. Then, two automata are bisimilar
exactly when there is a consistent coloring on both automata that gives the
initial states the same color.
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a a a

Figure 2.18: Bisimilar automata?

Theorem 2.22. Let R and R′ be two bisimulations between M and M ′. Then
also R ∪ R′ is a bisimulation between M and M ′.

Thus, the union of bisimulations is again a bisimulation. If two automata are
bisimilar, then the maximal bisimulation between the two automata is obtained
by taking the union of all bisimulations between them.

Given an automaton, we can reduce the automaton as much as possible by
identifying all states that are related by the maximal autobisimulation. This
will give the smallest automaton that is bisimilar to the given automaton. In it,
a consistent coloring will color all states differently. This smallest automaton is
often used as the representative of its bisimulation equivalence class.

To end this section, we consider deadlock.

Definition 2.23 (Deadlock). A state s of an automaton is a deadlock state
if and only if it does not have any outgoing transitions and it does not allow
successful termination, i.e., if and only if for all a ∈ A, s 6

a
−→, and s 6∈ ↓. A

transition system has a deadlock if and only if it has a reachable deadlock state;
it is deadlock free if and only if it does not have a deadlock.

An important property that has already been suggested when motivating
the notion of bisimilarity is that bisimilarity preserves deadlocks. Exercise 4
asks for a proof of this fact.

Exercises

2.3.1 Are the pairs of automata in Figures 2.18, 2.19, 2.20, 2.21, 2.22 bisim-
ilar? If so, give a bisimulation between the two automata; otherwise,
explain why they are not bisimilar.

2.3.2 Give a bisimulation between any two of the automata in Figure 2.23.

2.3.3 Which of the transition systems of Exercises 1 and 2 are deadlock free?

2.3.4 Let M and M ′ be two bisimilar automata. Show that M has a deadlock
if and only if M ′ has a deadlock.

2.3.5 Consider the two automata in Figure 2.24. If they are bisimilar, exhibit
a bisimulation. If they are not bisimilar, explain why not. For each
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a b

c c c

a b

Figure 2.19: Bisimilar automata?

a a

b b

a

Figure 2.20: Bisimilar automata?

a a

b b

a

Figure 2.21: Bisimilar automata?
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a

b

a b

a

b ab

ba

ab

Figure 2.22: Bisimilar automata?

a
a

a

a

a

a

a

aa

a

Figure 2.23: All automata are bisimilar.
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a aa

c cb bb c c

c cc c

d de e

Figure 2.24: Bisimilar automata?

automaton, reduce it as much as possible with respect to bisimulation.
Next, do the exercise again with e replaced by d.

2.3.6 Prove that the relation composition of two bisimulation relations is
again a bisimulation.

2.3.7 Prove that the transition system of Exercise 24 in Section 2.1 does not
denote a regular process.

2.4 Recursive specifications

While the visualization of an automaton is intuitively appealing and useful in
many respects, it is not so useful mathematically, for doing calculations. For this
reason, we will consider a presentation of automata as mathematical expressions,
in an algebra.

Definition 2.24. We proceed to define the Minimal Algebra MA. MA has a
very simple syntax:

1. There is a constant 0; this denotes inaction, no possibility to proceed, a
deadlock state;

2. There is a constant 1; this denotes termination, a final state;

3. For each element of the alphabet A, there is a unary operator a. called
action prefix ; a term a.x will execute the elementary action a and then
proceed as x;

4. There is a binary operator + called alternative composition; a term x + y
will either execute x or execute y, a choice will be made between the
alternatives.
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Thus, MA has expressions a.0, (a.0) + (a.1), a.((b.1) + 0). We use brackets
and sometimes omit the symbol of action prefixing as is customary in arithmetic,
so e.g. ab0 + cd1 + e0 denotes ((a.(b.0)) + (c.(d.1))) + (e.0).

Every term over this syntax will denote an automaton. Before defining this
automaton, we first interpret every term as a state in an automaton, and define
when such a state is a final state, and when such a state has a transition to
another state. We do this by a method which is called Structural Operational
Semantics, SOS for short. It defines the basic observations of a term.

Definition 2.25. 1. We have 1 ↓, a state named 1 is a final state;

2. For all a ∈ A and all terms x, a.x
a

−→ x, a state named a.x has a transition
labeled a to state x;

3. For all terms x, y, z and all a ∈ A we have that x + y
a

−→ z whenever
x

a
−→ z or y

a
−→ z; a state x+ y has a transition to a certain state exactly

when x or y has such a transition;

4. For all terms x, y we have that x+ y ↓ whenever x ↓ or y ↓; x+ y is a final
state exactly when x or y is a final state.

Notice that nothing is defined for term 0. This means 0 is not a final
state, and has no outgoing transition. Moreover, notice that when a term y is
reachable from x, x →−→ y, then y is a subterm of x. Thus, from a given term,
only finitely many terms are reachable. For future reference, we list the rules of
Definition 2.25 in Table 1.

1 ↓ a.x
a

−→ x

x
a

−→ x′

x + y
a

−→ x′

y
a

−→ y′

x + y
a

−→ y′

x ↓

x + y ↓

y ↓

x + y ↓

Table 1: Operational rules for MA (a ∈ A).

We use a particular format to present these rules. Each rule has a central
dividing line. Above the line are the premises, below the conclusion. If a rule
has no premises, it is called an axiom.

Definition 2.26. We define the automaton of term t, M(t), as follows:

1. The set of states is the set of terms reachable from t;

2. The alphabet is A;

3. The initial state is t;

4. The set of transitions and the final states are defined by means of the
operational rules in Table 1.

The language of a term t, L(t), is just L(M(t)).
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0 1 a.1 1
a

Figure 2.25: Automata of 0,1, a.1.

a.b.1 + a.c.1

c.1

b.1

1

a

a

c

b

Figure 2.26: Automaton of a.b.1 + a.c.1.

Figure 2.25 shows the automata of terms 0,1 and a.1.
A more complicated example is given in Figure 2.26. Since a.b.1

a
−→ b.1,

the initial state has an a-labeled transition to b.1. The other transition from
the initial state follows from a.c.1

a
−→ c.1.

We can calculate the languages accepted by the terms over this syntax.

Theorem 2.27. The languages accepted by terms over MA are as follows:

1. L(0) = ∅;

2. L(1) = {ε};

3. L(a.x) = {aw ∈ A∗ | w ∈ L(x)};

4. L(x + y) = L(x) ∪ L(y).

Proof. 1. See Figure 2.25. M(0) has no final state.

2. See Figure 2.25. The only path from the initial state to itself has label ε.

3. Suppose there is a path from the initial state to a final state with label
w. As the initial state is not final (there is no way to derive a.x ↓), and
the only step that can be taken from the initial state has label a, we must
have w = av for some string v. Now v must be the label of a path from
the initial state of M(x) to a final state, so v ∈ L(x).

4. Suppose w ∈ L(x + y). If w = ε, then (x + y) ↓, so either x ↓ or y ↓ and
w ∈ L(x) or w ∈ L(y). Otherwise, there are a ∈ A and a string v with

w = av. Then x + y
a

−→ p, so either x
a

−→ p or y
a

−→ p. Again we obtain
w ∈ L(x) or w ∈ L(y).

Notice the difference between L(0) and L(1): the latter accepts the empty
string, the former accepts no string.
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We considered the language of terms in MA, now let us consider bisimulation.
From the definition of an automaton of a term we derive the following principles
of calculation.

Theorem 2.28. The following laws hold for MA terms:

1. x + y ↔ y + x,

2. (x + y) + z ↔ x + (y + z),

3. x + x ↔ x,

4. x + 0 ↔ x.

Proof. 1. x + y ↔ y + x, the order of the summands does not matter. The
automaton of x + y is exactly the same as the automaton of y + x, apart
from the name of the initial state. Thus, the identity relation on states
together with the pair (x + y, y + x) is a bisimulation relation. For, if

x + y
a

−→ z for certain a ∈ A and term z, then we must have x
a

−→ z or
y

a
−→ z. But then also y + x

a
−→ z. Similarly, if x + y ↓, then x ↓ or y ↓.

But then also y + x ↓.

2. (x+y)+z ↔ x+(y+z), in case there are more than two summands it does
not matter how they are grouped. The automaton of (x+y)+z is exactly
the same as the automaton of x + (y + z), apart from the name of the
initial state. Thus, the identity relation on states together with the pair
((x+y)+z, x+(y +z)) is a bisimulation relation. For, if (x+y)+z

a
−→ p

for certain a ∈ A and term p, then we must have x + y
a

−→ p or z
a

−→ p.
The former implies x

a
−→ p or y

a
−→ p. If y

a
−→ p or z

a
−→ p, then also

y + z
a

−→ p. Otherwise x
a

−→ p, so in both cases x + (y + z)
a

−→ p.
Similarly (x + y) + z ↓ just in case x + (y + z) ↓.

3. x+x ↔ x, duplicate alternatives can be removed. The automaton of x+x
is exactly the same as the automaton of x, apart from the name of the
initial state. Thus, the identity relation on states together with the pair
(x + x, x) is a bisimulation relation. For, if x + x

a
−→ y we must have

x
a

−→ y, and if x
a

−→ y then also x + x
a

−→ y. Likewise x + x ↓ just in
case x ↓.

4. x + 0 ↔ x, there is only a deadlock state if there are no alternatives. The
automaton of x+0 is exactly the same as the automaton of x, apart from
the name of the initial state. Thus, the identity relation on states together
with the pair (x + 0, x) is a bisimulation relation. For, if x + 0

a
−→ y then

we must have x
a

−→ y, as 0
a

−→ y cannot occur. Likewise x + 0 ↓ exactly
when x ↓.

We conclude that the + operator on automata is commutative, associative,
idempotent, and has 0 as a unit element. For future reference, we list these laws
in Table 2. As bisimilarity implies language equivalence, these laws also hold
for ≈.

Apart from the laws shown in Table 2, MA has two more laws, the distribu-
tivity of action prefix over alternative composition and the law for zero shown
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x + y ↔ y + x
(x + y) + z ↔ x + (y + z)
x + x ↔ x
x + 0 ↔ x

Table 2: Bisimulation laws of MA.

a.x + a.y ≈ a.(x + y)
a.0 ≈ 0

Table 3: Language equivalence laws of MA (a ∈ A).

in Table 3. Application of these laws will change an automaton to a different
automaton, but will preserve language acceptance.

Theorem 2.29. Let x, y be two terms over MA. Then automata a.(x + y) and
a.x + a.y accept the same language.

Proof. L(a.(x + y)) = {aw | w ∈ L(x + y)} = {aw | w ∈ L(x) ∪ L(y)} = {aw |
w ∈ L(x)} ∪ {aw | w ∈ L(y)} = L(a.x) ∪ L(a.y) = L(a.x + a.y).

Theorem 2.30. Automata a.0 and 0 accept the same language.

Proof. L(a.0) = L(0) = ∅.

The distributive law will turn out to be very useful in the following. For
the application of the laws, we will use the fact that language equivalence is an
equivalence relation, see the previous section. Furthermore, we also need to be
able to apply the laws in context, i.e. we need that language equivalence is a
congruence relation. By this, we mean the following.

Theorem 2.31. Let x, y be two terms over MA, and suppose the automata
denoted by x and y accept the same language, x ≈ y. Then:

1. For all actions a ∈ A, also a.x and a.y accept the same language, a.x ≈ a.y;

2. For all terms z, also x+z and y+z accept the same language, x+z ≈ y+z.

Proof. Straightforward.

Also bisimilarity is an equivalence relation. It is also a congruence relation.

Theorem 2.32. Bisimilarity is a congruence relation on MA terms.

Proof. 1. If x ↔ y and a ∈ A, then a.x ↔ a.y. If R is a bisimulation relation
between M(x) and M(y), then R′ = R ∪ {(a.x, a.y)} is a bisimulation
relation between M(a.x) and M(a.y);

2. If x ↔ y and x′ ↔ y′, then x + x′ ↔ y + y′. Take a bisimulation relation
R relating M(x) and M(y) and a bisimulation relation R′ relating M(x′)
and M(y′). Then R′′ = R∪R′∪{(x+x′, y+y′)} is a bisimulation relation
between M(x + x′) and M(y + y′). It is in taking this union that one
state can become related to more than one state.
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Thus, both language equivalence and bisimilarity are congruence relations
on MA. This means we can do calculations with both ≈ and ↔. In the former
case, more laws can be used.

It is obvious that not all automata can be represented by a term over MA,
as loops or edges back to a previous state cannot occur: in a path the terms of
the states traversed can only become smaller. So, if we want to represent any
given automaton, extra terms are needed. We do this by adding an extra name
to the syntax for every state of the automaton, and defining these names by the
steps they can take.

As an example, look at the automaton in Figure 2.27. This automaton has
states S, T, U, V, W, R. S is the initial state (we often use the letter S for the
start state).

S

T U V

W R

a

a

b

b

b
a

a

b

Figure 2.27: Example automaton.

Then we associate the following set of equations:

S = a.T + a.W

T = a.U + b.W

U = b.V + b.R

V = 0

W = a.R

R = 1 + b.W.

In these equations, we use the = symbol for equality. We will find out that the
two sides of each equation yield bisimilar automata.

The presentation of an automaton as a set of recursive equations is called a
recursive specification or a grammar. For each name added, there is exactly one
equation, the defining equation of this state. But the extra names again occur
on the right-hand sides of the equations, so they are recursive equations.

Definition 2.33. Let N be a finite set of names or variables. A recursive
specification over N with initial variable S ∈ N is a set of equations of the form
P = tP , exactly one for each P ∈ N , where each right-hand side tP is a term
over MA, possibly containing elements of N .

A recursive specification over names N is called linear if each right-hand
side tP is a linear term. Linear terms are defined recursively:

1. terms 1, 0 or of the form a.Q, with a ∈ A and Q ∈ N are linear terms;
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2. an alternative composition (sum) of linear terms is a linear term.

Thus, terms a.Q + 1 + b.R and 0 + a.Q + b.R + 1 are linear. Implicitly, we use
the associativity of + here, as we do not write brackets in sums of more than
two terms.

In a linear recursive specification, each right-hand side is an alternative com-
position of a number of terms each of which are an action prefix of an added
name, or 1 or 0.

Given a recursive specification, we can add two extra clauses to Defini-
tion 2.25.

Definition 2.34. Suppose we have a recursive specification over names N , so
for each P ∈ N , there is an equation P = tP , where tP is a term over MA with
extra names N .

Then the rules of Definition 2.25 also hold for these extended terms, and
moreover we have the extra rules:

1. For P ∈ N , we have P
a

−→ x whenever tP
a

−→ x;

2. For P ∈ N , we have P ↓ whenever tP ↓.

See Table 4.

tP
a

−→ x P = tP

P
a

−→ x

tP ↓ P = tP
P ↓

Table 4: Operational rules for recursion.

Next, we define the automaton of a recursive specification.

Definition 2.35. Suppose we have a recursive specification over names N and
initial variable S. The automaton of this recursive specification, denoted M(S)
is defined as follows:

1. The set of states is the set of terms over MA with extra names N that are
reachable from S;

2. The alphabet is A;

3. The initial state is S;

4. The transitions and the final states are given by the rules in Tables 4 and
1.

Also, the language of S, L(S), is L(M(S)).

Then, if we consider the running example, the automaton of S is again the
one in Figure 2.27. Notice that if we had started with an automaton containing
states not reachable from the initial state, then these would be omitted from
the resulting automaton (thus, a form of garbage collection is incorporated in
these definitions).
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Now this definition can be extended to find the automaton of any term over
MA containing elements of N . For instance, if we have a recursive specification
with initial variable S, then the automaton of a.S + 1 is found by prefixing the
automaton of S with a a-step and marking the new initial state as a final state.

As before, we write x ↔ y whenever M(x) ↔ M(y). Also, we write x ≈ y
whenever M(x) ≈ M(y), which means L(x) = L(y). As before, x ↔ y implies
x ≈ y, but not the other way around (to see the latter, consider e.g. a.1 + b.0
and a.1).

Theorem 2.36. Let a recursive specification contain an equation P = t. Then
P ↔ t.

Proof. By the rules of Table 4, the variable P has exactly the transitions and
terminations of its right-hand side. The only difference between M(P ) and
M(t) can be in the initial node, see the following example.

Example 2.37. Consider the recursive specification S = a.S. The automaton
of S is given on the left-hand side of Fig. 2.28, the automaton of a.S on the
right-hand side. It is easy to give a bisimulation between the two automata.

a a

a

Figure 2.28: Automata of S = a.S.

Example 2.38. Consider the recursive specification given by equation S = S.
According to the operational rules, S can only do a step or be a final state when
S can do this step or is final. This means there is no derivation of a step or a
final state, and S ↔ 0.

Similarly, whenever the equation of a variable P contains a summand P ,
this summand can be left out, as its presence will not add a step or final state.

The laws of Tables 2 and 3 still hold for the algebra MA extended with one
or more recursive specifications. The proofs can be copied exactly, the only
difference is that now the initial state might be reachable by a number of steps,
as in the previous example.

Also, language equivalence and bisimilarity are still congruence relations on
the extended algebra, Theorems 2.31 and 2.32 still hold. This allows us to do
calculations on terms. We show this in the use of the following theorem.

Theorem 2.39. Let a recursive specification over MA and names N be given.
This specification is bisimilar to a linear specification.

Proof. We transform each right-hand side of each equation as follows. We first
look at the case where the right-hand side is just one symbol. If this symbol is
0 or 1, nothing needs to be done. If we have an equation of the form P = Q,
with P, Q different, then replace Q in the equation of P with the right-hand
side of Q (this is called expansion) and continue from there. If, after some of
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these expansions, we get back a variable we have already expanded, it can be
replaced by 0. If we have an equation of the form P = P , then also we can
replace P with 0. The reason that we can do this, is that the operational rules
of Table 4 will yield no step or final state for such variables.

Next, if a right-hand side is not just one symbol, then it needs to be an
action prefix term or a sum term. If it is an action prefix term of the form a.Q
with Q ∈ N , nothing needs to be done. If it is an action prefix term a.t with t
not a single variable, then we add a new name A to N , replace t by A and add
a new equation A = t. Of course, the procedure needs to be repeated with the
new right-hand side t. Since in every round the right-hand side gets reduced, it
will stop at some point. The remaining case is that we have a sum term. Then
we look at each of the summands.

Any summand that is the variable of the equation or a variable that has
already been expanded can be replaced by 0. Any other variable can be replaced
by its right-hand side. Finally, any action prefix term can be dealt with by
adding extra names if necessary.

Example 2.40. We give an example of the procedure of turning a given re-
cursive specification into a linear one. Suppose the following specification is
given.

S = a.(T + S) + 0

T = 1 + V

V = a.V + T.

By Theorem 2.36, we can just as well write

S ↔ a.(T + S) + 0

T ↔ 1 + V

V ↔ a.V + T.

Now the transformation yields

S ↔ a.A + 0

A ↔ T + S ↔ 1 + V + a.A + 0 ↔ 1 + a.V + T + a.A + 0 ↔

↔ 1 + a.V + 0 + a.A + 0

T ↔ 1 + V ↔ 1 + a.V + T ↔ 1 + a.V + 0

V ↔ a.V + T ↔ a.V + 1 + V ↔ a.V + 1 + 0.

The resulting specification is linear. We can simplify even further, and obtain

S ↔ a.A

A ↔ 1 + a.V + a.A

T ↔ 1 + a.V

V ↔ a.V + 1.

This result can again be interpreted as a recursive specification, obtaining

S = a.A

A = 1 + a.V + a.A

T = 1 + a.V

V = a.V + 1.
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A first application of the notion of language equivalence is in determining
the language of the automaton given by a recursive specification. We give an
example using the distributive law of Table 3.

Consider the automaton given in Figure 2.27. The language contains a string
aaba. We can write this string as a summand of the initial state S as follows:

S ≈ aT + aW ≈ aT + aaR ≈ aT + aa(bW + 1) ≈ aT + aabW + aa1 ≈

≈ aT +aabaR+aa1 ≈ aT +aaba(bW +1)+aa1 ≈ aT +aababW +aaba1+aa1.

When we write down such a chain of equations, as soon as we use a law that
is a language equivalence law, not a bisimulation law at one point in the chain,
then we have to write ≈ everywhere.

This can be done in general: by following a path labeled w through the
automaton, and expanding each time the states traversed, a summand w1 can
be split off. Conversely, if we can obtain a summand w1 of the initial state in
this way, this will come from a path labeled w from the initial state to a final
state.

The derivation above can be simplified by using the symbol &. For two
terms x, y, x & y means that y is a summand of x. It can easily be defined as
follows:

x & y ⇐⇒ x ≈ x + y.

In the exercises, we will show that this defines a partial order on terms. The
derivation above now becomes:

S ≈ aT + aW & aW ≈ aaR ≈ aa(bW + 1) ≈ aabW + aa1 & aabW ≈

≈ aabaR ≈ aaba(bW + 1) ≈ aababW + aaba1 & aaba1.

We state the result in the form of a theorem.

Theorem 2.41. Let x be a term over MA with extra names N . Then for all
strings w ∈ A∗:

w ∈ L(x) ⇐⇒ x & w1.

We can use this theorem to show that any finite language is regular.

Theorem 2.42. Let L ⊆ A∗ be finite. Then L is regular.

Proof. Enumerate L = {w1, . . . , wn}. MA term w11+ . . .+wn1 will accept this
language. This means the language is regular.

We can also define the operations of MA directly on automata, without going
through the operational semantics.

1. 0 and 1 are shown in Figure 2.25.

2. Given an automaton with start state S, the automaton of a.S is formed
by adding a new start state a.S and a new step a.S

a
−→ S.
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+ =

a

b

a

c a

a

c

b

a

c

Figure 2.29: Alternative composition of two automata.

3. Suppose two automata are given with start states S, T , respectively. Add
a new start state S + T , and add, for each step S

a
−→ U , a new step

S + T
a

−→ U , and for each step T
a

−→ V , a new step S + T
a

−→ V .
Also, S + T ↓ if one or both of S ↓ or T ↓. The original states S and T
may become unreachable in the resulting automaton. See the example in
Figure 2.29.

We finish the section with a simple theorem.

Theorem 2.43. Let L, L′ be regular languages. Then also L ∪ L′ is regular.

Proof. As L is regular, there is a recursive specification over MA with initial
variable S such that L(S) = L. As L′ is regular, there is a recursive specification
over MA with initial variable S′ such that L(S′) = L′. Then L(S + S′) =
L(S) ∪ L(S′) = L ∪ L′, so also L ∪ L′ is regular.

Exercises

2.4.1 Find automata for the following terms by means of the operational
rules:

(a) a.(b.c.1 + b.0);

(b) a.b.c.1 + a.b.0;

(c) a.(b.1 + b.1) + a.b.1;

(d) a.(b.1 + 0) + a.b.1.

2.4.2 Given is the following recursive specification. Determine L(S).

S = 1 + a.A

A = b.S.

2.4.3 Find a recursive specification for the following languages, A = {a}:

(a) L = {w | |w| mod 3 = 0};
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(b) L = {w | |w| mod 3 > 0}.

2.4.4 For the following recursive specifications, contruct an automaton by
means of the operational rules. Next, turn them into linear form, and
again construct an automaton by means of the operational rules.

S = a.b.A

A = b.a.B

B = b.b.1 + a.A,

S = a.b.S + b.a.S + 1,

S = a.S + b.T + 0

T = S + a.(T + S).

2.4.5 Construct a recursive specification for the following language:

L = {anbm | n ≥ 2, m ≥ 3}.

2.4.6 Construct a recursive specification for the following language:

L = {anbm | n + m is even }.

2.4.7 Show that the automata generated by the following recursive specifica-
tions are bisimilar.

S = a.T + a.U

T = a.T + 1

U = a.T + 1

and

S = a.T

T = a.T + 1.

2.4.8 Show that the automata generated by the following recursive specifica-
tions are bisimilar.

S = a.T + b.U

T = 1

U = 1

and

S = a.T + b.T

T = 1.
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2.4.9 Show that the automata generated by the following recursive specifica-
tions are bisimilar.

S = a.T

T = b.U + 1

U = bU + 1

and

S = a.T

T = b.T + 1.

2.4.10 Which of the automata generated by the following recursive specifica-
tions are bisimilar?

S = a.T + a.U

T = 1

U = 0,

S = a.T

T = 1,

S = a.T + a.U

T = 1

U = 1,

S = a.T + a.U

T = 0

U = 0,

and

S = a.T

T = 0.

2.4.11 Which of the automata generated by the following recursive specifica-
tions are bisimilar?

S = a.T

T = a.T,

S = a.S + a.T

T = 1,

and

S = a.S.
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2.4.12 (a) Prove that x & y iff there is a term z with x ≈ y + z;

(b) Prove that & is reflexive: x & x;

(c) Prove that & is anti-symmetric: x & y and y & x iff x ≈ y;

(d) Prove that & is transitive: if x & y and y & z, then x & z;

(e) Prove that if x & y, then a.x & a.y;

(f) Prove that if x & y and x′ & y′, then x + x′ & y + y′.

2.4.13 Suppose language L∪L′ is regular and L is regular. Show that L′ need
not be regular.

2.5 Deterministic automata

In general, there are many different automata that accept the same language.
Sometimes, it can be advantageous to be able to find a language equivalent
automaton of a particular form. In this section, we consider automata that are
total and deterministic: this means that for every state and every element of
the alphabet there is exactly one outgoing edge with this label.

Definition 2.44 (Total, deterministic automaton). An automaton

M = (S,A,→, ↑, ↓)

is called total if for all s ∈ S and for all a ∈ A there is at least one t ∈ S with
s

a
−→ t, and deterministic if for all s ∈ S and for all a ∈ A there is at most one

t ∈ S with s
a

−→ t.

In a total automaton, each state has an outgoing edge for each label, in a
deterministic automaton, each state cannot have two outgoing edges with the
same label.

Example 2.45. Considering the automata displayed so far, the automata in
Fig. 2.2, 2.28 and the third automaton in Fig. 2.23 are not deterministic, and
only total if A = {a}, the automata in Fig. 2.3, 2.4, 2.5, 2.7, 2.8, 2.19, 2.22 and
the right-hand sides of Fig. 2.10, 2.15, 2.16, 2.18, 2.20, 2.21 are deterministic but
not total, the automata in Fig. 2.26, 2.27 and the left-hand sides of Fig. 2.10,
2.15, 2.16, 2.18, 2.20, 2.21 are not deterministic and not total. In Fig. 2.23, the
first, second and fourth automaton are deterministic, but only total if A = {a}.
In Fig. 2.25, all automata are deterministic, but the first two are only total if
A = ∅, and the third is not total.

Figure 2.30 shows an automaton that is total and deterministic. Notice that
it accepts the same language as the automaton in Figure 2.5. The right-most
state is called a trap state: any action from the alphabet can be executed at
any time, but the state can never be exited, and it is not a final state.

By adding a trap state, any automaton can be made total, we can find a
total automaton that accepts the same language. We will show that also, any
automaton is language equivalent to a deterministic automaton. Notice that
we cannot do this with bisimulation equivalence, it is easy to come up with
an automaton that is not bisimulation equivalent to any total or deterministic
automaton. See Fig. 2.31.
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Figure 2.30: Total and deterministic automaton.

a

a

Figure 2.31: Not bisimilar to any total or deterministic automaton.

In this automaton, there is a deadlock state. Any bisimilar automaton will
also contain a deadlock state, so cannot be total. The initial state has an a-
step to two non-bisimilar states, so this must also be the case in any bisimilar
automaton, so cannot be deterministic.

For every regular language, there exists a deterministic automaton that ac-
cepts it. This implies that (as far as the languages are concerned) general au-
tomata and deterministic automata are equally powerful: whenever a language
is accepted by an automaton, it is also accepted by a deterministic automaton.

Theorem 2.46. Let L be a regular language. Then there is a deterministic
automaton accepting L.

Proof. Let L be a regular language. As it is regular, there is an automaton
M = (S,A,→, ↑, ↓) accepting L. M is not necessarily deterministic.

If M has non-determinism, it has a state with more than one outgoing edge
with the same label. Take a linear recursive specification representing M , so
take a set of names N (with S = ↑) and an equation for each P ∈ N . Then, the
right-hand side of the equation of some P may have summands a.Q and a.R for
different states Q, R. In such a case, apply the distributive law of Theorem 2.29,
‘take the a outside the brackets’, i.e. replace the two summands by one new
summand a.(Q + R). Q+ R will become a state of the transformed automaton.
We apply the distributive law as often as possible, until no further application
is possible, and moreover apply the commutative, associative and idempotence
laws to remove brackets and superfluous summands. With this procedure, we
obtain an automaton M ′. Let us make the result explicit.

The automaton M ′ can be directly defined as follows:

1. The set of states of M ′ consists of sums of states of M . A sum over N is
a state of M ′, if there is some string w ∈ A∗ and a P ∈ N with S

w
→−→ P .

Then, the sum consists of all these P , i.e. all P ∈ N satisfying S
w
→−→ P ;

2. The alphabet is A;
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3. The initial state is S;

4. There is a transition labeled a from a sum state of M ′ to another sum
state of M ′ exactly when there is such a transition from an element of the
first sum to an element of the second sum in M ;

5. A sum state of M ′ is a final state just in case one element is a final state
in M .

By Theorem 2.29, the resulting automaton M ′ accepts the same language
as M .

Example 2.47. Let us give a simple example of the construction in the proof
of this theorem. Given is the automaton on the left-hand side of Figure 2.32,
with state names S = {S, U, V, W}. As a linear specification, we get

S = a.U + a.V

U = b.S

V = b.W + 1

W = 0.

We calculate S ≈ a.U + a.V ≈ a.(U + V ). From S, states U and V can
be reached by an a-transition, so U + V will be a state of the deterministic
automaton, and S

a
−→ U + V . Then, consider state U + V . We have U + V ≈

b.S + b.W + 1 ≈ b.(S + W ) + 1, so we find state S + W and U + V
b

−→ S + W .
Continuing like this, we find the following set of equations.

S ≈ a.U + a.V ≈ a.(U + V )

U + V ≈ b.S + b.W + 1 ≈ b.(S + W ) + 1

S + W ≈ a.U + a.V + 0 ≈ a.(U + V )

Considered as a recursive specification, this is a deterministic automaton. If,
moreover, we want to get a total automaton, we add a trap state X , and provide
missing edges:

S ≈ a.(U + V ) + b.X

U + V ≈ b.(S + W ) + 1 + a.X

S + W ≈ a.(U + V ) + b.X

X ≈ a.X + b.X

The resulting specification can be given as follows:

S = a.R + b.X

R = b.P + 1 + a.X

P = a.R + b.X

X = a.X + b.X

The resulting automaton is displayed on the right-hand side of Figure 2.32.
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Figure 2.32: Finding a deterministic, and total automaton.

It should be remarked that the size of the resulting deterministic automaton
can be much larger than the original automaton.

We also remark that the size of an automaton can be reduced as much as
possible by identifying all states that have the same behavior. Thus, by iden-
tifying all states that can be colored the same, we get the minimal automaton
that is bisimilar to a given automaton. Then, leaving out all states and edges
that do not lead to a final state, and making the automaton deterministic, turns
the automaton into the minimal automaton that is language equivalent to the
given automaton.

We show the use of a deterministic and total automaton in the following
theorem.

Definition 2.48. Let L ⊆ A∗ be a language. The complement of L, denoted
L, is {w ∈ A∗ | w 6∈ L}.

Theorem 2.49. Let L, L′ be regular languages.

1. The language L is regular.

2. The language L ∩ L′ is regular.

Proof. For the first item, as L is regular, there is a deterministic and total
automaton M = (S,A,→, ↑, ↓) with L(M) = L. Now consider the deterministic
and total automaton

M ′ = (S,A,→, ↑,S − ↓)

where the set of final states is the complement of the set of final states of the
original automaton. Since both M and M ′ are deterministic and total, for every
string w there is a unique path through them starting in the initial state. Now
w is accepted by M ′ exactly when it is not accepted by M , or L(M ′) = L(M).

For the second item, consider the following formula:

L ∩ L′ = L ∪ L′.

Since the set of regular languages is closed under complementation and union,
the right-hand side is regular. But then the left-hand side is also regular.
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Exercises

2.5.1 Find a deterministic and total automaton that is language equivalent
to the automaton in Figure 2.2.

2.5.2 Find a deterministic and total automaton that is language equivalent
to the automata in Figures 2.3 and 2.4.

2.5.3 Find a deterministic and total automaton that is language equivalent
to each of the automata in Exercise 1 of Section 2.1.

2.5.4 Find a deterministic and total automaton that is language equivalent
to each of the automata in Exercise 3 of Section 2.1.

2.5.5 Find a deterministic and total automaton that is language equivalent
to each of the automata in Exercise 4 of Section 2.1.

2.5.6 Find a deterministic and total automaton that is language equivalent
to each of the automata in Exercise 6 of Section 2.1.

2.5.7 Give a deterministic and total automaton for the following languages:

(a) L = {w ∈ {a, b}∗ | the second from the last character is a }

(b) L = {w ∈ {a, b}∗ | ∃x, y ∈ {a, b}∗ w = xabbaay ∨ w = xbabay}

2.5.8 Suppose two deterministic and total automata are given with the same
alphabet but disjoint state spaces. Define the cartesian product of the
two automata, taking pairs of states as states in the product. A transi-
tion exists in the product if and only if it exists for the first components
of the pair and also for the second components of the pair, and a pair
is a final state if and only if both components are final. Formalize this
definition, and show the language of the product is the intersection of
the languages of the two automata.

2.5.9 Show the set of regular languages is closed under finite union and finite
intersection, i.e. show that the union and the intersection of any number
of regular languages is again regular.

2.5.10 Show the symmetric difference of two regular languages is a regular
language. The symmetric difference of L and L′ is defined by:

{w | w ∈ L or w ∈ L′, but not w ∈ L ∩ L′}.

2.5.11 Suppose L ∪ L′ is regular and L is finite. Show L′ is regular.

2.5.12 For the statement below, decide whether it is true or false. If it is true,
prove it. If not, give a counterexample. The alphabet is {a, b}.

If L is not regular, then L is not regular.
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2.6 Automata with silent steps

So far, we considered automata where in every move, one input symbol is con-
sumed. Further on, we will have need to describe the inner workings of a
machine, and it will turn out to be useful to also allow moves where no input
symbol is consumed. Such a step is called an internal step or a silent step, and
we will always reserve the letter τ for such an internal move. An internal step is
considered to be not observable. We might, however, be able to infer an internal
move has taken place by other means.

Definition 2.50 (Automaton with internal moves). An automaton with inter-
nal moves M is a quintuple (S,A ∪ {τ},→, ↑, ↓) where:

1. S, ↑, ↓ are as before;

2. A is a finite alphabet, and τ is a special symbol not in A;

3. → ⊆ S × (A ∪ {τ}) × S is the set of transitions.

A step s
τ

−→ t is called a silent step. Now the generalised transition relation
→−→ is inductively defined by adding the following clause to the two clauses in
Definition 2.3:

3. For all s, t, u ∈ S, if s
τ

−→ t and t
w
→−→ u, then s

w
→−→ u.

Thus, we see that the silent steps do not count when the label of a path is
considered, it follows for instance that if s

τ
−→ t, then s

ε
→−→ t (recall ε is the

empty string). Based on this, the definition of acceptance and the language
accepted by the automaton remains the same.

We also extend the Minimal Algebra with silent steps.

Definition 2.51. The Minimal Algebra is extended with silent steps by adding
a prefix operator τ. , τ 6∈ A, and adding the following clause to Definition 2.25:

For all terms x, τ.x
τ

−→ x, a state named τ.x has a transition labeled τ to
state x. See Table 5.

As a result, also the automaton of a term containing τ prefix operators can
be determined.

τ.x
τ

−→ x

Table 5: Operational rule for silent step.

To start with, we consider language equivalence.
An automaton with internal moves is a generalization of the notion of an

automaton: every automaton is an automaton with internal moves (with no
τ -steps at all), but an automaton containing silent steps is not an automaton in
the original sense. The silent steps can be skipped in determining the language
of an automaton. By this, we mean the following.

Theorem 2.52. Let x be a term over MA with extra names N and a recursive
specification over these names. Then τ.x and x are language equivalent.
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Proof. Let w be a string accepted by τ.x. This means there is a path τ.x
w
→−→ y

with y ↓. As the initial state τ.x is not a final state, this path must pass
through state x, must start with step τ.x

τ
−→ x. This means x

w
→−→ y, and w is

also accepted by x.

The reverse direction is even simpler.

We show the law for the silent step in Table 6.

τ.x ≈ x

Table 6: Language equivalence law for silent step.

Theorem 2.53. Let language L be accepted by an automaton with internal
moves M . Then L is regular.

Proof. Let L be accepted by the automaton M = (S,A ∪ {τ},→, ↑, ↓) with
internal moves. We show L is also accepted by a normal automaton. This
implies that L is regular. In order to construct this automaton, we use the law
τ.P ≈ P .

Take a set of names N representing the states of M , and take a linear
recursive specification of M . Now whenever P

τ
−→ Q for P, Q ∈ N , replace

summand τ.Q in the right-hand side of the equation of P by Q, and then turn
the resulting specification into a linear one, following Theorem 2.39. The result
is a recursive specification not containing any τ prefix, and we call the resulting
automaton M ′.

The automaton M ′ can also be defined directly. M ′ has the same set of states
and the same initial state as M . Whenever P

τ
−→ Q

a
−→ R in M (a 6= τ), add

P
a

−→ R in M ′, and whenever P
τ

−→ Q ↓ in M , add P ↓ in M ′, and do this
repeatedly until no further steps or final states are obtained. Then, erase all
τ -steps and remove unreachable states, resulting in M ′.

To see that M ′ is language equivalent to M , take a string w ∈ L(M). Thus,
w is the label of a path through M from the initial state to a final state. We can
also trace w through M ′. For, whenever the path through M uses a transition
s

τ
−→ t, follow the path further until a non-τ step t′

a
−→ t′′ is reached. Then,

in M ′, we can directly take s
a

−→ t′′. If there is no non-τ -step further down the
path, then after a number of τ -steps a final state is reached, and in M ′ we have
s ↓.

Example 2.54. We give an example of the construction in the proof of this
theorem. Consider the automaton at the left-hand side of Figure 2.33. It yields
the recursive specification

S = a.W + τ.T

T = a.U

U = τ.U + b.V + τ.T

V = 0

W = 1.
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We calculate:

S ≈ a.W + τ.T ≈ a.W + T ≈ a.W + a.U

U ≈ τ.U + b.V + τ.T ≈ U + b.V + T ≈ 0 + b.V + a.U

V ≈ 0

W ≈ 1

As T is not a reachable state in the resulting automaton, it can be left out. The
resulting specification is as follows:

S = a.W + a.U

U = 0 + b.V + a.U

V = 0

W = 1

We show the resulting automaton on the right-hand side of Figure 2.33. Note
that the τ -loop on U is just omitted.

S T

W

U

V

S

W

U

V

τ

a b

a

a b

τ a
a

τ

Figure 2.33: Finding an automaton without silent steps.

As an example of an automaton with internal moves, consider an automaton
that accepts decimal numbers. A decimal number starts with an optional + or
− sign, then has a string of digits followed by a decimal point again followed
by a string of digits. One of these strings of digits can be empty, but not both.
We display the automaton in Figure 2.34.

An automaton with internal moves is useful to prove the following result.
Define LR = {wR | w ∈ L}, the reverse of L.

Theorem 2.55. Let language L be regular. Then LR is regular.

Proof. As L is regular, we know there is an automaton M = (S,A, ↑, ↓,→)
with L(M) = L. Convert M into an automaton with a single final state, by

adding a state s 6∈ S, and adding edges t
τ

−→ s for each final state t of M . It is
obvious that this automaton accepts the same language as M . Next, turn the
initial state ↑ into a final state, turn the final state s into the initial state, and
reverse the direction of all edges. The modified automaton accepts the reversal
of L.
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+

digit

point

point

digit
τ

digit digitτ

−

Figure 2.34: Decimal numbers.

When we are dealing with automata with internal moves, some of the notions
considered earlier have to reinterpreted. An example of this is the notion of de-
terminism. In defining when an automaton with internal moves is deterministic,
the silent moves have to be disregarded, as stated next.

Definition 2.56 (Deterministic automaton). An automaton with internal moves

M = (S,A ∪ {τ},→, ↑, ↓)

is called deterministic if for all s ∈ S and for all a ∈ A there is at most one
t ∈ S with s

a
→−→ t.

Thus, all paths from a state s that have only the visible label a must lead
to the same state. In a similar way, the notion of totality can be redefined.

Exercises

2.6.1 Draw the automata of the following terms by means of the operational
rules. Then, determine the language of the resulting automata.

(a) τ.a.1 + τ.b.0;

(b) τ.(τ.a.a.1 + b.τ.1);

(c) τ.1 + τ.0.

2.6.2 Draw an automaton for the following recursive specification by means of
the operational rules. Then, construct a language equivalent automaton
without τ -steps.

S = S + τ.S + τ.T + a.S

T = b.T + τ.S + τ.1.

2.6.3 Draw an automaton for the following recursive specification by means of
the operational rules. Then, construct a language equivalent automaton
without τ -steps.

S = a.S + b.T + c.U

T = τ.S + a.T + b.U

U = τ.T + a.U + c.S.
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2.6.4 Draw an automaton for the following recursive specification by means of
the operational rules. Then, construct a language equivalent automaton
without τ -steps.

S = τ.T + τ.U + b.T + c.U

T = a.S + b.U + c.S + c.T

U = 0.

2.6.5 Construct an automaton for the following languages. Use τ -moves to
simplify your design.

(a) The set of strings consisting of zero or more a’s followed by zero
or more b’s;

(b) The set of strings that consist of either ab repeated one or more
times or aba repeated one or more times.

2.7 Branching bisimulation

In the previous section, we found that the treatment of silent steps in language
equivalence is rather straightforward. Here, we will find that treatment in bisim-
ulation needs carefulness. We may not be able to observe τ -steps directly, but
in many cases, it can be observed indirectly that a τ -step has taken place. Con-
sider the three pictures in Figure 2.35, each showing part of an automaton. The
top nodes may have some incoming edges, but no outgoing edges that are not
shown, the bottom nodes may have some other incoming or outgoing edges.

u v

t

s

u v

s = t

u v

t

s

a
τ

a b

a b a
τ

a

b

Figure 2.35: Parts of an automaton, a silent step that is inert and not inert.

The middle part is obtained from the part on the left, by identifying the
nodes s and t and leaving out the τ -step. It is also obtained from the part on
the right, by identifying the nodes s and t and leaving out the τ -step. We will
argue the first procedure is valid for bisimulation, while the second is not.

The τ on the left leads from a node with just an outgoing a-step to u to a
node with both an a to u and a b to v. By executing the τ , we gain the option
of doing a b to v, but we do not lose the option of doing an a to u. We can



2.7. BRANCHING BISIMULATION 47

argue the b to v was already possible from s by going through the silent τ . This
τ is called inert : an option may be gained, but no option is lost.

The τ on the right leads from a node with both an a to u and a b to v to a
node with just an a to u. By executing the τ , we lose the option of doing a b to
v, this is not possible any more from t. This τ is called not inert : an option is
lost by executing it.

If in Figure 2.35 we remove all a-steps, then the part on the right contains a
deadlock node t, but the parts in the middle and left do not contain a deadlock
node. As bisimulation should preserve deadlocks, this again says that the part
on the right cannot be identified with the part in the middle. Thus, the not
inert τ on the right cannot be removed.

The notion of bisimulation we will formulate will allow removal of inert τ ’s
by identification of the nodes it is between, but all τ ’s that are not inert cannot
be removed.

We show two examples of inert τ -steps in Figure 2.36. In the picture on the
left, the top node does not have any outgoing steps except for the τ -step.

τ τ

Figure 2.36: Inert τ -steps.

Definition 2.57 (Branching bisimilarity). A binary relation R between the
sets of states S,S′ of two automata M, M ′ is a branching bisimulation relation
if and only if the following conditions hold:

1. R relates the reachable states;

2. R relates the initial states;

3. whenever sRs′ and s
a

−→ t for some a ∈ A, then there are states ŝ′ and t′

in S′ such that s′
ε
→−→ ŝ′ and ŝ′

a
−→ t′ and both sRŝ′ and tRt′; note that

the path from s′ to ŝ′ contains a number of τ -steps (0 or more); this is the
transfer condition for visible actions from left to right, see Figure 2.37;

4. whenever sRs′ and s′
a

−→ t′ for some a ∈ A, then there are states ŝ and
t in S such that s

ε
→−→ ŝ and ŝ

a
−→ t and both ŝRs′ and tRt′; this is the

transfer condition for visible actions from right to left;

5. whenever sRs′ and s
τ

−→ t, then there are states ŝ′ and t′ in S′ such that
s′

ε
→−→ ŝ′ and either ŝ′ = t′ or ŝ′

τ
−→ t′ and both sRŝ′ and tRt′; this is the

transfer condition for silent steps from left to right, see Figure 2.38;
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6. whenever sRs′ and s′
τ

−→ t′, then there are states ŝ and t in S such that
s

ε
→−→ ŝ and either ŝ = t or ŝ

τ
−→ t and both ŝRs′ and tRt′; this is the

transfer condition for silent steps from right to left;

7. whenever sRs′ and s ↓, then there is a state ŝ′ ∈ S′ such that s′
ε
→−→ ŝ′,

ŝ′ ↓, and sRŝ′; this is the transfer condition for final states from left to
right, see Figure 2.39;

8. whenever sRs′ and s′ ↓, then there is a state ŝ ∈ S such that s
ε
→−→ ŝ, ŝ ↓,

and ŝRs′; this is the transfer condition for final states from right to left.

Two automata M, M ′ are branching bisimulation equivalent or branching
bisimilar, notation M ↔b M ′, if and only if there is a branching bisimulation
relation R between M and M ′.

s

t

s′

ŝ′

t′

a ε

a

Figure 2.37: Transfer condition for visible actions from left to right.

The ‘normal’ notion of bisimulation we had prior to the formulation of
branching bisimulation will from now be called strong bisimulation, in order
not to be confused with branching bisimulation. We can remark that any two
automata that are strongly bisimilar, are necessarily also branching bisimilar.

Theorem 2.58 (Equivalence). Branching bisimilarity is an equivalence.

Proof. Let M, M ′, M ′′ be automata with silent steps. First, the relation R =
{(s, s) | s ∈ S, s reachable} is obviously a branching bisimulation relation. This
proves that M ↔b M . Second, if R is a branching bisimulation relation for
M ↔b M ′, then the relation R′ = {(s′, s) | sRs′} is a branching bisimulation
relation as well, implying M ′ ↔b M . Third, assume that M ↔b M ′ and M ′ ↔b

M ′′. Let R1 and R2 be branching bisimulation relations relating the reachable
states of M, M ′ and M ′, M ′′, respectively. Then the relation composition R1◦R2

is a branching bisimulation relation that shows M ↔b M ′′.

We can also formulate branching bisimulation in terms of colors, as follows.
Again, color all the nodes of an automaton, and we get colored paths that
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ŝ′

t′

τ ε

τ

s

t

s′

ŝ′ = t′

τ ε

Figure 2.38: Transfer condition for silent steps from left to right.

s s′

ŝ′

ε

Figure 2.39: Transfer condition for final states from left to right.
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a τ a

Figure 2.40: Branching bisimilar automata?

a a

τ

b b

a

Figure 2.41: Branching bisimilar automata?

consist of colors and steps in alternation. Now, whenever such a path contains
a part c

τ
−→ c, so a τ -step between nodes of the same color, then this part can

be replaced by c, the τ -step can be left out. Such reduced colored paths are
called abstract colored paths. Call a coloring abstract consistent if all nodes of
the same color have the same abstract colored paths. Now two nodes can be
related by a branching bisimulation exactly when there is an abstract consistent
coloring that gives them the same color. An inert τ can be characterized as a τ
between two nodes of the same color.

Thus, branching bisimulation is an equivalence, but it is not a congruence. A
simple example serves to make this point: we have τ.1 ↔b 1, but τ.1+a.1 is not
branching bisimilar to 1+ a.1 (executing the τ will disallow the a-action). This
problem can be fixed, but complicates the matter further. This is why we will
not present a solution for the problem, but refrain from doing any calculations in
bisimulation on terms with τ ’s. Instead, we will only use branching bisimulation
on automata or transition systems.

Exercises

2.7.1 Are the pairs of automata in Figures 2.40, 2.41, 2.42, 2.43, 2.44, 2.45,
2.46, 2.47 branching bisimilar? If so, give a branching bisimulation be-
tween the two automata; otherwise, explain why they are not branching
bisimilar.
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a b a b

τ

τ

Figure 2.42: Branching bisimilar automata?

a τ

b b

a

Figure 2.43: Branching bisimilar automata?

a b

τ
τ

a b

Figure 2.44: Branching bisimilar automata?
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τ b

a

τ b

a b

Figure 2.45: Branching bisimilar automata?

a b

d
c

d

τ

a b

c

d d

c

Figure 2.46: Branching bisimilar automata?

a τ

a b

τ

a τa

a b

τ

τ

Figure 2.47: Branching bisimilar automata?
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τ

a a

τ

a

τ

τ

τ

aτ

a

Figure 2.48: All automata are branching bisimilar.

2.7.2 Give a branching bisimulation between any two of the automata in
Figure 2.48.

2.7.3 Which of the transition systems of Exercises 1 and 2 are deadlock free?

2.8 Identifying non-regular languages

In Theorem 2.8 and Exercise 24 of Section 2.1, we showed that a certain language
was not regular. The idea of the proof in both cases was the so-called pigeonhole
principle: if you put a number of things greater than n into n places, then at
least one place will contain more than one thing.

In this section, we will meet a general technique to show that some lan-
guage is not regular: the pumping lemma. The lemma only works for infinite
languages, but that does not matter, as all finite languages are regular anyway
(see Proposition 2.42).

Theorem 2.59 (Pumping lemma for regular languages). Let L be an infinite
regular language. Then there is a positive integer m such that any w ∈ L with
|w| ≥ m can be written as w = xyz with |xy| ≤ m and |y| ≥ 1 and for all i ≥ 0
we have that xyiz ∈ L.

Presented symbolically:
L infinite and regular =⇒

∃m (m > 0 : ∀w (w ∈ L ∧ |w| ≥ m : ∃x, y, z (w = xyz ∧ |xy| ≤ m ∧ |y| ≥ 1 :

∀i (i ≥ 0 : xyiz ∈ L)))).

Proof. We use the pigeonhole principle. Since L is regular, there is an automaton
M accepting L. The set of states of M is finite, say M has m states. Since L is
infinite, we can find strings in L that are arbitrarily long. Take a string w ∈ L
with |w| ≥ m. Thus, there is a path through M from the initial state to a final
state with label w.

Now this path goes through at least m+1 states of M , so it must go through
some state it has visited before. Take the first state s that is repeated in this
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path. The path traced by w can now be broken up into three parts: first, the
part from the initial state until s is visited for the first time, say this has label
x, the part from s until s is visited for the second time, say this has label y, and
finally the part from s to a final state, say this has label z. Then w = xyz and
|xy| ≤ m and |y| ≥ 1.

Moreover, by taking the first part to s followed by the third part to a final
state, we see xz ∈ L. By taking the first part, followed by the second part twice
followed by the third part, we see xy2z ∈ L, and so on.

We see that if we have an infinite regular language L, then if we take a string
in L that is sufficiently long, then we can break this string into three parts, and
the middle part of the string can be pumped arbibrarily many times, staying
inside L.

We often apply this theorem by using the contrapositive:

∀m (m > 0 : ∃w (w ∈ L ∧ |w| ≥ m : ∀x, y, z (w = xyz ∧ |xy| ≤ m ∧ |y| ≥ 1 :

∃i (i ≥ 0 : xyiz ∈ L))))

=⇒ L is not infinite or not regular.

Example 2.60. L = {anbn | n ≥ 0} is not regular. For, if L were regular, then
the pumping lemma applies. Take the value m given by the pumping lemma.
Take string w = ambm ∈ L. Then write w = xyz as given by the pumping
lemma. As |xy| ≤ m, x and y consist entirely of a’s. Suppose |y| = k > 0. Take
i = 0. Then xz = am−kbm ∈ L, and this is a contradiction. So the assumption
that L was regular was wrong. Thus, L is not regular.

Example 2.61. L = {wwR | w ∈ {a, b}∗} is not regular. For, if L were regular,
then the pumping lemma applies. Take the value m given by the pumping
lemma. Choose string w = ambmbmam ∈ L. Then write w = xyz as given by
the pumping lemma. As |xy| ≤ m, x and y consist entirely of a’s. Suppose
|y| = k > 0. Take i = 0. Then xz = am−kbmbmam ∈ L, and this is a
contradiction. So the assumption that L was regular was wrong. Thus, L is not
regular.

Example 2.62. L = {w ∈ {a, b}∗ | #a(w) < #b(w)} is not regular. For, if
L were regular, then the pumping lemma applies. Take the value m given by
the pumping lemma. Choose string w = ambm+1 ∈ L. Then write w = xyz
as given by the pumping lemma. As |xy| ≤ m, x and y consist entirely of a’s.
Suppose |y| = k > 0. This time, taking i = 0 will not work, and we need to
consider i = 2. We see xy2z = am+kbm+1 ∈ L, and this is a contradiction. So
the assumption that L was regular was wrong. Thus, L is not regular.

Example 2.63. L = {(ab)nak | n > k, k ≥ 0} is not regular. For, if L
were regular, then the pumping lemma applies. Take the value m given by the
pumping lemma. Choose string w = (ab)m+1am ∈ L. Then write w = xyz as
given by the pumping lemma. As |xy| ≤ m, x and y are in the ab-repeating
part. We now have to do a case analysis on y. As y is non-empty, it contains at
least one symbol. If y is just a, we can take i = 0 and we find xz 6∈ L. Likewise
if y is just b. If y is ab or ba, then, again taking i = 0, we see xz = (ab)mbm,
which cannot be in L. In all other cases, y contains at least one a and one b,
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and so xz will be a substring of (ab)mam, where some part of the initial (ab)m

part is left out.
In all cases xz ∈ L leads to a contradiction. So the assumption that L was

regular was wrong. Thus, L is not regular.

Exercises

2.8.1 Show that the language {w | #a(w) = #b(w)} is not regular.

2.8.2 Prove that the following languages are not regular.

(a) {anblak | k ≥ n + l};

(b) {anblak | k 6= n + l};

(c) {anblak | n = l or l 6= k};

(d) {anbk | n ≤ k};

(e) {w | #a(w) 6= #b(w)};

(f) {ww | w ∈ {a, b}∗}.

2.8.3 Determine whether or not the following languages are regular.

(a) {an | n is a prime number};

(b) {an | n is not a prime number};

(c) {an | n = k2 for some k ≥ 0};

(d) {an | n = 2k for some k ≥ 0}.

2.8.4 Determine whether or not the following languages are regular.

(a) {anbk | n ≥ 100, k ≤ 100};

(b) {anbk | n ≤ k ≤ 2n};

(c) {anblak | n + l + k > 5};

(d) {anblak | n > 5, l > 3, k ≤ l};

(e) {wwwR | w ∈ {a, b}∗}.
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Chapter 3

Extending the Algebra

In this chapter, we extend the Minimal Algebra of the previous chapter with
extra operators. These operators will give us extra notations for finite automata
and extra ways to compose finite automata. We will be able to describe inter-
acting automata. We will be able to specify nonregular processes.

3.1 Sequential Composition

We start by considering sequential composition.

Definition 3.1. The Sequential Algebra SA extends MA with the binary op-
erator · denoting sequential composition.

The operational rules for sequential composition are given in Table 7.

x
a

−→ x′

x · y
a

−→ x′ · y

x ↓ y
a

−→ y′

x · y
a

−→ y′

x ↓ y ↓

x · y ↓

Table 7: Additional operational rules for SA (a ∈ A).

These rules can be explained as follows: term x · y can start by executing a
step from x (resulting in the remainder of x followed by y). The other possibility
only occurs when x is a final state. Then, we can start by executing a step from
y (thereby exiting x) or it is a final state when also y is final.

We see that the reachable states of a term x · y are all states x′ · y, where
x′ is reachable from x plus, in case x has a final state, all states y′ reachable
from y (except maybe y itself). Thus, the set of reachable states is finite. This
implies the following theorem.

Theorem 3.2. Let x, y be expressions over Minimal Algebra, possibly contain-
ing added names. Then x · y is a finite automaton.

The theorem implies that the sequential composition of two regular processes
is again a regular process.

Notice that this theorem does not imply that every expression over SA with
added names denotes a finite automaton. To see this, consider the following
example.

57
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Example 3.3. Consider the recursive equation S = 1 + a.S · b.1. From the

second summand we obtain S
a

−→ S · b.1. Using S ↓ we obtain S · b.1
b

−→ 1.

Repeating this gives S · b.1
a

−→ S · b.1 · b.1 and S · b.1 · b.1
b

−→ 1 · b.1. Repeating
this a number of times yields the transition system of the simple counter 2.17.
Thus, this recursive equation does not yield a regular process.

So, allowing sequential composition inside the recursion can yield a nonreg-
ular process. On the other hand, if we take two recursive specifications over
MA, then their sequential composition will be regular.

We can determine the language that is accepted by a term over SA.

Theorem 3.4. Let x, y be SA-terms.

L(x · y) = {uv ∈ A∗ | u ∈ L(x) & v ∈ L(y)}

Proof. Straightforward.

Also, we can directly determine the automaton that results from the sequen-
tial composition of two automata. Take two names S, T ∈ N and suppose S, T
each have a linear recursive specification with a disjoint set of names. Then the
automaton S ·T has the set of states U ·T , for each name U of the specification
of S, plus the set of names of T (omitting T itself if this becomes not reachable).

Next, U · T
a

−→ U ′ · T just in case U
a

−→ U ′, U · T
a

−→ V (for V a name of T )

just in case U ↓ and T
a

−→ V and U · T ↓ just in case U ↓ and T ↓. We keep
the transitions and terminations of the second automaton.

Consider the example in Figure 3.1.

• =

a b

c

a

b a b

a a c

ba

b

b

Figure 3.1: Sequential composition of two automata.

We can also define sequential composition of languages in the obvious way:

L · L′ = {uv | u ∈ L, v ∈ L′}.
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This is called concatenation of languages. We see immediately that if L, L′ are
regular, then also L · L′ is regular.

Now we investigate laws for sequential composition.

Theorem 3.5. The following laws hold for all terms over SA, possibly contain-
ing added names.

1. (a.x) · y ↔ a.(x · y),

2. (x · y) · z ↔ x · (y · z),

3. (x + y) · z ↔ x · z + y · z,

4. 1 · x ↔ x,

5. x · 1 ↔ x,

6. 0 · x ↔ 0.

Proof. 1. (a.x) · y ↔ a.(x · y), action prefix distributes over sequential com-
position. The automaton of (a.x) ·y is exactly the same as the automaton
of a.(x · y), apart from the name of the initial state, and so the automata
are bisimilar. The initial state is not a final state, and only has step
(a.x) · y

a
−→ x · y respectively a.(x · y)

a
−→ x · y.

2. (x · y) · z ↔ x · (y · z), sequential composition is associative. The reachable
states of (x · y) · z are (x′ · y) · z, for each x′ reachable from x, plus, in case
x has a final state, all states reachable from y · z except maybe y · z itself.
Now, for each state of the form (x′ · y) · z, there is a corresponding state
x′ · (y · z) in x · (y · z) The other states match, and transitions and final
states coincide, and so the automata are bisimilar.

3. (x + y) · z ↔ x · z + y · z, sequential composition distributes from the
right over alternative composition. The automaton of (x+ y) · z is exactly
the same as the automaton of x · z + y · z, apart from the name of the
initial state, and so the automata are bisimilar. For, if (x + y) · z

a
−→ p

for certain a ∈ A and term p, then the first possibility is x + y
a

−→ q and
p is of the form q · z. But then either x

a
−→ q or y

a
−→ q and it follows

that x · z + y · z
a

−→ q · z. The second possibility is that x + y is a final
state and z

a
−→ p and it follows that either x or y is a final state and also

x · z + y · z
a

−→ p. Next, if (x+ y) · z ↓, then we must have x+ y ↓ and z ↓.
It follows that x ↓ or y ↓, so x · z + y · z ↓. The reverse direction is similar.

4. 1 ·x ↔ x, 1 is a left unit element for sequential composition. The automa-
ton of 1 ·x is exactly the same as the automaton of x, apart from the name
of the initial state,and so the automata are bisimilar. For, 1 ·x

a
−→ y just

in case x
a

−→ y, and 1 · x ↓ just in case x ↓.

5. x ·1 ↔ x, 1 is a right unit element for sequential composition. The states
of x · 1 are x′ · 1 for all x′ reachable from x. x′ · 1 can take a step exactly
when x′ can and is a final state exactly when x′ is. Thus, the automata
are bisimilar.
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6. 0 · x ↔ 0, 0 is not a final state and cannot execute any step, so x in 0 · x
can never be reached, and 0 · x has just one state, the initial state, not
final. The automata are bisimilar.

Now we consider laws that do change the automaton, but preserve language
equivalence.

Theorem 3.6. Let x, y, z be three terms over SA. Then automata x · 0 and
0 accept the same language. Also x · (y + z) and x · y + x · z accept the same
language.

Proof. For the first part, note that all states of the automaton of x · 0 have the
form x′ · 0, where x′ is reachable from x. None of these states is a final state,
↓= ∅. It follows that L(x · 0) = ∅ = L(0).

For the second part, consider a string w ∈ L(x · (y + z)). We can write
w = uv, where u ∈ L(x) and v ∈ L(y + z) (u or v may be the empty string).
Since L(y + z) = L(y)∪L(z), v ∈ L(y) or v ∈ L(z). It follows that uv ∈ L(x ·y)
or uv ∈ L(x · z), so w = uv ∈ L(x · y + x · z). The other direction is equally
simple.

We collect all the equalities proved in Tables 8 and 9.

(a.x) · y ↔ a.(x · y)
(x · y) · z ↔ x · (y · z)
(x + y) · z ↔ x · z + y · z
1 · x ↔ x
x · 1 ↔ x
0 · x ↔ 0

Table 8: Bisimulation laws for Sequential Algebra (a ∈ A).

x · 0 ≈ 0

x · (y + z) ≈ x · y + x · z

Table 9: Language equivalence laws for Sequential Algebra (a ∈ A).

Again, we can prove both language equivalence and bisimulation equivalence
are a congruence relation on SA terms.

Exercises

3.1.1 Use the operational rules to find automata for the following sequential
expressions. In each case, use the bisimulation laws to simplify the
resulting automata.

(a) a.1 · b.1;

(b) (a.0 + b.1) · (a.0 + b.1);
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(c) (1 + a.1) · (1 + a.1).

3.1.2 Prove language equivalence and bisimulation equivalence are congru-
ence relations on SA terms.

3.1.3 Suppose language L is regular. Show also L2, defined by L2 = L · L, is
regular. Similarly, show L3, L4, . . . are regular.

3.2 Iteration

We have presented an automaton as a system of recursive equations over a set of
added names, a set of unknowns. If we add one more operator to the language,
we can express the automaton without these added names, we can solve the
equations. Over the sequential algebra SA, this is in general not possible, but
it becomes possible if we add iteration.

Definition 3.7. The Iteration Algebra IA extends SA with the unary operator
∗ denoting iteration. Terms over IA are called iteration expressions or regular

expressions.
The operational rules for iteration are given in Table 10.

x
a

−→ x′

x∗ a
−→ x′ · x∗ x∗ ↓

Table 10: Additional operational rules for IA (a ∈ A).

Notice that the rule for iteration presupposes the presence of sequential
composition, we have IA only as an extension of SA. The rules for iteration
state that the iteration can be entered by executing a step from the inside, from
the body; then after completing the body, the iteration can be entered again.
Alternatively, iteration can be exited, as every iteration state is a final state.

We see that the states reachable from x∗ are all states x′ · x∗, where x′ is
reachable from x (except maybe x itself). Notice that in this case, it does not
hold any longer that every reachable state is a subterm of the starting term.
Still, we can conclude that for each iteration expression, the set of reachable
states is finite. This implies the following theorem.

Theorem 3.8. Let x denote a finite automaton. Then x∗ denotes a finite
automaton.

As a consequence, every term over IA without added names has a finite
automaton. Further on, we find the reverse is also true: every finite automaton
is language equivalent to the automaton of a term over IA without added names.

Another consequence is that whenever x denotes a regular process, also x∗

denotes a regular process.
We can determine the languages that are accepted by iteration expressions.

Theorem 3.9. Let x be an iteration expression. L(x∗) = {u1u2 . . . un | n ≥
0, ui ∈ L(x) for i = 1, . . . , n}.
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Proof. Straightforward.

If n = 0, expression u1u2 . . . un denotes the empty string.
Now we investigate laws for iteration, preserving bisimulation.

Theorem 3.10. The following laws hold for all terms over IA, possibly con-
taining added names.

1. 0∗ ↔ 1,

2. x∗ ↔ x · x∗ + 1,

3. (x + 1)∗ ↔ x∗.

Proof. 1. 0∗ ↔ 1. Only the last rule of Table 10 applies.

2. x∗ ↔ x·x∗+1. The automaton of x∗ is exactly the same as the automaton
of x ·x∗ +1, apart from the name of the initial state, and so the automata
are bisimilar. The set of reachable states are the states x′ · x∗, for each x′

reachable from x except x itself. The initial state is a final state.

3. (x + 1)∗ ↔ x∗. If the body of the iteration is a final state, this is ignored.
Only steps of the body count, as the left rule in Table 10 shows. The two
automata are exactly the same, apart from a bisimulation relation that
links the initial states and links each state x′ · (x + 1)∗ to x′ · x∗.

We collect the equalities proved in Table 11.

x∗ ↔ x · x∗ + 1

(x + 1)∗ ↔ x∗

0∗ ↔ 1

Table 11: Bisimulation laws for Iteration Algebra (a ∈ A).

Again, we can prove both language equivalence and bisimulation equivalence
are a congruence relation on IA terms.

We can also define the iteration of a language: L∗ = {u1u2 . . . un | ui ∈ L},
containing any concatenation of strings in L. If n = 0, u1u2 . . . un denotes
the empty string. Now if x is any expression over IA, then we can establish
(L(x))∗ = L(x∗). As a corollary, we have the following proposition.

Proposition 3.11. Let L be a regular language. Then also L∗ is regular.

Example 3.12. L = {anbk | n 6= k} is not regular. For, if L would be regular,
then also

{anbn | n ≥ 0} = L((a1)∗ · (b1)∗) ∩ L

would be regular, and that is a contradiction.

Theorem 3.13. Let x, y, z be three terms over IA. Suppose x ↔ y · x + z, and
suppose y ↓ does not hold. Then x ↔ y∗ · z.
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Proof. We compare the set of reachable states. Since x ↔ y ·x + z and y 6↓ (the
initial state of y is not a final state), every initial step of x must correspond to
an initial step of y, leading to a state y′ · x or an initial step of z, leading to a
state z′. Thus, the reachable states of x can be named as x for the initial state,
states y′ ·x, for every y′ reachable from y except y itself, and states z′ for every
z′ reachable from z except z itself.

On the other hand, the reachable states of y∗ ·z are y∗ ·z for the initial state,
states y′ · (y∗ · z) for every y′ reachable from y except y itself, and states z′ for
every z′ reachable from z except z itself.

Finally, the initial state is a final state just in case the initial state of z is a
final state.

This proof principle is the key in solving a recursive specification over MA to
an expression over IA. The extra condition is really necessary, as the following
example shows.

Example 3.14. Take p = (a.1 + 1)∗ · b.1 and q = (a.1)∗ · (b.1 + c.1). These
two expressions are different, do not accept the same language, as q has a c-step
from the initial state to a final state, and p does not. Now we calculate:

q = (a.1)∗ ·(b.1+c.1) ↔ (a.1)·((a.1)∗ ·(b.1+c.1))+b.1+c.1 ↔ a.q+b.1+c.1 ↔

↔ a.q + a.q + b.1 + b.1 + c.1 ↔ a.q + (a.q + b.1 + c.1) + b.1 ↔ a.q + q + b.1 ↔

↔ (a.1 + 1) · q + b.1.

Thus, q satisfies the other condition of Theorem 3.13, but not the conclusion.

There is a variant of the previous theorem that also holds.

Theorem 3.15. Let x, y, z be three terms over IA. Suppose x ≈ y · x + z, and
suppose y ↓ does not hold. Then x ≈ y∗ · z.

S TU a

a

b

c

Figure 3.2: Example solving equations.

Example 3.16. Consider the simple automaton in Figure 3.2. A linear recur-
sive specification is

S = a.S + b.T + a.U

T = c.S

U = 1.

U is already ‘solved’, written without added names. Once we have solved S, we
have also solved T , as T is expressed in terms of S. If we want to solve for S,
we can write

S ↔ a.S + b.T + a.U ↔ a.S + b.c.S + a.1.
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Now collect all terms containing S on the right-hand side, take S ‘outside the
brackets’ on the right-hand side. For this, we can use sequential composition.
We can write

S ↔ a.S + b.c.S + a.1 ↔ a.1 · S + b.c.1 · S + a.1 ↔ (a.1 + b.c.1) · S + a.1,

and we have collected the terms containing S.
Thus, the behaviour of S is as follows. From the start, the behaviour a.1 +

b.c.1 can be executed any number of times, can be iterated, until at some point
the ‘exit’ a.1 is chosen. By Theorem 3.13, we can write

S ↔ (a.1 + b.c.1) · S + a.1 ↔ (a.1 + b.c.1)∗ · a.1,

thereby solving S. Using this, we can also solve T :

T ↔ c.(a.1 + b.c.1)∗ · a.1.

In the derivation above, the symbol ↔ was used. When solving for a variable
in other cases, the distributive law is necessary, so not bisimulation equivalence
but language equivalence must be used. Consider the following example.

Example 3.17. Consider Figure 3.3. The recursive specification becomes:

S = a.T + 1

T = b.S + 1

Solving these equations goes as follows:

S ≈ a.T + 1 ≈ a.(b.S + 1) + 1 ≈ a.b.S + a.1 + 1 ≈ (a.b.1)∗ · (a.1 + 1)

T ≈ b.S + 1 ≈ b.(a.T + 1) + 1 ≈ b.a.T + b.1 + 1 ≈ (b.a.1)∗ · (b.1 + 1).

S T

a

b

Figure 3.3: Another example solving equations.

We can do this procedure in general. This is formulated in the following
theorem.

Theorem 3.18. Let L be a regular language. Then there is a term x over IA
without added variables with L = L(x).

Proof. If L is a regular language, then there is an automaton M with L(M) = L.
Take a linear recursive specification representing M . Then, use the laws of
Table 11 and Theorem 3.15 to solve each variable of this specification. These
calculations preserve language equivalence.

In order to remove a certain unknown P from the right-hand side of the
equations, the equation of P needs to be written without P . If P does not
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contain a summand of the form a.P , this is immediate, otherwise Theorem 3.15
must be used. The result is then substituted in all other equations, and the
number of added names is reduced by one. The resulting equations may not be
linear any longer, but all right-hand sides can be reduced so that each added
name occurs at most once, preceded by a term of which the initial state is not
a final state.

This procedure can be repeated, until an expression without variables is
reached.

Example 3.19. We provide another example of this procedure. Consider a
specification over 3 variables where all possible steps are present.

S = a.S + b.T + c.U

T = d.S + e.T + f.U

U = g.S + h.T + i.U + 1

In order to solve for S, calculate as follows:

S ≈ aS + bT + cU ≈ a1 · S + bT + cU ≈ (a1)∗ · (bT + cU) ≈

≈ (a1)∗ · bT + (a1)∗ · cU,

and S has been eliminated. Now use this in the other two equations. They
become:

T ≈ dS + eT + fU ≈ d(a1)∗ · bT + d(a1)∗ · cU + eT + fU ≈

≈ (d(a1)∗ · b1 + e1) · T + (d(a1)∗ · c1 + f1) · U

and

U ≈ gS + hT + iU + 1 ≈ g(a1)∗ · bT + g(a1)∗ · cU + hT + iU + 1 ≈

(g(a1)∗ · b1 + h1) · T + (g(a1)∗ · c1 + i1) · U + 1.

Next, eliminate T from the equation of T :

T ≈ (d(a1)∗ · b1 + e1)∗ · (d(a1)∗ · c1 + f1) · U,

and substitute this in the equation of U :

U ≈ (g(a1)∗ · b1 + h1) · (d(a1)∗ · b1 + e1)∗ · (d(a1)∗ · c1 + f1) · U+

+(g(a1)∗ · c1 + i1) · U + 1 ≈

≈ {(g(a1)∗ · b1+h1) · (d(a1)∗ · b1+e1)∗ · (d(a1)∗ · c1+f1)+(g(a1)∗ · c1+ i1)}∗.

This result can be substituted again in the equation of T to obtain an iteration
expression for T . Finally, both the expressions for T and U can be substituted
in the equation of S.

Usually, a lot of work can be saved by choosing the order of elimination
carefully, so that the expressions do not become too long.

Combining Theorem 3.18 with Theorem 3.8, we see that the iteration ex-
pressions denote exactly the class of all automata, accepting the class of all
regular languages. This is why iteration expressions are often called regular
expressions.

When finding the language accepted by an iteration expression, or determin-
ing an iteration expression for a given language, it is possible to first translate
to an automaton, but it is also possible to reason directly.
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Example 3.20. A regular process is given by the following linear recursive
specification:

S = a.T + 1

T = b.S + 1

Then there is no iteration expression bisimilar to S.

Exercises

3.2.1 Use the operational rules to find automata for the following iteration
expressions. In each case, use the bisimulation laws to simplify the
resulting automata.

(a) (a.0 + b.1)∗;

(b) 1 · (a.0 + b.1)∗;

(c) (a.1)∗ · (b.1)∗;

(d) (a.1)∗ · a.b.1;

(e) (1 + a.1 + b.0)∗;

(f) (a.(b.1 + 1))∗ · a.b.1.

3.2.2 Find an iteration expression for the following language: L = {w ∈
{a, b}∗ | #a(w) is even and #b(w) is odd }. Hint: first make an au-
tomaton with four states (odd-odd, odd-even, even-odd and even-even).

3.2.3 Find an iteration expression for each of the automata of Figures 2.3,
2.4, 2.5.

3.2.4 Find a recursive specification for a.(a.1)∗ · (a.b.1 + a.1)∗.

3.2.5 Prove language equivalence and bisimulation equivalence are congru-
ence relations on IA terms.

3.2.6 Give an iteration expression for each of the following languages:

(a) L = {w ∈ {a, b}∗ | w has a substring bba }

(b) L = {w ∈ {a, b}∗ | w has at most one pair of consecutive 0’s
and at most one pair of consecutive 1’s }

(c) L = {ambn | (n + m) is even }

3.2.7 For A = {0, 1}, give an iteration expression for the language of strings
over A such that w has at least one pair of consecutive zeros. Also give
a regular expression for the complement of this language.

3.2.8 Use the operational rules to draw an automaton for the iteration expres-
sion a.(b.1)∗. Also draw the automaton of the following linear recursive
specification.

X = a.Y + a.Z

Y = b.Z + 1

Z = b.Z + 1

Construct a bisimulation between the two automata showing X ↔

a.(b.1)∗.
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3.3 Interaction

In language equivalence, interaction between user and computer is modeled by
the acceptance of a string by an automaton. This is a limited form of interaction.
In the process model, we consider interaction between automata. In Figure 3.4,
we show interacting automata.

Automaton Automaton

Figure 3.4: Interacting processes.

Both automata denote a regular process.

Example 3.21. Consider a relay race with two runners A and B. Their in-
teraction is the passing of the baton: A will give the baton, denoted as !b and
B will take the baton, denoted ?b. If these two actions are executed simultane-
ously, the baton is passed, denoted !?b. A executes the process run.!b.1 and B
executes the process ?b.run.1. Together, a successful relay race is run.!?b.run.1.

Thus, if two regular processes are put in parallel, put next to each other, then
they can execute actions independently, by themselves, but they can also syn-
chronize by executing matching actions: a synchronization is the simultaneous
execution of matching actions.

In general, we have as a parameter a finite set D, called a set of data. For
each data element d ∈ D, the alphabet A will contain three elements:

• ?d, receive or input data element d;

• !d, send or output data element d;

• !?d, communication of data element d; !?d is the result of the simultaneous
execution of ?d and !d.

All other elements of A denote actions that can execute by themselves, and
cannot synchronize.

Example 3.22. We consider bounded buffers. A bounded buffer will contain
elements of the finite data domain D. The contents of the buffer can be seen as
a string w over D, where |w| ≤ k if k > 0 is the size of the buffer. Suppose, for
simplicity, D = {0, 1}. We have ?d for the input of d into the buffer, and !d for
the output of d from the buffer.

The following linear recursive specification has variables Bw, for each w ∈ D∗

with |w| ≤ k.

Bε = 1+?0.B0+?1.B1

Bwd = !d.Bw if |wd| = k (w ∈ D∗, d ∈ D)

Bwd = ?0.B0wd+?1.B1wd+!d.Bw if |wd| < k (w ∈ D∗, d ∈ D)

In case k = 1, we can derive Bε ↔ 1+?0.!0.Bε+?1.!1.Bε.
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In case the data set is not just bits, we get more summands in this specifica-
tion. For a general finite data set D, we use the following shorthand notation:

Bε = 1 +
∑

d∈D

?d.Bd

Bwd = !d.Bw if |wd| = k (w ∈ D∗, d ∈ D)

Bwd = !d.Bw +
∑

e∈D

?e.Bewd if |wd| < k (w ∈ D∗, d ∈ D)

Now we look at the interaction of two buffers with capacity 1 (again D =
{0, 1}). The output of the first buffer will be connected to the input of the
second buffer. This means the input of the first buffer is not connected (i.e.,
connected to the outside world), and the output of the second buffer is not
connected. The input port of the first buffer is called i, the connecting port l
(for link), and the output port of the second buffer is called o. See the network
structure shown in Figure 3.5.

B B
i l o

Figure 3.5: Interacting buffers.

The automata of the two buffers are shown in Figure 3.6. Each state shows
the content of the buffer.

1 ε 0 1 ε 0

i?1

l!1 i?0

l!0 l?1

o!1 l?0

o!0

Figure 3.6: Two buffers.

The interaction will enforce the synchronisation of l!0 and l?0 to l!?0, and of
l!1 and l?1 to l!?1. The resulting automaton is shown in Figure 3.7, where each
state shows the contents of the pair of buffers.

We see that synchronisation is enforced on internal ports, but not on exter-
nal ports. We will add two operators to the language: the parallel composition
or merge ‖ will allow every action separately, and will also allow synchronisa-
tion of actions, and the encapsulation operator ∂, that will disallow separate
execution of actions that need to synchronise. The resulting algebra is CA, the
communication algebra, the rules are presented in Table 12. CA is an extension
of MA, so does not contain sequential composition or iteration.

The first two rules show the separate execution of actions by parallel com-
ponents: this is called interleaving: the actions of x and y are interleaved or
merged in time. The third rule for parallel composition says that a parallel com-
position can only be in a final state if both components are in a final state. The
next two rules show synchronisation: matching actions by the two components
can be executed simultaneously.
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(ε, ε)(0, ε) (1, ε)

(0, 0) (1, 1)

(ε, 0)

(1, 0) (0, 1)
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l!?0 l!?1

i?0

i?1

o!0

i?0

i?1

o!1

o!0

o!1 o!0
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Figure 3.7: Interacting buffers.

x
a

−→ x′

x ‖ y
a

−→ x′ ‖ y

y
a

−→ y′

x ‖ y
a

−→ x ‖ y′

x ↓ y ↓

x ‖ y ↓

x
p?d
−→ x′ y

p!d
−→ y′

x ‖ y
p!?d
−→ x′ ‖ y′

x
p!d
−→ x′ y

p?d
−→ y′

x ‖ y
p!?d
−→ x′ ‖ y′

x
a

−→ x′ a 6= p?d, p!d

∂p(x)
a

−→ ∂p(x
′)

x ↓

∂p(x) ↓

Table 12: Operational rules for CA (a ∈ A).

The rules for encapsulation ∂p only allow a step that does not need to syn-
chronise: thus, we will have ∂p(p?d.x) ↔ 0 ↔ ∂p(p!d.y) for all terms x, y.

If Bil
ε is the process on the left-hand side of Figure 3.6, and Blo

ε is the
process on the right-hand side, then we can use the operational rules to derive
the process in Figure 3.7 for ∂l(B

il
ε ‖ Blo

ε ).

We have the intuition that the system of two interacting buffers of capacity
one should be like a buffer of capacity two. We show the behavior of a buffer
Cio of capacity two (with input port i and output port o) in Figure 3.8.

We see these automata are not bisimilar. They do become bisimilar if we
turn the l!?0-action into a τ , and identify the states (0, ε) and (ε, 0), and also
turn the l!?1-action into a τ , and identify states (1, ε) and (ε, 1). That is, we
want to turn communicating actions at internal ports into τ , thereby hiding
these internal communication actions, making them invisible. Indeed, it can be
seen that these τ -steps are inert, and there is a branching bisimulation between
the two automata.

Turning the l!?b-actions into τ will be done by an operator τl(). This operator
is called the abstraction operator. Now we consider the operational rules for the
abstraction operator. This is very straightforward, see Table 13.

In addition, we will use that all operational rules that hold for other operators
for a ∈ A, will from now on hold for a ∈ A ∪ {τ}.
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Figure 3.8: Buffer Cio of capacity 2.

x
!?id−→ x′

τi(x)
τ

−→ τi(x
′)

x
a

−→ x′ a 6=!?id

τi(x)
a

−→ τi(x
′)

x ↓

τi(x) ↓

Table 13: Operational rules for abstraction (a ∈ A ∪ {τ}).

Applying this to the interacting buffers of Figure 3.7 gives indeed that this
is branching bisimilar to the buffer of capacity two of Figure 3.8, so

Cio ↔b τ2(∂2(B
12
ε ‖ B23

ε )).

Theorem 3.23. Let expressions x, y of CA denote a finite automaton. Then
also x ‖ y, ∂p(x), τp(x) denote a finite automaton.

Again, this does not imply that recursive specifications over CA denote reg-
ular processes. A simple example is S = 1 + a.(S ‖ b.1). Using the operational
rules, it can be seen that (after reduction) this specification denotes the nonreg-
ular process of Figure 2.9. On the other hand, any recursive specification over
MA using the operators ∂p() or τp() will denote a regular process. We can also
define these operators on languages, but will not do so as we have no use for
that.

Next, we will investigate laws for the operators of CA. Table 14 lists some
simple laws for parallel composition. Notice that the fourth law can not be
formulated in CA, as it uses sequential composition.

x ‖ y ↔ y ‖ x
(x ‖ y) ‖ z ↔ x ‖ (y ‖ z)
x ‖ 1 ↔ x
x ‖ 0 ↔ x · 0
p!d.x ‖ p?d.y ↔ p!?d.(x ‖ y) + p!d.(x ‖ p?d.y) + p?d.(p!d.x ‖ y)
a.x ‖ b.y ↔ a.(x ‖ b.y) + b.(a.x ‖ y) if {a, b} 6= {p!d, p?d}

Table 14: Bisimulation laws of parallel composition.
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The main difficulty in developing further laws lies in the fact that it is true
that (x+y) ‖ z ≈ x ‖ z+y ‖ z, but it is not true that (x+y) ‖ z ↔ x ‖ z+y ‖ z.
This can be easily seen using the operational rules (no communication in this
example):

(a1 + b1) ‖ c1 ↔ ac1 + bc1 + c(a1 + b1)

Notice this equation cannot be inferred from the axioms in Table 14. On the
other hand,

a1 ‖ c1 + b1 ‖ c1 ↔ ac1 + bc1 + ca1 + cb1

Equating these would amount to adopting the non-valid distributive law.
Next, we consider laws for encapsulation, in Table 15. Using these laws, we

can eliminate an occurrence of encapsulation in a recursive specification over
MA (adding extra variables for the encapulation of a variable). For example, an
equation S = ∂p(a.S + p?d.S)+b.S+p!d.S can be converted to the specification

S = a.T + b.S + p!d.S

T = a.T + b.T

∂p(0) ↔ 0

∂p(1) ↔ 1

∂p(a.x) ↔ 0 if a = p!d, p?d
∂p(a.x) ↔ a.∂p(x) otherwise
∂p(x + y) ↔ ∂p(x) + ∂p(y)
∂p(∂p(x)) ↔ ∂p(x)
∂p(∂q(x)) ↔ ∂q(∂p(x))

Table 15: Bisimulation laws of encapsulation.

Laws for abstraction are similar, see Table 16. Using the laws, an occurrence
of abstraction in an MA recursive specification can be eliminated.

τp(0) ↔ 0

τp(1) ↔ 1

τp(p!?d.x) ↔ τ.τp(x)
τp(a.x) ↔ a.τp(x) otherwise
τp(x + y) ↔ τp(x) + τp(y)
τp(τp(x)) ↔ τp(x)
τp(τq(x)) ↔ τq(τp(x))

Table 16: Bisimulation laws of abstraction.

Exercises

3.3.1 Give an automaton for the following processes by means of the opera-
tional rules. Next, reduce the resulting automaton by bisimulation.

(a) a.1 ‖ b.1
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(b) a.b.1 ‖ c.1

(c) (a.1 + b.1) ‖ c.1

(d) a.1 ‖ 0

3.3.2 Give an automaton for the following processes. Laws and bisimulation
may be used to reduce the size of the automaton generated by the
operational rules.

(a) p!d.p!d.1 ‖ p?d.p?d.1

(b) ∂p(p!d.p!d.1 ‖ p?d.p?d.1)

(c) (p!d.1 + p?d.1) ‖ (p!d.1 + p?d.1)

(d) ∂p((p!d.1 + p?d.1) ‖ (p!d.1 + p?d.1))

(e) p!d.p?d.0 ‖ (p!d.0 + p?d.0)

(f) p!d.p?d.1 ‖ (p!d.(a.1 + 1) + p?d.1)

(g) ∂p((a.p!d.b.1)∗ ‖ p?d.1)

3.3.3 Establish whether the property ∂p(x ‖ y) ↔ ∂p(x) ‖ ∂p(y) holds for
arbitrary processes x and y and port p.

3.3.4 Provide a recursive specification for a stack with input port i and output
port o. Assume that the stack can contain elements from the (finite)
set D.

3.3.5 Give an automaton for the following processes by means of the opera-
tional rules:

(a) a.(p!d.1)∗ ‖ b.p?d.1

(b) a.p!d.1 ‖ b.(p?d.1)∗

(c) a.(p!d.1)∗ ‖ b.(p?d.1)∗

3.3.6 Give an example of a process x such that x does not have a deadlock
but ∂p(x) does. Also, give an example of a process y such that y has a
deadlock but ∂p(y) does not.

3.3.7 Give the automaton of a bounded buffer of capacity 1 in case D =
{0, 1, 2}.

3.3.8 Adapt the definition of the bounded buffer in Example 3.22, so that
it can still receive an input when it is full, leading to an error state.
Nothing further can happen in this error state: it is a deadlock state.
Now compose two of these unreliable buffers of capacity 1 in case D =
{0, 1}. Draw the resulting automaton.

3.3.9 Figure 3.7 shows the automaton of the process ∂l(B
il
ε ‖ Blo

ε ). Now draw
the automaton of the process Bil

ε ‖ Blo
ε .

3.3.10 Verify that the interacting buffers of Figure 3.7 is branching bisimilar
to the buffer of capacity two of Figure 3.8, so

τl(∂l(B
il
ε ‖ Blo

ε )) ↔b Cio

by constructing a branching bisimulation.
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3.3.11 Give an automaton for the following processes by means of the opera-
tional rules:

(a) τp(∂p(p!d.p!d.1 ‖ p?d.p?d.1))

(b) τp(∂p((p!d.1 + p?d.1) ‖ (p!d.1 + p?d.1)))

(c) τp(p!d.p?d.0 ‖ (p!d.0 + p?d.0))

(d) τp(p!d.p?d.1 ‖ (p!d.(a.1 + 1) + p?d.1))

(e) τp(∂p((a.p!d.b.1)∗ ‖ p?d.1))

Then give branching bisimilar automata with a minimal number of
states for each of these.

3.3.12 Generalize the encapsulation and abstraction operators to ∂H(), τH()
for any set of ports H . Provide operational rules and laws.

3.4 Mutual exclusion protocol

We consider a simple mutual exclusion protocol. A mutual exclusion protocol
concerns the exclusive access by components of a system to a shared resource
while using that shared resource. A component is in its critical section when
it is using the shared resource. We consider a protocol due to Peterson. The
protocol should guarantee that at most one component of a system is in its
critical section.

The formulation of the protocol usually uses shared variables in order to
achieve coordination of components. We have to translate this to the communi-
cation paradigm we have adopted here. In order to do this, we model the shared
variables as separate processes.

The protocol uses three shared variables C, D, T and two components P, Q.
The variables C, D are boolean variables, T (turn) has value p or q. The value
of T is the component that last started an attempt to enter its critical section.
If C is false, this signifies P is not in its critical section, likewise D is false means
Q is not in its critical section. If P intends to enter its critical section, it must
assign the value true to C before it checks the value of D, to prevent situations
in which the value of both variables is true. Similarly for Q. Still, situations can
arise in which the value of both C and D is true. In order to prevent deadlock in
this case, each component checks whether the other one last started an attempt
to enter its critical section, and the one of which this check actually succeeds
actually enters its critical section.

The variables are modeled as follows:

C = 1 + c!f.C + c?f.C + c?t.C

C = c!t.C + c?t.C + c?f.C

D = 1 + d!f.D + d?f.D + d?t.D

D = d!t.D + d?t.D + d?f.D

T = 1 + t!p.T + t?p.T + t?q.T

T = t!q.T + t?q.T + t?p.T

In each case, the automaton has two states. For P, Q, we draw the automata
in Figure 3.9.
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P Q
c!t

t!p

enterP

leaveP

c!f d!t

t!q

enterQ

leaveQ

d!f

t?q t?p

d?f c?f

Figure 3.9: Components P, Q in mutual exclusion protocol.

Putting the whole thing together results in the automaton

∂c,d,t(P ‖ Q ‖ C ‖ D ‖ T )

in Figure 3.10. In each state, we put the values of the variables C, D, T (in this
order).

The conclusion is, that the two components cannot be in the critical section
at the same time: if one component executes an enter-action, then it needs to
execute a leave-action before the other component can execute an enter -action.

Again, all actions from the set {c!?b, d!?b, t!?r | b ∈ {t, f}, r ∈ {p, q}} can be
renamed into τ . In this case, branching bisimulation will not remove all τ -steps.
The result is shown in Figure 3.11.

Exercises

3.4.1 Define three processes that repeatedly perform some task (i = 1, 2, 3):

P i = 1 + i?begin.i!end .P i.

Now define a scheduler process S that synchronizes with all actions of
the three processes, and makes sure that the processes begin in order, so
first P 1 must begin, then P 2, P 3 and then P 1 again. The order of ending
is arbitrary. Draw the transition system of ∂1,2,3(S ‖ P 1 ‖ P 2 ‖ P 3),
and verify the actions i!?begin occur in the correct order. Also verify
that for any subset of {1, 2, 3}, there is a state of the system where that
subset of processes is active.

3.4.2 Verify that the mutual exclusion protocol of Figure 3.10 is, after abstrac-
tion, branching bisimilar to the process in Figure 3.11, by constructing
a branching bisimulation. Verify that none of the τ -steps in Figure 3.11
is inert.

3.5 Alternating bit protocol

In this section, we have a look at a communication protocol. This protocol is
often referred to as the Alternating-Bit Protocol in the literature. A communi-
cation protocol concerns the transmission of data through an unreliable channel
in such a way that – despite the unreliability – no information will get lost. The
communication network used in the example is shown in Figure 3.12.
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Figure 3.10: Mutual exclusion protocol ∂c,d,t(P ‖ Q ‖ C ‖ D ‖ T ).
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Figure 3.11: Mutual exclusion protocol τc,d,t(∂c,d,t(P ‖ Q ‖ C ‖ D ‖ T )), after
reduction.
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Figure 3.12: Configuration of the ABP.
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The following describes the components of this network. In Figure 3.12, S
is the sender, sending data elements d ∈ D to the receiver R via the unreliable
channel K. After having received a certain data element, R will send an ac-
knowledgement to S via channel L which is unreliable as well (in practice, K
and L are usually physically the same medium). The problem now is to define
processes S and R such that no information will get lost; that is, the behavior of
the entire process, apart from the communications at the internal ports s, k, l,
and r, satisfies the equation of the buffer of capacity 1

Bio
ε = 1 +

∑

d∈D

i?d.o!d.Bio
ε .

A solution can be formulated as follows. The sender S reads a datum d at
port i and passes on a sequence d0, d0, d0, . . . of copies of this datum with an
appended bit 0 to K until an acknowledgement 0 is received at port l. Then,
the next datum is read, and sent on together with a bit 1; the acknowledgement
then is the reception of a 1. The following data element has, in turn, 0 as an
appended bit. Thus, 0 and 1 form the alternating bit.

The process K denotes the data transmission channel, passing on frames of
the form d0, d1. K may corrupt data, however, passing on ⊥ (an error message;
thus, it is assumed that the incorrect transmission of d can be recognized, for
instance, using a checksum).

The receiver R gets frames d0, d1 from K, sending on d to port o (if this was
not already done earlier), and the acknowledgement 0 resp. 1 is sent to L.

The process L is the acknowledgement transmission channel, and passes bits
0 or 1, received from R, on to S. L is also unreliable, and may send on ⊥ instead
of 0 or 1.

The processes S, K, R, and L can be specified by means of automata or by
means of recursive specifications. Let D be a finite data set, define the set of
frames by F = {d0, d1 | d ∈ D}, and let τ be the internal action. The channels
K and L are given by the following equations.

K = 1 +
∑

x∈F

s?x.(τ.k!x.K + τ.k!⊥.K)

L = 1 +
∑

b=0,1

r?b.(τ.l!b.L + τ.l!⊥.L)

The action τ serves to make the choice non-deterministic: the decision
whether or not the frame will be corrupted is internal to the channel, and cannot
be influenced by the environment. In branching bisimulation, the treatment of
τ will entail that these specifications are not bisimilar to the ones where the
τ -steps are just removed.

The sender S and the receiver R are given by the following recursive speci-
fications (b = 0, 1 and d ∈ D). We write b for 1 − b.

S = S0

Sb = 1 +
∑

d∈D

i?d.Sdb

Sdb = s!db.(l?b.Sdb + l?⊥.Sdb + l?b.Sb)
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and

R = R1

Rb = 1 + k?⊥.r!b.Rb +
∑

d∈D

k?db.r!b.Rb +
∑

d∈D

k?db.o!d.r!b.Rb

Now an expression for the whole system is

∂s,k,l,r(S ‖ K ‖ L ‖ R),

where ∂s,k,l,r will block all sends and receives at ports s, k, l, r, enforcing syn-
chronisation at these ports.

Now by means of the operational rules we can derive the automaton in
Figure 3.13 for the complete system. In the first half of the automaton, we use
a data-element d, in the second half e. The automaton should show a branching
over D at the exit points.

i?d

i?e

s!?d0

s!?e1

τ

τ

k!?d0

k!?e1

o!d

o!e

r!?0

r!?1 τ

τ

l!?0

l!?1 τ

τ

τ

τ

k!?⊥

l!?⊥

k!?⊥

l!?⊥

r!?1

s!?d0

r!?0

s!?e1

τ

τ

τ

τ

τ
τ

τ
τ

l!?⊥
k!?⊥

l!?⊥k!?⊥

l!?1

k!?d0

l!?0

k!?e1

Figure 3.13: Automaton of the ABP ∂s,k,l,r(S ‖ K ‖ L ‖ R).

Next, we want to hide the communications at the internal ports, we want
to turn communications at ports s, k, l, r into τ . Indeed, all τ -steps can be
removed, and we can show branching bisimilarity with the buffer of capacity
one:

Bio
ε

↔b τs,k,l,r(∂s,k,l,r(S ‖ K ‖ L ‖ R)).

Notice that the notion of branching bisimilarity embodies a form of fairness :
after a number of failures of correct communication, eventually a successful
communication will take place, the channel cannot be totally defective.
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Exercises

3.5.1 Suppose a sender process is given by

S = 1 +
∑

d∈D

i?d.l!d.l?ack .S

(here, ack is an acknowledgement). Consider three different receiver
processes:

R1 = 1 +
∑

d∈D

l?d.o!d.l!ack .R1

R2 = 1 +
∑

d∈D

l?d.l!ack .o!d.R2

R3 = 1 +
∑

d∈D

l?d.(o!d.1 ‖ l!ack .1) · R3

Draw automata for the sender and each of the receivers. Also draw
automata for the three processes ∂l(S ‖ Ri) (i = 1, 2, 3). Take D =
{0, 1} if you find this easier.

3.5.2 In this exercise, a simple communication protocol is considered. Data
(from some finite data set D) are to be transmitted from a sender S to
a receiver R through some unreliable channel K (see Figure 3.14).

S K R
i s r o

Figure 3.14: A simple communication network.

The channel may forward the data correctly, or may completely destroy
data. The sender will send a data element until an acknowledgement
ack is received. Consider the following specifications for S, K, and R:

S = 1 +
∑

d∈D

i?d.Sd,

Sd = s!d.Sd + s?ack .S (for all d ∈ D),

R = 1 +
∑

d∈D

r?d.o!d.R + r!ack .R,

K = 1 +
∑

d∈D

s?d.(τ.K + τ.r!d.L),

L = 1 + r?ack .(τ.L + τ.s!ack .K).

Draw the automaton of the process ∂s,r(S ‖ K ‖ R). Does this commu-
nication protocol behave correctly?

3.5.3 Verify that the alternating bit protocol of Figure 3.13 is branching
bisimilar to the buffer of capacity one:

Bio
ε

↔b τs,k,l,r(∂s,k,l,r(S ‖ K ‖ L ‖ R)),
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by constructing a branching bisimulation.



Chapter 4

Push-Down Automata

In the previous chapters, we studied finite automata, modeling computers with-
out memory. In the next chapter, we study the general model of computers
with memory. In the current chapter, we study an interesting class that is in
between: a class of automata with a memory in the form of a stack, so-called
push-down automata. We link the class of push-down automata to the class
of recursive specifications over Sequential Algebra SA. The class of languages
associated with push-down automata is often called the class of context-free
languages. This class is important in the study of programming languages, in
particular in parsing.

4.1 Push-down languages and processes

We consider an abstract model of computer with a memory in the form of a
stack : this stack can be accessed only at the top: something can be added on
top of the stack (push), or something can be removed from the top of the stack
(pop). In Figure 4.1, we modify Figure 2.1 by adding a stack S. From the start,
we allow internal moves τ , that consume no input symbol but can modify the
stack.

AutomatonInput yes/no

S

Figure 4.1: Abstract model of a push-down automaton.

Definition 4.1 (Push-down automaton). A push-down automaton M is a six-
tuple (S,A,B,→, ↑, ∅, ↓) where:

1. S is a finite set of states,

81
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2. A is a finite input alphabet,

3. D is a finite data alphabet,

4. → ⊆ S × (D ∪ {ε}) × (A ∪ {τ}) × D∗ × S is a finite set of transitions or
steps,

5. ↑ ∈ S is the initial state,

6. ↓ ⊆ S is the set of final states.

If (s, d, a, x, t) ∈ → with d ∈ D, we write s
d,a,x
−→ t, and this means that the

machine, when it is in state s and d is the top element of the stack, can consume
input symbol a, replace d by the string x and thereby move to state t. Likewise,

writing s
ε,a,x
−→ t means that the machine, when it is in state s and the stack is

empty, can consume input symbol a, put the string x on the stack and thereby
move to state t.

Example 4.2. Consider the push-down automaton in Figure 4.2. When started
in the initial state with empty stack, it can either go to the final state with a
τ -step, or execute a number of a’s (at least one), each time putting an additional
1 on the stack. After a number of a’s, the same number of b’s can be executed,
each time removing a 1 from the stack. When the stack is empty, a τ -transition
to the final state can be taken. We see that the number of b’s executed must
equal the number of a’s executed, and so we have the idea that this push-down
automaton accepts exactly the strings anbn, for n ≥ 0.

↑ s

t↓

ε, a, 1

1, b, ε

ε, τ, ε

ε, τ, ε

1, a, 11

1, b, ε

Figure 4.2: Example push-down automaton.

At any point in an execution, the state of a push-down automaton is given
by a pair (s, x), where s ∈ S is the current state and x ∈ D∗ is the current
contents of the stack. In the initial state, the stack is empty, and in order to
terminate, the stack must again be empty.

To give an example, in the push-down automaton in Figure 4.2 we can write
down the following execution:

(↑, ε)
a

−→ (s, 1)
a

−→ (s, 11)
b

−→ (t, 1)
b

−→ (t, ε)
τ

−→ (↓, ε) ↓ .

We can display all possible executions in the following transition system, see
Figure 4.3. This is the transition system that is determined by the push-down
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automaton, denoting the process of the push-down automaton. Notice that
the τ -step on the bottom is inert, but the τ -step on the left is not, and so this
process is not branching bisimilar to the process in Figure 2.6 (but it is language
equivalent).

↑, ε s, 1 s, 11 s, 111

↓, ε t, ε t, 1 t, 11

a

τ

a a

b b b

bbτ

a

b

Figure 4.3: The process of the example push-down automaton.

It is not so difficult to give a push-down automaton of which the process is
the counter of Figure 2.6. See Figure 4.4.

ε, a, 1 1, b, ε

1, a, 11 1, b, ε

Figure 4.4: Variant of example push-down automaton.

Definition 4.3. Let M = (S,A,D,→, ↑, ↓) be a push-down automaton. The
transition system or process of M is defined as follows:

1. The alphabet is A ∪ {τ}, the set of states is {(s, x) | s ∈ S, x ∈ D∗};

2. (s, dy)
a

−→ (t, xy) iff s
d,a,x
−→ t, for all y ∈ D∗;

3. (s, ε)
a

−→ (t, x) iff s
ε,a,x
−→ t;

4. The initial state is (↑, ε);

5. (s, ε) ↓ iff s ↓.

We see that termination can only take place when the stack is empty.

Definition 4.4. Let M = (S,A,D,→, ↑, ↓) be a push-down automaton. The
language accepted by M is the language of its transition system, so:

L(M) = {w ∈ A∗ | for some s ∈ S with s ↓ we have (↑, ε)
w
→−→ (s, ε)}.

Example 4.5. Let us construct a push-down automaton for the language
{wwR | w ∈ {a, b}∗}. It is convenient to use a, b also as data symbols, so
D = {a, b}. In the initial state, a string can be read in and put on the stack.
At some point (non-deterministically) it will switch to the second state, where
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the stack will be read out again in reverse order (as a stack is last-in-first-out).
Termination takes place when the stack is empty again. See Figure 4.5. In this

Figure, z stands for an arbitrary element of D∪{ε}, so a transition
z,τ,z
−→ stands

for the three transitions
ε,τ,ε
−→,

a,τ,a
−→ and

b,τ,b
−→.

A possible execution:

(↑, ε)
a

−→ (↑, a)
b

−→ (↑, ba)
τ

−→ (↓, ba)
b

−→ (↓, a)
a

−→ (↓, ε) ↓ .

↑ ↓
z, τ, z

z, b, bz b, b, ε

z, a, az a, a, ε

Figure 4.5: L = {wwR | w ∈ {a, b}∗}.

Definition 4.6. Let L ⊆ A∗. L is a push-down language iff there is a push-down
automaton that accepts L.

Let T be a transition system. T is a push-down process iff T is branching
bisimilar to the transition system of some push-down automaton.

Example 4.7. The languages {anbn | n ≥ 0} and {wwR | w ∈ {a, b}∗} are
push-down languages. They are not regular (see Example 2.60 and 2.61.

The processes of Figure 4.3, 2.17 and 2.6 are push-down processes. They are
not regular (see Example 3.3).

Example 4.8. Let us consider the (last-in first-out) stack process itself. Given
a finite data set D, this process can execute the following actions:

• i?d, push data element d onto the stack (input at port i);

• o!d, pop data element d, if this is the element at the top of the stack
(output at port o);

• termination can occur only when the stack is empty.

It is easy to define a push-down automaton for the stack: it has a single state

which is initial and also final, and transitions
ε,i?d,d
−→ ,

d,i?e,ed
−→ ,

d,o!d,ε
−→ from this state

to itself for all d, e ∈ D.
We show the transition system of the stack in Figure 4.6 in case D = {0, 1}.

This is an infinite transition system. Moreover, no two states of this transition
system can be (branching) bisimilar, as each state has a unique path back up
to the root. Thus, the stack is a push-down process and is not regular.

Example 4.9. Consider the push-down automaton in Figure 4.7. Initially, it
can stack an arbitrary number of 1’s. Then, it executes exactly this number of
a’s before terminating. As all initial τ -steps are inert, the resulting transition
system is branching bisimilar to the transition system in Figure 4.8. We conclude
that this transition system is a push-down process, that shows infinite branching
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i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1

Figure 4.6: Stack over D = {0, 1}.

at the root. Every state on the bottom allows a different number of a-steps to
termination. This means the transition system is not (branching) bisimilar to
a finite automaton, and so this is not a regular process. However, its language
{an | n ≥ 0} is regular.

ε, τ, 1
1, τ, 11

1, τ, ε

1, a, ε

1, a, ε

Figure 4.7: Push-down automaton that generates an infinitely branching push-
down process.

a a a a

aaa

a

a

Figure 4.8: Infinitely branching process.

The definition of a push-down automaton has transitions
ε,a,x
−→ and

d,a,x
−→ for

arbitrary sequences x ∈ D∗. The notions of push-down language and push-
down process do not change if we limit the set of steps to only push and pop
transitions:

• A push transition is a transition of the form
ε,a,d
−→ or

d,a,ed
−→ (d, e ∈ D);

• a pop transition is a transition of the form
d,a,ε
−→ (d ∈ D).
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Theorem 4.10. Let L be a push-down language. Then L is also accepted by
a push-down automaton using push and pop transitions only.

Let T be a push-down process. Then T is branching bisimilar to the transi-
tion system of a push-down automaton using push and pop transitions only.

Proof. We can prove the two statements at the same time. Suppose the language
or the process is given by a push-down automaton using arbitrary transitions.
Then we can construct a push-down automaton using only push and pop tran-
sitions for the same language or process as follows.

1. Eliminate a transition of the form s
ε,a,ε
−→ t by adding a new state u, re-

placing the transition by the sequence of transitions s
ε,a,d
−→ u

d,τ,ε
−→ t (with

d just some arbitrary element in D).

2. Eliminate a transition of the form s
ε,a,x
−→ t, with x = en · · · e1 (n > 1), by

adding new states s2, . . . , sn and replacing the transition s
ε,a,x
−→ t by the

sequence of transitions

s
ε,a,e1

−→ s2

e1,τ,e2e1

−→ · · ·
en−2,τ,en−1en−2···e1

−→ sn

en−1,τ,enen−1···e1

−→ t.

3. Eliminate a transition of the form s
d,a,x
−→ t, with x = en · · · e1 (n > 0, n 6=

2), by adding new states s1, . . . , sn and replacing the transition s
d,a,x
−→ t

by transitions s
d,a,ε
−→ s1, s1

ε,τ,e1

−→ s2 and s1

f,τ,e1f
−→ s2 for all f ∈ D, and the

sequence of transitions

s2

e1,τ,e2e1

−→ · · ·
en−2,τ,en−1en−2···e1

−→ sn

en−1,τ,enen−1···e1

−→ t.

Exercises

4.1.1 Construct a push-down automaton for the following languages over A =
{a, b, c}.

(a) L = {anbn+mcm | n ≥ 0, m > 0};

(b) L = {w | #a(w) < #b(w)};

(c) L = {w | #a(w) + #b(w) = #c(w)}.

4.1.2 Give a push-down automaton for each of the following languages:

(a) L = {anb2n | n ≥ 0};

(b) L = {ambn | m, n ≥ 0, m 6= n};

(c) L = {ambn | 2m = 3n + 1};

(d) L = {ambn | m ≥ n, (m − n) mod 2 = 0}.

4.1.3 Give a push-down automaton for each of the following languages:

(a) L = {anb2ncm | n > 0, m > 0};

(b) L = {anbmc2m+n | n > 0, m > 0};
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ε, a, a b, a, ε

a, b, b

b, b, b

ε, a, ε

Figure 4.9: Push-down automaton for Exercise 5.

(c) L = {anbmci | 0 ≤ n + m ≤ i};

(d) L = {ambian | i = m + n};

(e) L = {wcn | w ∈ {a, b}∗, n = #a(w) ∨ n = #b(w)}.

4.1.4 Let L = {anbncn | n ≥ 0}. Give a push-down automaton for the
language L.

4.1.5 What language is accepted by the push-down automaton shown in Fig-
ure 4.9?

4.1.6 Prove that the push-down automaton in Figure 4.5 does not accept any
string not in {wwR}.

4.1.7 Give a push-down automaton with just one state, that has the transition
system of Figure 2.9 as its transition system.

4.1.8 Prove that the push-down automaton constructed in the proof of The-
orem 4.10 has a transition system that is branching bisimilar to the
push-down automaton started out from, by showing that all added τ -
steps are inert.

4.2 Recursive specifications over SA

In Definition 3.1, we defined the Sequential Algebra SA, and provided opera-
tional rules and laws for this algebra. In Example 3.3, we already saw that
by means of a recursive specification over SA, we can define certain nonregular
processes. Now we consider this class, so given is a finite set of names N and a
set of recursive equations over these names. We combine the operational rules
of Tables 1 and 4 and the rules for sequential composition in Table 7, and we
also combine the laws of Tables 2, 3, 8 and Table 9. Moreover, we use τ -steps.

A language that is generated by a recursive specification over SA is often
called context-free. The origin of this name comes from the fact that the left-
hand sides of the equations are single variables. These variables can be replaced
by their right-hand sides, regardless of the context in which they appear.

Obviously, every recursive specification over MA is also a recursive speci-
fication over SA, so every regular language is also context-free. We will find
that some languages that are not regular are context-free. Also, we find new
specifications for regular languages. We will establish that every context-free
language is push-down, and that every push-down language is context-free.
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In the case of processes, the relationship between processes generated by
recursive specifications over SA and push-down processes is not so straightfor-
ward. We will only establish a partial result.

Example 4.11. The linear specification S = 1 + a.S has the automaton with
one state that is a final state, and an a-loop. Its language is {an | n ≥ 0}, and
the automaton denotes a regular process. Now consider the specification

S = 1 + S · a.1.

By means of the operational rules, we derive the transition system in Figure 4.8:
from S ↓ we infer S

a
−→ 1, from which we infer S · a.1

a
−→ 1 · a.1 and so

S
a

−→ 1 · a.1 etc.. We saw this is a push-down process, not a regular process,
which has a regular language.

Such infinitely branching transition systems are difficult to work with. When
the set of states reachable from the initial state in one step is finite, it is easier
to fix the initial part of the state space.

Example 4.12. Add one name S to SA and consider the following recursive
equation:

S = 1 + a.S · b.1.

We infer S ↓ and S
a

−→ S · b.1. Considering state S · b.1, we infer S · b.1
b

−→ 1

and S ·b.1
a

−→ S ·b.1 ·b.1. Continuing in this way, we see that we obtain exactly
the transition system of Figure 2.6. This process is push-down and non-regular,
and its language {anbn | n ≥ 0} is push-down and non-regular.

The difference between the two recursive specifications in the previous ex-
amples is that in the second example, the variable S on the right-hand side is
preceded by a, and in the first example, it is not preceded by any action. We
say that in the second example, the variable S on the right-hand side is guarded.
In the first example, the unguarded S on the right-hand side allows to derive a
new step over and over again, thereby causing infinite branching. The example
in Figure 4.7 shows that τ cannot be considered a guard, as such τ -steps might
be inert and could be removed.

Definition 4.13. We call the occurrence of a variable in the right-hand side
of an equation guarded if this occurrence is in the scope of an action-prefix
operator, if this variable is preceded by an element of the alphabet A. Thus, in
the term a.X · Y + b.(X + c.Y · X) + Z · Z + τ.Z, all occurrences of X and Y
are guarded, and all occurrences of Z are unguarded.

Consider a recursive specification over SA with variables N . If Q occurs
unguarded in the equation of P , we write P  Q. If the relation  contains a
cycle, we call the recursive specification unguarded. Otherwise, it is guarded.

The second specification in Example 4.11 is unguarded as S  S, the spec-
ification in Example 4.12 is guarded as S is guarded by a on the right-hand
side.

In the examples we have seen so far, the right-hand side of each equation is
presented as a sum of one or more summands, each of which does not contain a
+. Thus, each right-hand side is written without brackets, as a sum of sequen-
tial terms. This format will turn out to be most useful in the sequel. Every
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recursive specification can be brought into this form, by adding extra variables
if necessary, and using the right distributivity over sequential composition over
choice. To give an example, if we have an equation

X = A · (B + C) · D,

we add a new variable Y , and replace this equation by

X ↔ A · Y

Y ↔ B · D + C · D.

In the sequel, we will assume that all our recursive specifications are in this
form.

Definition 4.14. A sequential term is a term that does not contain a + op-
erator, so it only contains action prefix, sequential composition, 1 and 0. We
say a recursive specification is in sequential form if each right-hand side of each
equation is a sum of sequential terms.

Theorem 4.15. For each recursive specification over SA, there is a bisimilar
recursive specification in sequential form.

Theorem 4.16. Let the transition system M be given by a guarded recursive
specification over SA. Then M is finitely branching.

Proof. Let M be given by a guarded recursive specification over SA. We can
assume the specification is in sequential form. If some of the sequential terms on
the right-hand side start with a variable, or a variable preceded by an inert τ ,
replace this variable by its right-hand side, and again use the distributive law to
remove all brackets. Eventually, as the specification is guarded, this procedure
must stop, and all the terms of the initial variable will start with an action.
Then, all steps exiting the initial state can be read off, and we can see there are
only finitely many. The resulting states are denoted by a sequential term. The
procedure can be repeated for these sequential terms, and we obtain a finitely
branching transition system.

As the unguarded recursive specification in Example 4.11 has a transition
system that is not bisimilar to any finitely branching transition system, it cannot
be given by a guarded recursive specification.

Example 4.17. Add one name S to SA and consider the following recursive
equation:

S = 1 + a.S · b.S.

This recursive specification is guarded: the first S on the right-hand side is
guarded by a, the second by both a and b. The specification is also in sequential
form. With the operational rules we obtain S ↓ and S

a
−→ S · b.S. Reasoning as

above, we obtain the transition system of Figure 2.9, and so this is a push-down
process. Also, we have a recursive specification of the non-regular language
{w ∈ A∗ | #a(w) = #b(w) and for all prefixes v of w we have #a(v) ≥ #b(v)}.
As a consequence, this is also a non-regular process.
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As we argued before, this process can be seen as a counter, where a denotes
an increment and b a decrement. We can also interpret a as an input and b as
an output, and then generalize this specification as follows:

S = 1 +
∑

d∈D

i?d.S · o!d.S.

If the set D is a singleton, we just have a relabeling of the transition system
of Figure 2.9, but if D = {0, 1} we get the transition system in Figure 4.10,
showing the sequential form in each state of Figure 4.6. We see this is the stack.
Thus, we have a guarded recursive specification of the push-down process stack.

S

S · o!0.S S · o!1.S

S · o!0.S · o!0.S S · o!1.S · o!1.SS · o!1.S · o!0.S S · o!0.S · o!1.S

i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1

Figure 4.10: Stack over D = {0, 1}.

Example 4.18. Consider the recursive equation

S = 1 + a.S · b.S + S · S.

This recursive specification is unguarded, as both S’s occur unguarded in the
second summand on the right-hand side. Looking at the derivations, this will
again yield a transition system that is infinite and has infinite branching. Nev-
ertheless, this transition system is bisimilar to the one in the previous example,
and this recursive specification does denote a context-free process, with the
context-free language {w ∈ A∗ | #a(w) = #b(w) and for all prefixes v of w we
have #a(v) ≥ #b(v)}.

Example 4.19. Consider the guarded recursive equation

S = τ.1 + a.S · a.1 + b.S · b.1.

Any a or b that is generated to the left of S will also be generated to the right of
S, but the order will be reversed in the resulting string. This leads us to conclude
that the language of this recursive equation is L(S) = {wwR | w ∈ {a, b}∗}. It
is also the case that this guarded recursive equation yields a push-down process,
it has the push-down automaton in Figure 4.5.
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Example 4.20. Also conversely, given a context-free language, in some cases a
recursive specification can be constructed. Consider the language L = {anbm |
n 6= m}. To find a recursive specification over SA for this language, we start
out from the equation in Example 4.12, but now with a different variable-name:

T = 1 + a.T · b.1.

Next, we have to add extra a’s on the left or extra b’s on the right. Variable A
takes care of extra a’s, variable B of extra b’s. We obtain:

S = A · T + T · B

T = 1 + a.T · b.1

A = a.(1 + A)

B = b.(1 + B)

Notice that this recursive specification is guarded: in the first equation, variables
A, B, T occur unguarded, but no variable occurs unguarded in the equations of
these variables.

A process defined by a guarded recursive specification has finite branching,
but the branching may be unbounded. We say the branching of a process p is
bounded if there is some number N such that every state of p (in the transition
system that is reduced as much as possible with respect to branching bisimula-
tion) has fewer than N outgoing edges. Otherwise, p is said to have unbounded
branching.

We give an example of a process defined by a guarded recursive specification
that has unbounded branching. We note that the unboundedness is caused by
the presence of a variable that has a 1 summand. We think, but are not able
to prove, that this is not a push-down process.

Example 4.21. Consider the following guarded recursive specification:

S = a.S · T + b.1

T = 1 + c.1.

This specification denotes a context-free process. We see S
a

−→ S · T
b

−→

1 · T
c

−→ 1. In general, we have S
an

→−→ S · T n b
−→ 1 · T n for every n ≥ 1. Now

1 · T n c
−→ 1 · T k for every k < n, k ≥ 0. This means state 1 · T n has n outgoing

edges. Also, all the states 1 · T n are different, are not (branching) bisimilar, as
1 · T n has at most n c-steps to termination. We show the transition system of
this process in Figure 4.11.

We see a process defined by a guarded recursive specification over SA can
have unbounded branching. In this case, we conjecture it is not a push-down
process either. In the example, this happened because there were states of the
form 1 · T n, where every variable in the sequence can directly contribute an
outgoing step to the state.

It is not the case that every push-down process is given by a recursive spec-
ification over SA. We will give the following example.

Example 4.22. Consider the push-down automaton in Figure 4.12. There is
no recursive specification over SA of which the transition system is branching
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a a a

b b b b

ccc

c c

c

a

c

Figure 4.11: Process defined by guarded recursive specification with unbounded
branching.

bisimilar to its transition system. We will not prove this fact. The reason that
it has no recursive specification over SA is that the pop of a 1 can lead to two
different states, a pop can take place leading to the initial state and to the final
state. We say the push-down automaton is not popchoice-free.

We remark that a recursive specification can be found, nevertheless, if we
extend the minimal algebra MA with the parallel composition operator instead
of the sequential operator. This (guarded) specification is as follows:

S = c.1 + a.(S ‖ b.1).

Using the operational rules of Table 12, we can derive a transition system.
It is easy to show it is the transition system of the push-down automaton of
Figure 4.12.

ε, a, 1
1, a, 11

1, b, ε

ε, c, ε
1, c, 1

1, b, ε

Figure 4.12: Push-down automaton that has no recursive specification over SA.

Exercises

4.2.1 Construct a push-down automaton that accepts the language generated
by the specification

S = a.a.b.1 + a.S · b.b.1.

4.2.2 Construct a push-down automaton that accepts the language generated
by the specification

S = a.b.1 + a.S · S · S.

4.2.3 For Example 4.11, write out the derivation of the transition system in
Figure 4.8, labeling each state with the appropriate term.
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4.2.4 For Example 4.12, write out the derivation of the transition system in
Figure 2.6, labeling each state with the appropriate term.

4.2.5 For Example 4.17, write out the derivation of the transition system in
Figure 2.9, labeling each state with the appropriate term.

4.2.6 For Example 4.18, argue that this specification has the same language
as the specification in Example 4.17.

4.2.7 Write out the argument in Example 4.19 in more detail.

4.2.8 Construct the initial part of the automaton of the recursive specification
in Example 4.20, and conclude it has the desired language.

4.2.9 Give a recursive specification over SA for the following languages (n ≥
0, m ≥ 0):

(a) L = {anbm | n ≤ m + 3};

(b) L = {anbm | n 6= 2m};

(c) L = {w ∈ {a, b}∗ | #a(w) 6= #b(w)};

(d) L = {w ∈ {a, b}∗ | #a(w) = 2#b(w)}.

4.2.10 Give a recursive specification over SA for the following languages (n ≥
0, m ≥ 0, k ≥ 0):

(a) L = {anbmck | n = m or m ≤ k};

(b) L = {anbmck | k = n + m};

(c) L = {anbmck | k 6= n + m};

(d) L = {anbmck | k ≥ 3};

4.2.11 Give a recursive specification over SA for the following languages:

(a) L = {anb2ncm | n > 0, m > 0};

(b) L = {anbmc2m+n | n > 0, m > 0};

(c) L = {anbmci | 0 ≤ n + m ≤ i};

(d) L = {ambian | i = m + n};

(e) L = {wcn | w ∈ {a, b}∗, n = #a(w) ∨ n = #b(w)}.

4.2.12 Let L = {anbn | n ≥ 0}. Show that L2, L and L∗ are context-free.

4.2.13 Put S = 1 + a.S + S · S. Show this specification is unguarded. Using
the operational rules, draw the transition system. Note this transition
system is infinitely branching. Next, show this transition system is
bisimilar to the transition system of T = 1 + a.T .

4.2.14 Let S = T · (a.S + b.T ) and T = 1 + a.T . Show this specification is
guarded. Using the operational rules, draw a transition system for this
process.
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4.2.15 Let S = a.S + T and T = b.T + S · S. Show this specification is
unguarded. Draw a transition system for this process by means of
the operational rules. This transition system is infinitely branching.
Show the transition system is bisimilar to the transition system of X =
a.X+b.Y, Y = b.Y +a.X . Thus, there is an equivalent guarded recursive
specification.

4.2.16 Put S = 1 + a.S + T and T = b.T + S · S. Show this specification is
unguarded. Draw a transition system for this process by means of the
operational rules.

4.2.17 Specialize the specifications of the stack for the case D = {∗}. Show
the transition system of both processes are bisimilar (after reduction
and relabeling) to the process of Example 4.17.

4.3 Parsing and ambiguity

In this section, we only look at context-free languages, so we will reason with
language equivalence. Later, we will get back to processes defined by recursive
specifications over SA and bisimulation equivalence.

As for regular languages, we can obtain each element w ∈ L(S) as a sum-
mand w1 of the starting variable S by means of three principles:

1. Expansion: replacing a variable by its right-hand side;

2. Distribution: applying distributive laws;

3. Selection of a summand.

Besides the distributive laws, also other laws will be used freely without mention.
In particular, by not writing brackets, we use implicitly the associativity of
sequential composition and the compatibility of action prefix and sequential
composition (a.(x · y) = (a.x) · y). Also the laws for 1 will be used often.

Example 4.23. Take the following (unguarded) recursive specification over SA:

S = A · B

A = 1 + a.a.A

B = 1 + B · b.1.

Then we can see as follows that aab ∈ L(S):

S ≈ A · B ≈ (1 + aaA) · B ≈ 1 · B + aaA · B & aaA · B ≈ aa(1 + aaA) · B ≈

≈ aa1·B+aaaaA·B & aa1·B ≈ aaB ≈ aa(1+B·b1) ≈ aa1+aaB·b1 & aaB·b1 ≈

≈ aa(1 + B · b1) · b1 ≈ aa1 · b1 + aaB · b1 · b1 & aa1 · b1 ≈ aab1.

In this derivation, each time the left-most variable was expanded. It is also
possible to expand the right-most variable each time there is a choice, obtaining

S ≈ A ·B ≈ A · (1+B · b1) ≈ A ·1+A ·B · b1 & A ·B · b1 ≈ A · (1+B · b1) · b1 ≈

≈ A ·1 ·b1+A ·B ·b1 ·b1 & A ·b1 ≈ (1+aaA) ·b1 ≈ 1 ·b1+aaA ·b1 & aaA ·b1 ≈
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≈ aa(1 + aaA) · b1 ≈ aa1 · b1 + aaaaA · b1 & aab1.

Whenever a string is in a language of a recursive specification, it has several
derivations, in particular it has a left-most and a right-most derivation.

Presenting derivations like this, we usually just mention the sequential terms,
and so the left-most derivation of aab ∈ L(S) is given as follows:

S ≈ A · B & aaA · B & aa1 · B ≈ aaB & aaB · b1 & aa1 · b1 ≈ aab1,

and the right-most derivation as follows:

S ≈ A · B & A · B · b1 & A · b1 & aaA · b1 & aa1 · b1 ≈ aab1.

We will pay a lot of attention to derivations in this form. Each time the symbol
& is used, a variable is replaced by one of its summands. Also in the first step,
a variable is replaced by one of its summands. We call each such replacement
one step in the derivation. Thus, in the present example, both the left-most
and the right-most derivations take 5 steps.

Theorem 4.24. Let x be a term over SA with extra names N . Then for all
strings w ∈ A∗:

w ∈ L(x) ⇐⇒ x & w1.

Given a recursive specification E over SA with initial variable S, and a
string w ∈ A∗, we want to determine whether w ∈ L(S), i.e. we want to know
whether there is a derivation S & w1. The procedure of determining whether
or not there is such a derivation is called parsing.

The simplest way of parsing is to consider all possible left-most derivations
and compare them with the string that is being parsed. This is called exhaustive
search parsing or brute force parsing. We look at an example.

Example 4.25. Consider the (unguarded) recursive specification

S = 1 + a.S · b.1 + b.S · a.1 + S · S

and the string w = aabb. We will only look at sequential terms. As the first
step, we can consider the four summands:

1. S & 1,

2. S & aS · b1,

3. S & bS · a1,

4. S & S · S.

Of these four possibilities, the first and the third can never lead to aabb, so we
can discard these derivations. The second and the fourth can be expanded, for
the second we obtain as the second step:

1. S & a1 · b1 ≈ ab1,

2. S & a(aS · b1) · b1 ≈ aaS · bb1,

3. S & a(bS · a1) · b1 ≈ abS · ab1,
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4. S & aS · S · b1.

The left-most derivations of the fourth possibility have the following as the
second step:

1. S & 1 · S ≈ S,

2. S & (aS · b1) · S ≈ aS · bS,

3. S & (bS · a1) · S ≈ bS · aS,

4. S & S · S · S.

Again, several possibilities can be discarded. In the third step, we find the string
we are looking for as one of the eight possibilities:

S & aS · b1 & aaS · bb1 & aa1 · bb1 ≈ aabb1,

and thus we see aabb ∈ L(S).

We see that this is a cumbersome method of determining whether a certain
string is in a language given by a recursive specification, as there can be very
many derivations. When a string is in the language, eventually a derivation will
be found, but if it is not, the procedure may go on indefinitely, never producing
a result. This is the reason we will be looking at recursive specifications in a
particular form, so that we are sure that parsing will always produce a result in
a number of steps.

Suppose that we have given a recursive specification where every right-hand
side of every variable does not contain a summand 1 and does not contain a
summand which is a single variable or contains a 0. Then, every summand
will contain at least one element of A or at least twice an element of N . As
a result, every sequential term produced by the procedure above will make
progress towards the string to be parsed: every time a summand is chosen with
one alphabet element one more element of the resulting string is fixed, and every
time a summand is chosen with two variables, the length of the resulting string
will need to increase.

Example 4.26. Consider the (unguarded) recursive specification

S = a.b.1 + b.a.1 + a.S · b.1 + b.S · a.1 + S · S.

It has the same language as the previous example, except that it does not accept
the empty string. Every summand of the right-hand side has two elements of A
or twice an element of N . Then, given any string w, we know at least after |w|
rounds in the procedure above whether or not it is in the language.

In general, whenever a recursive specification has no 1 summands, no 0-
containing summands and no single variable summands, then given a string
in A∗ we know at least after 2|w| rounds whether or not this string is in the
language. As an example, for the recursive specification S = a1 + b1 + S · S,
every w ∈ {a, b}∗ is in L(S), and the derivation S & w1 has exactly length
2|w| − 1.
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We will see later that every recursive specification can be rewritten using
language equivalence such that summands containing 0 of the form 1 or a sin-
gle variable do not occur (disregarding the empty string). Then parsing by
exhaustive search can always be done. Still, the method can be very inefficient,
and many methods have been developed to do parsing more efficiently in many
cases.

We mention one of these cases explicitly.

Definition 4.27. Let E be a recursive specification over SA in sequential form
with added names N . If for every P ∈ N , the right-hand side of P only contains
summands of the form a.X (so is guarded), where X is a sequential composition
of names in N , and every summand of P starts with a different a ∈ A, then we
call E simple.

Example 4.28. The (guarded) specification S = c.1+a.S +b.S ·S is simple, as
1 is considered as the sequential composition of zero variables. The (guarded)
specification S = c.1 + a.S + b.S · S + c.S · S is not simple, as there are two
summands starting with c.

Given a simple recursive specification, a string w can be parsed in |w| steps:
at every step we know which summand to take, and at every step exactly one
extra element of A is determined. Unfortunately, it is not the case that every
recursive specification over SA is language equivalent to a simple one.

Whenever a string is in the language given by a recursive specification, there
is a left-most derivation for it. Sometimes, there is more than one left-most
derivation. This is called ambiguity.

Definition 4.29. Let E be recursive specification over SA, then E is called
ambiguous if some string w in the language of E has more than one left-most
derivation.

Example 4.30. Consider the specification given by S = 1 + a.S · b.1 + S · S.
The string aabb has two different left-most derivations:

S & aS · b1 & aaS · b1 · b1 ≈ aaS · bb1 & aa1 · bb1 ≈ aabb1,

and

S & S · S & 1 · S & aS · b1 & aaS · bb1 & aa1 · bb1 ≈ aabb1.

Here, ambiguity is quite harmless but there are situations where different
parsing leads to different results. In arithmetic, an expression a ∗ b + c can
be parsed as (a ∗ b) + c or as a ∗ (b + c). This can be expressed in terms of a
recursive specification as follows, writing m for multiplication and p for addition.
We have N = {E, I} (Expression, Identifier) and A = {a, b, c, m, p, (, )}. Note
that brackets are used as elements of A.

E = I + E · m.E + E · p.E + (.E·).1

I = a.1 + b.1 + c.1

We have the following derivations:

E & E · mE & a1 · mE · pE & amb1 · pc1 ≈ ambpc1,
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E & E · pE & E · mE · pc1 & a1 · mb1 · pc1 ≈ ambpc1.

The first one begins with a multiplication, the second one begins with an addi-
tion.

The given recursive specification can be disambiguated by introducing extra
variables T, F (Term, Factor) as follows:

E = T + E · p.T

T = F + T · m.F

F = I + (.E·).1

I = a.1 + b.1 + c.1

Now string ambpc allows only one derivation:

E & E·pT & T ·pF & T ·mF ·pI & F ·mI·pc1 & I·mb1·pc1 & a1·mbpc1 ≈ ambpc1.

However, such a disambiguation is not always possible. We can give an
example of a specification that has ambiguity that cannot be removed, but we
cannot prove at this point that this is the case.

Example 4.31. Consider the guarded recursive specification

S = T + U

T = V · C

U = A · W

V = 1 + a.V · b.1

W = 1 + b.W · c.1

A = 1 + a.A

C = 1 + c.C.

We see L(T ) = {anbncm | n, m ≥ 0} and L(U) = {ambncn | n, m ≥ 0},
so L(S) is the union of these two. Now any string anbncn ∈ L(S) has two
different derivations, one starting with S & T , the other starting with S & U .
We claim (without proof) that there is no disambiguous recursive specification
over SA with language L(S). This has to do with the fact that the language
{anbncn | n ≥ 0} is not context-free, a fact that we will prove later.

In order to define the syntax of programming languages, often recursive
specifications are used, usually in the form of Backus-Naur Form or BNF. In
this presentation, variables are identifiers enclosed by angle brackets, ::= is used
instead of =, | instead of +, the · symbol is left out and just a is written for a.1.
Thus, the arithmetic specification of Example 4.30 could be written as follows:

〈expression〉 ::= 〈term〉 | 〈expression〉p〈term〉

〈term〉 ::= 〈factor 〉 | 〈term〉m〈factor 〉

〈factor 〉 ::= 〈identifier 〉 | (〈expression〉)

〈identifier 〉 ::= a | b | c
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Exercises

4.3.1 Give a derivation of aabbbb ∈ L(S), if S is given by

S = 1 + A · B

A = a.B

B = S · b.1.

Can you describe L(S)?

4.3.2 Show that aabbabba 6∈ L(S), if S is given by

S = a.a.B

A = 1 + b.B · b.1

B = A · a.1.

4.3.3 Find a simple recursive specification for L(a.a.(a.1)∗ · b.1 + b.1).

4.3.4 Find a simple recursive specification for L = {anbn | n > 0}.

4.3.5 Show that every simple recursive specification is unambiguous.

4.3.6 Show that the following recursive specification is ambiguous. Then
construct an unambiguous recursive specification that has the same
language.

S = A · B + a.a.B

A = a.1 + A · a.1

B = b.1

4.3.7 Show that every regular language has an unambiguous specification.

4.3.8 Show that the specification S = 1 + a.S · b.S + b.S · a.S is ambiguous.

4.4 Simplification of specifications and normal

forms

Sometimes, it has advantages of having a recursive specification in a particular
form. In the chapter on finite automata, a specification in linear form had a
more direct interpretation as an automaton. In this chapter, it was advantageous
to present recursive specifications in sequential form. Considering parsing, we
could enforce progress by assuming that every summand of every right-hand
side was not 1,0 or a single variable.

We start out with a simple observation that is valid in bisimilarity. Every
sequential term can be written as a sequential composition of variables, by
adding extra variables if necessary. Thus, if we have a term a.B · c.D, add
variables A = a.1 and C = c.1 and we can write A · B · C · D.

Next, we describe a simple procedure valid in language equivalence, but not
in bisimilarity. This procedure is called removing zeroes. By using the laws of
language equivalence, any sequential term containing 0 can be replaced by 0
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(in bisimilarity, a term like a.0 cannot be simplified). Next, as long as there
are other summands on the right-hand side of an equation, a 0 summand can
be left out. If P = 0 is an equation, P can be replaced by 0 throughout, and
the equation can be left out. The procedure can then be repeated, until all 0

are removed (the specification might become empty, have no equations left). To
give an example, removing zeroes in

S = A · B + a.a.A

A = A · 0 · A + A · a.1

B = b.0

leads to

S ≈ a.a.A

A ≈ A · a.1.

In the sequel, we usually assume a specification we start out from contains no
zeroes.

Next, we consider a simple procedure valid in bisimilarity. This procedure
is removing unreachable variables. Variables that cannot be reached from the
initial variable can be left out, together with their equations. Consider the
following example.

Example 4.32. Consider the recursive specification

S = 1 · A · b.1

A = A · S + B · 1

B = B + S

C = 1 + c.C.

From S, A can be reached, as it occurs in the right-hand side of the equation of
S. From A, A, S, B can be reached, and from B, B, S can be reached. We see
C can never be reached, and its equation can be left out.

Theorem 4.33. Let E be a recursive specification over SA with initial variable
S. Then S is bisimilar to the initial variable of the specification obtained by
leaving out all equations of unreachable variables.

Proof. The set of reachable variables can be determined as follows:

1. A variable that occurs in a sequential summand of the initial variable is
reachable;

2. A variable that occurs in a sequential summand of a variable that can be
reached from the initial variable, is also reachable.

In this way, the set of reachable variables can be determined inductively.

Finding the transition system by means of the operational rules, every reach-
able state will be denoted by a term that only contains reachable variables.
Never, a term containing an unreachable variable can occur.
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Another procedure valid in bisimilarity is removing single variable sum-
mands. If the right-hand side of the equation of P has a summand Q (P, Q ∈ N ),
so P & Q, we say P has a single variable summand Q. This was already dealt
with in Theorem 2.39. We just give an example.

Example 4.34. Consider the following recursive specification:

S = A · a.1 + B

B = A + b.b.1

A = a.1 + b.c.1 + B.

Now, expand all single variable summands until no new summands are obtained,
and then leave them out.

S ↔ A · a.1 + A + b.b.1 ↔ A · a.1 + a.1 + b.c.1 + B + b.b.1 ↔

↔ A · a.1 + a.1 + b.c.1 + b.b.1

B ↔ a.1 + b.c.1 + B + b.b.1 ↔ a.1 + b.c.1 + b.b.1

A ↔ a.1 + b.c.1 + A + b.b.1 ↔ a.1 + b.c.1 + b.b.1.

Next, we consider the Greibach normal form.

Definition 4.35. Let a recursive specification E over SA with added names N
be given. We say E is in Greibach normal form if each right-hand side of each
equation has one of the following forms:

1. The right-hand side is 0 or 1;

2. The right-hand side consists of a number of summands, each of which is
either 1 or of the form a.X , with a ∈ A and X a sequential composition
of variables, X ∈ N ∗.

Theorem 4.36. Let E be a guarded recursive specification over SA. Then E
is bisimulation equivalent to a specification in Greibach normal form.

Proof. By removing single variable summands, we can assume every right-hand
side is a sum of sequential terms, each of which is a constant or contains at least
two elements. By expansion and distribution, we can write each sequential term
so that it starts with an action (here, we use guardedness). The final step is
adding extra variables, in case a prefixing occurs within a sequential term, so if
we have a.A · b.C, add B = b.1 and write a.A · B · C.

In case we start out from an unguarded recursive specification, this procedure
fails, as we cannot make progress when a variable P has a sequential summand
that starts with P . This is called head recursion. We cannot continue under
bisimulation, but we can continue under language equivalence. We will not treat
this procedure in detail, but just provide a couple of examples.

We look at a simple example: suppose we have an equation A = A ·B + a.1.
Then, if there is a derivation A & A ·B & w1 for some w ∈ L(A), then at some
point in this derivation A must be expanded with a.1. Then we may as well do
this expansion first, and do the rest of the derivation following. This means we
can replace the given equation by:

A ≈ a.C

C ≈ 1 + B · C,
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where C is some new variable. We see C can generate any number of B’s that
was generated by expanding A using the first summand. We call this procedure
removal of head recursion.

To give another example, if A = A · B + a.D, then we replace by

A ≈ a.D · C

C ≈ 1 + B · C.

A final example: if A = A · B + A · B′ + D · E + a.1 + b.1, replace by

A ≈ D · E · C + a.C + b.C

C ≈ 1 + B · C + B′ · C.

Theorem 4.37. Let E be a recursive specification over SA. Then there is a
guarded language equivalent recursive specification F .

Proof. The examples provided can be turned into a general procedure. We leave
out the details.

In the literature, Greibach normal form is usually further restricted and does
not allow 1 summands also. This can be achieved in addition with the procedure
of removing 1 summands. This procedure is only valid in language equivalence.

The advantage of the Greibach normal form without 1 summands is that it
is straightforward to generate the corresponding transition system. Every state
in the transition system is a sequence of variables, and the outgoing edges of
any state correspond directly to the summands of the leading variable.

Thus, every state of a process in Greibach normal form without 1 summands
can be seen as a sequence of variables. If the first variable of such a sequence
does not have a 1 summand, then the following variables cannot contribute an
outgoing step to the state, and the number of outgoing steps is the number of
summands of the leading variable. Thus, if such a process is given by a guarded
recursive specification over variables N , and for all states X ∈ N ∗ with more
than one variable, the leading variable does not have a 1 summand, then for all
states the number of outgoing steps is the number of summands of the leading
variable. In such a case, the process has bounded branching (as a bound, take
the maximum of the number of summands of all variables).

Also conversely, if a process defined by a guarded recursive specification over
SA has bounded branching, then it has a recursive specification over SA, where
every state either is a single variable or the leading variable does not have a 1

summand. We will not prove this, but just provide an example.

Example 4.38. For the stack process of Example 4.10, the initial state has |D|
outgoing steps (labeled i?d for every d ∈ D), and all other states have |D| + 1
outgoing steps (besides all inputs the output of the top of the stack). Thus, the
stack has bounded branching. Nevertheless, there is a state S·!d.S where S has
a 1 summand.

We can remedy this by defining new variables Td (for every d ∈ D) by
Td = S·!d.1. Then, we get a new specification over the extended set of variables
as follows:

S = 1 +
∑

d∈D

i?d.Td · S

Td = o!d.1 +
∑

e∈D

i?e.Te · Td.
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The state where the stack contents is d1d2 . . . dn is now given by the sequence
of variables Td1

· . . . · Tdn
· S, and the Td do not have 1 summands.

On occasion, we will need to restrict the Greibach normal form further, in a
different way.

Definition 4.39 (—Restricted Greibach normal form). We say a recursive spec-
ification in Greibach normal form is restricted if for every summand a.X , the
sequence X ∈ N ∗ contains at most two variables.

It is straightforward to reduce a recursive specification in Greibach normal
form to one in Restricted Greibach normal form: we add a new variable for every
sequence of two variables occurring in some summand and do substitutions from
left to right. In this way, the length of all sequences is reduced by at least one.

We continue with procedures preserving only language equivalence, not bisim-
ilarity. First of all, we remark that often, we will assume that the empty string
is not in the language considered. This is not an important restriction: if E is
a recursive specification with initial variable S, then on the one hand, adding a
new equation S′ = 1 + S to E will result in L(S′) = L(S) ∪ {ε}; on the other
hand, the procedure removing 1-summands to be discussed further on will result
in the language L(S) − {ε}.

We first discuss the procedure removing nonproductive variables.

Example 4.40. Consider the recursive specification

S = 1 + a.S · b.1 + A

A = a.A

B = 1.

The variable A is nonproductive, as from A, a final state can never be reached.
Remark that B is unreachable.

Definition 4.41. Let E be a recursive specification over SA with variables N
and initial variable S ∈ N . A variable P ∈ N is called productive iff there is a
string w ∈ L(S) such that P & w1.

This means a productive variable has a terminating derivation. A variable
that is not productive is called nonproductive. A sequential term containing a
nonproductive variable (or a 0) can never have a terminating derivation.

Example 4.42. We show how to remove nonproductive variables from the
following specification:

S = a.S + A + C

A = a.1

B = a.a.1

C = a.C · b.1.

As before, we assume that the specification is in sequential form. We identify
which variables have a terminating derivation. From the right-hand sides of A
and B we see immediately that they are productive. Also, S can lead to A, so
also S is productive. On the other hand, C only leads to C, and each derivation
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starting from C necessarily contains C. This identifies C as nonproductive.
Removing C and all summands containing C leads to the specification

S ≈ a.S + A

A ≈ a.1

B ≈ a.a.1.

Next, we can also remove unreachable variables. The right-hand side of S tells
us we can reach S and A. From A, no further variables can be reached. Thus,
we see B can never be reached from S, and we can remove B, resulting in the
specification

S ≈ a.S + A

A ≈ a.1.

We formulate this result in the form of a theorem.

Theorem 4.43. Let E be a recursive specification over SA in sequential form.
There is a language equivalent recursive specification F over SA that does not
contain any nonproductive variables.

Proof. Use the procedure outlined above to construct F from E, leaving out
the variables that are nonproductive and all sequential terms containing these
variables.

To be more precise, we determine the set of productive variables as follows:

1. A variable with a sequential summand of the form w1 is productive;

2. A variable with a sequential summand in which all occurring variables are
productive, is also productive.

In this way, the set of productive variables can be determined inductively.
Now take any string w in L(S), where S is the initial variable of E. Then

there is a derivation S & w1. Now every variable occurring in this derivation is
productive, so this derivation is entirely inside F . Conversely, every derivation
in F is trivially inside E, so E and F have the same language.

Next, we look at the procedure removing 1-summands. This procedure only
works when ε is not in the language of the recursive specification under consid-
eration.

Example 4.44. Consider the specification

S = a.T · b.1

T = 1 + a.T · b.1.

Notice ε 6∈ L(S), in fact L(S) = {anbn | n ≥ 1}. We can remove the 1-summand
of T after adding, for each summand containing T on the right-hand side, a new
summand with T replaced by 1:

S ≈ a.T · b.1 + a.b.1

T ≈ a.T · b.1 + a.b.1.

The resulting specification has the same language.
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Definition 4.45. A variable P in a recursive specification E is called nullable
iff P & 1.

Notice that variable S is nullable iff ε ∈ L(S).

The set of nullable variables can be determined inductively:

1. A variable with a 1 summand is nullable;

2. A variable with a summand that is a sequential composition of nullable
variables, is also nullable.

Example 4.46. Consider the specification

S = A · B · a.C

A = B · C

B = 1 + b.1

C = 1 + D

D = d.1.

First, we determine the set of nullable variables. As B and C have a 1-summand,
they are nullable. Next, A & B · C & 1 · 1 ≈ 1, so also A is nullable. As any
sequential term derived from S contains an a, S is not nullable (and so ε 6∈ L(S)).
Obviously, D is not nullable, it has only one derivation.

Next, for each sequential term on the right-hand side, we add a new sum-
mand, replacing each combination of nullable variables in this term by 1:

S ≈ A · B · a.C + 1 · B · a.C + A · 1 · a.C + A · B · a.1 +

+ A · 1 · a.1 + 1 · B · a.1 + 1 · 1 · a.C + 1 · 1 · a.1 ≈

≈ A · B · a.C + B · a.C + A · a.C + A · B · a.1 + A · a.1 + B · a.1 + a.C + a.1

A ≈ B · C + 1 · C + B · 1 + 1 · 1 ≈ B · C + B + C + 1

B ≈ 1 + b.1

C ≈ 1 + D

D ≈ d.1.

Next, remove all 1-summands:

S ≈ A · B · a.C + B · a.C + A · a.C + A · B · a.1 + A · a.1 + B · a.1 + a.C + a.1

A ≈ B · C + B + C

B ≈ b.1

C ≈ D

D ≈ d.1.

The resulting specification does not have any 1-summands, and has the same
language as the starting specification.

Theorem 4.47. Let E be a recursive specification over SA with initial variable
S and ε 6∈ L(S). Then there is a language equivalent recursive specification F
without 1-summands.
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Proof. Obtain F from E by following the procedure given above. Consider any
derivation S & w1, where S is the initial variable of E. Now whenever in this
derivation a step is taken by replacing a variable, say A, by 1, go back to the
step where this variable is introduced in the derivation, and replace A by 1 in
this step. If necessary, this is repeated. The result is a derivation in F , showing
that F and E have the same language.

Above, we already saw the procedure removing single variable summands
and the procedure removing unreachable variables. Since these procedure pre-
serve bisimilarity, they certainly preserve language equivalence. Putting every-
thing together, we obtain the following theorem.

Theorem 4.48. Let L be a context-free language with ε 6∈ L. Then there
is a recursive specification over SA with initial variable S that has L(S) = L
without any zeroes, any nonproductive or unreachable variables, 1-summands
or single variable summands.

Proof. As L is context-free, there is a recursive specification E with initial
variable S such that L(S) = L.

The procedures just discussed need to be applied in the correct order. First,
remove all zeroes and all 1-summands of E, next remove all single variable
summands, then remove all nonproductive variables and finally remove all un-
reachable variables.

We see that we can modify a recursive specification such that all its right-
hand summands are in a particular form. Much more can be done in this
direction. We finish this section by looking at the so-called Chomsky normal
form.

Definition 4.49. A recursive specification over SA is said to be in Chomsky
normal form if all right-hand summands are either a sequential composition of
two variables, P · Q, or a single letter of the alphabet, a.1.

Theorem 4.50. Let E be a recursive specification over SA with initial variable
S and ε 6∈ L(S). Then there is a language equivalent recursive specification F
in Chomsky normal form.

Proof. We can assume that E has no zeroes, no 1-summands and no single
variable summands. In the first step, transform E so that every summand is
either of the form a.1 or is a sequential composition of two or more variables. We
do this by introducing new variables, so e.g. if there is a summand a.a.B · c.1,
introduce variables A = a.1 and C = c.1 and write the summand as A ·A ·B ·C.
It is obvious that the transformed specification has the same language.

In the second step, again by introducing new variables, we reduce the length
of the sequential compositions of variables. If e.g. there is a summand A·B·C ·D,
introduce new variables E = B · F , F = C · D and replace the summand by
A · E. Again, the transformed specification has the same language. Moreover,
it is in Chomsky normal form.

We give an example.
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Example 4.51. Consider the following recursive specification:

S = A · B · a.1

A = a.a.b.1

B = A · c.1.

Note that ε is not in the language, as every derivation of S contains an a.
Moreover, there are no 1-summands and no single variable summands. In the
first step, we need new variables for a, b, c, call these A′, B′, C:

S ↔ A · B · A′

A ↔ A′ · A′ · B′

B ↔ A · C

A′ ↔ a.1

B′ ↔ b.1

C ↔ c.1.

In the second step, we need new variables D, E:

S ↔ A · D

A ↔ A′ · E

B ↔ A · C

A′ ↔ a.1

B′ ↔ b.1

C ↔ c.1

D ↔ B · A′

E ↔ A′ · B′.

We now have a specification in Chomsky normal form.

Exercises

4.4.1 Given is the specification

S = a.b.A · B + b.a.1

A = a.a.a.1

B = a.A + b.b.1.

Now show

S ≈ a.b.A · a.A + a.b.A · b.b.1 + b.a.1

A ≈ a.a.a.1.

4.4.2 Remove all nonproductive and unreachable variables from the following
specification:

S = a.S + A · B

A = b.A

B = A · A.
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What is the language generated?

4.4.3 Remove nonproductive and unreachable variables from

S = a.1 + a.A + B + C

A = 1 + a.B

B = A · a.1

C = c.C · D

D = d.d.d.1.

4.4.4 Remove 1 summands from

S = A · a.B + a.a.B

A = 1

B = 1 + b.b.A.

4.4.5 Remove all single variable summands, nonproductive and unreachable
variables and 1 summands from

S = a.A + a.B · B

A = 1 + a.a.A

B = b.B + b.b.C

C = B.

What language does this specification generate?

4.4.6 Give an example of a specification that has no single variable summands,
but where removal of 1 summands leads to a single variable summand.

4.4.7 Suppose we have a specification without 1 summands. Show that re-
moval of single variable summands cannot lead to a new 1 summand.

4.4.8 Suppose we have a specification without 1 summands or single vari-
able summands. Show that removal of nonproductive and unreachable
variables does not lead to 1 summands or single variable summands.

4.4.9 In Theorem 4.48, we first removed nonproductive variables, and then
unreachable variables. If we do this in the reverse order, so first remov-
ing unreachable variables, and then removing nonproductive variables,
can the resulting specification contain an unreachable variable? If not,
prove this. If so, give an example where this occurs.

4.4.10 Transform the following recursive specifications into Chomsky normal
form:

S = a.b.A · B

A = b.A · B + 1

B = 1 + A + B · A · a.1,
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and

S = A · B + a.B

A = 1 + a.a.b.1

B = b.b.A.

4.4.11 Transform the following recursive specifications into Greibach normal
form:

S = 1 + S · A + B

A = a.A + b.c.1

B = B · B

and

S = a.1 + A · B

A = b.1 + S · A

B = B · S.

4.4.12 Say S = 1+a.S ·S. This specification is guarded. Using the operational
rules, draw a transition system for this process. Show the transition sys-
tem generated has unbounded branching. Nevertheless, it is branching
bisimilar to the system of U ↔ 1 + a.U .

4.5 Push-down and context-free

Now we prove that the set of context-free languages is exactly the same as the
set of push-down languages.

Theorem 4.52. Let L be a context-free language. Then there is a push-down
automaton M with L(M) = L.

Proof. Let L be a context-free language over alphabet A. This means there is
a recursive specification over SA with initial variable S and L(S) = L. Trans-
form this recursive specification into Greibach normal form, using variables N
(this transformation is not really necessary, the following procedure can also
be defined directly but is then less clear). Now define a push-down automaton
M = (S,A,D,→, ↑, ↓) as follows:

1. S = {↑, ↓};

2. D = N ;

3. ↑
ε,τ,S
−→ ↓;

4. For each summand a.X in the right-hand side of variable P , add a step

s
P,a,X
−→ s (for a ∈ A, X ∈ N ∗);

5. For each summand 1 in the right-hand side of variable P , add a step

s
P,τ,ε
−→ s;
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6. ↓ is a final state.

Now each execution of this push-down automaton can be matched with a sum-
mand derivation of S. Notice we can only say this in language equivalence, since
we cannot be sure that all τ -steps introduced for 1-summands are inert in the
transition system. Thus, the languages coincide.

Theorem 4.53. Let M be a push-down automaton. Then there is a recursive
specification over SA with initial variable S such that L(S) = L(M).

Proof. This proof is quite complicated. In a given push-down automaton, the
possibilities given for a certain top element of the stack will depend on the state
the automaton is in, and therefore it is not enough to have a variable for each
stack element. Instead, we need a variable for each stack element, combined
with a state started from and the state where this stack element is removed
from the stack.

First of all, we can restrict a given push-down automaton M in the following
way:

1. M has exactly one final state ↓, and this state is only entered when the
stack content is ε;

2. M has only push and pop transitions (see Theorem 4.10).

Given these restrictions, we will construct a recursive specification that has
variables Vsε and Vsdt, for s, t ∈ S and d ∈ D, such that Vsε & w1 resp.
Vsdt & w1 will hold exactly when (s, ε)

w
→−→ (↓, ε) resp. there is some x ∈ D∗

with (s, dx)
w
→−→ (t, x). When we have this, the problem is solved, since, taking

V↑ε as the initial variable,

V↑ε & v1 ⇐⇒ (↑, ε)
v
→−→ (↓, ε) ⇐⇒ M accepts v.

The recursive specification is as follows: for every u ∈ S, variable Vsε has a

summand a.Vtdu for every step s
ε,a,d
−→ t and Vsdt has a summand a.1 for every

step s
d,a,ε
−→ t and for all states u, v ∈ S, variable Vsdu has a summand a.Vtev ·Vvdu

for every step s
d,a,ed
−→ t. Notice that the resulting specification need not be

guarded, as a may be τ .
In most cases, a lot of unproductive and unreachable variables are created

in this last part, but this does not affect the language generated.

We see that the equivalence between context-free languages and push-down
languages can only be established using language equivalence as the notion of
equivalence. In bisimulation equivalence, it is not the case that every push-down
process can be given by a recursive specification over SA, and also conversely, not
every recursive specification over SA yields a push-down process. Nevertheless,
carefully analyzing the proofs above, let us see what we can salvage.

Definition 4.54. • Let M be a push-down automaton that only has push
and pop transitions. We say M is popchoice-free if for all data element

d ∈ D, whenever there are transitions s
d,a,ε
−→ t and u

d,b,ε
−→ v, then t = v.

Thus, every time a d is popped, the resulting state is the same.
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• Let E be a recursive specification over SA that is in restricted Greibach
normal form (see Definition 4.39). We say E is transparency-restricted if
for all states of its transition system denoted by a sequence of variables
X ∈ N ∗, we have that only the last variable of this sequence may contain
a 1 summand.

Theorem 4.55. Let E be a transparancy-restricted recursive specification over
SA. Then there is a popchoice-free push-down automaton denoting the same
process.

Let M be a popchoice-free push-down automaton. Then there is a transparancy-
restricted recursive specification over SA denoting the same process.

Proof. For the first statement let E be a transparency-restricted recursive spec-
ification, and let S ∈ N be a name in E. We define a pushdown automaton
M = (S,A,D,→, ↑, ↓) as follows:

1. The set S consists of the names N , the symbol 1, an extra initial state ↑,
and an extra intermediate state t.

2. The set A consists of all the actions occurring in E.

3. The set D consists of the names N and the symbol 1.

4. The transition relation → is defined as follows:

(a) there is a transition ↑
ε,τ,1
−→ S;

(b) if the right-hand side of the defining equation for a name P ∈ N has

a summand a.1, then → has transitions P
1,a,ε
−→ 1 and P

Q,a,ε
−→ Q,

(c) if the right-hand side of the defining equation for a name P ∈ N has

a summand a.Q, then there are transitions P
d,a,Qd
−→ t and t

Q,τ,ε
−→ Q

(d ∈ D), and

(d) if the right-hand side of the defining equation for a name P ∈ N has

a summand a.Q · R, then there are transitions P
d,a,Rd
−→ Q (d ∈ D).

5. The set of final states ↓ consists of 1 and all variables with a 1-summand.

We leave it to the reader to check that the resulting transition systems are
branching bisimilar. Using the procedure described earlier, the set of transitions
can be limited to include push and pop transitions only. The push-down au-
tomaton resulting from the procedure is popchoice-free, for an P -pop transition
leads to state P .

The proof of the second statement is an adaptation of the proof above. Let
M = (S,A,D,→, ↑, ↓) be a popchoice-free push-down automaton. We define a
transparency-restricted specification E with for every state s ∈ S a variable Vsε

and for every state s a variable Vsdt if M has (one or more) transitions that pop
datum d leading to the state t. The defining equations in E for these names
satisfy the following:

1. The right-hand side of the defining equation for Vsε has

(a) a summand 1 if, and only if, s ↓, and
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(b) a summand a.Vtdu · Vuε whenever s
ε,a,d
−→ t and all d-pop transitions

lead to u.

2. Vsε = 0 if there are no other summands.

3. The right-hand side of the defining equation for Vsdt has

(a) a summand a.1 if, and only if, s
d,a,ε
−→ t, and

(b) a summand a.Vuev ·Vvdt whenever s
d,a,ed
−→ u and all e-pop transitions

lead to state v.

4. Vsdt = 0 if Vsdt has no other summands.

It is easy to see that the resulting specification is transparency-restricted, and
that the resulting trtansition systems are branching bisimilar.

In Chapter 2, we showed that assuming determinism for automata does not
change the family of languages generated. This is not the case in the present
situation: deterministic push-down automata accept a smaller set of languages
than non-deterministic ones.

First of all, we need to say what determinism for push-down automata ex-
actly means. For this, we use Definition 2.56:

Definition 4.56. Let M = (S,A,D,→, ↑, ↓) be a push-down automaton. M
is deterministic if its transition system is deterministic according to Defini-
tion 2.56.

A deterministic push-down language is a language accepted by a determin-
istic push-down automaton.

Example 4.57. The push-down automaton given in Figure 4.2 is not deter-

ministic, as in Figure 4.3 we have (s, 1)
b
→−→ (t, ε) and (s, 1)

b
→−→ (↓, ε). However,

the push-down automaton in Figure 4.4 is deterministic. Thus, the language
{anbn | n ≥ 0} is a deterministic push-down language. The push-down automa-

ton given in Figure 4.5 is also not deterministic, as we have (↑, a)
a
→−→ (↑, aa)

and (↑, a)
a
→−→ (↓, ε). However, here the non-determinism cannot be removed

(we have to ‘guess’ the end of the string), a deterministic push-down automa-
ton does not exist for the language {wwR}, this language is not deterministic
push-down. We will not prove this fact.

It is easy to see that every regular language is a deterministic push-down
language. Thus, we conclude that the deterministic push-down languages are
a class of languages in between the regular languages and the push-down lan-
guages, and equal to neither of them.

Deterministic push-down languages have better parsing properties than gen-
eral push-down languages. This can be seen by studying the class of recursive
specifications that generate deterministic push-down languages. We will not
pursue this matter further in this text, but just remark that all simple recursive
specifications yield deterministic push-down languages (but there are determin-
istic context-free languages that do not have a simple recursive specification).
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Exercises

4.5.1 Prove that the push-down automaton constructed in the proof of The-
orem 4.52 accepts the given language L.

4.5.2 Prove that the recursive specification constructed in the proof of Theo-
rem 4.53 generates the same language as the given push-down automa-
ton M .

4.5.3 Prove that the push-down automaton constructed in the first half of
the proof of Theorem 4.55 has a transition system that is branching
bisimilar to the transition system of the given recursive specification E.

4.5.4 Prove the the recursive specification constructed in the second half of
the proof of Theorem 4.55 has a transition system that is branching
bisimilar to the transition system of the given push-down automaton
M .

4.5.5 Construct a deterministic push-down automaton that accepts the fol-
lowing language:

L = {wcwR | w ∈ {a, b}∗}.

4.5.6 Show that if L is a deterministic push-down language and L′ is a regular
language, then L ∪ L′ is deterministic push-down.

4.6 Push-down processes

We investigate another characterization of push-down processes, that explicitly
models the interaction in a push-down automaton between the finite control
and the memory, using the tools of parallel composition, encapsulation and
abstraction. The memory will be modeled by the stack process S defined in
Figure 4.10.

Theorem 4.58. A process p is a push-down process if and only if there is a
regular process q such that

p ↔b τi,o(∂i,o(q ‖ S)).

Proof. First of all, suppose we have a process of which the transition system
consists of all executions of the push-down automaton M = (S,A,D,→, ↑, ↓).
For simplicity, assume M has push and pop transitions only. The stack S we
will use has as data set the set D plus one extra data element ∅ that will be
used to denote that the stack becomes empty, so

S = 1 +
∑

d∈D∪{∅}

i?d.S · o!d.S.

We define a regular process as follows: it will have variables Vsd, for each
s ∈ S and d ∈ D ∪ {∅}. The initial variable is V↑∅. For each pop transition

s
d,a,ε
−→ t, variable Vsd has a summand a.

∑
e∈D∪{∅}

o?e.Vte. For each push transition

s
d,a,ed
−→ t, variable Vsd has a summand a.i!d.Vte, and for each push transition
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s
ε,a,e
−→ t, variable Vs∅ has a summand a.i!∅.Vte. Whenever s ↓ every variable Vs∅

has a 1 summand. Let Sx be the stack with contents x.
Now we can see that whenever the transition system has a step (s, d)

a
−→

(t, ε), then

∂i,o(Vsd ‖ S∅)
a

−→ ∂i,o(
∑

e∈D∪{∅}

o?e.Vte) ‖ S∅)
o!?∅
−→ ∂i,o(Vt∅ ‖ S).

The abstraction operator τi,o() will rename the o!?∅-step into a τ -step that can
be seen to be inert.

Second, when the transition system has a step (s, dy)
a

−→ (t, y) with y
nonempty, say y = ey′, then

∂i,o(Vsd ‖ Sy)
a

−→
o!?e
−→ ∂i,o(Vte ‖ Sy′),

and the second step is the only step possible after a, so the resulting τ -step is
inert.

Third, if (s, dy)
a

−→ (t, edy) is a push transition, then

∂i,o(Vsd ‖ Sy)
a

−→
i!?d
−→ ∂i,o(Vte ‖ Sdy),

and again the τ -step after the a-step will be inert.
Finally, for a push transition (s, ε)

a
−→ (t, e), we have

∂i,o(Vs∅ ‖ S)
a

−→
i!?∅
−→ ∂i,o(Vte ‖ S∅).

For the other direction, assume we have a regular process given by a finite
automaton M = (S,A, ↑,→, ↓) and a stack over finite data set D. Now define
a push-down automaton as follows:

1. The set of states is S, the alphabet is A, the data alphabet D, the initial
state and final states are the same;

2. Whenever s
a

−→ t in M , and a 6= i!d, o?d, then s
d,a,d
−→ t for all d ∈ D and

s
ε,a,ε
−→ t;

3. Whenever s
i!d
−→ t in M , then s

e,τ,de
−→ t for all e ∈ D and s

ε,τ,d
−→ t;

4. Whenever s
o?d
−→ t in M , then s

d,τ,ε
−→ t.

Again we see that every move of the regular process communicating with the
stack will be matched by a move in the transition system of the push-down
automaton.

Example 4.59. Consider the push-down automaton in Figure 4.13. Here,
z ∈ {1, ε}. The resulting regular process becomes:

V↑∅ = a.i!∅.V↑1 + c.V↓∅

V↑1 = a.i!1.V↑1 + b.(o?∅.V↑∅ + o?1.V↑1) + c.V↓1

V↓1 = b.(o?∅.V↓∅ + o?1.V↓1)

V↓∅ = 1.
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↑ ↓
z, c, z

1, b, ε 1, b, ε

z, a, 1z

Figure 4.13: Example push-down automaton used to define regular process.

So a push-down process is a regular process communicating with a stack.
We know from Theorem 4.55 that for every transparancy-restricted recursive

specification, its transition system is a push-down process. Combining this with
the Theorem above, we can give a regular process that communicating with the
stack yields the same process. This regular process can also be defined directly
from the recursive specification.

Note 1. Let a transparancy-restricted recursive specification E over variables
N and initial variable U be given. A regular process can be given by means of
a recursive specification over MA. We use data set D = N ∪ {∅}. It will have
variables VPd, with P ∈ N and d ∈ D, and will communicate with a stack S
over data set D.

1. If P ∈ N has a summand 1, then VP∅ has a summand 1;

2. If P ∈ N has a summand a.1, then VP∅ has a summand a.1, and VPQ has
a summand a.

∑
d∈D

o?d.VQd for all Q ∈ N ;

3. If P ∈ N has a summand a.Q, then VPd has a summand a.VQd for all
d ∈ D;

4. If P ∈ N has a summand a.Q ·R, then VPd has a summand a.i!d.VQR for
all d ∈ D;

5. VPd = 0 in case there are no other summands.

Example 4.60. Consider the following simple example of a transparancy-
restricted recursive specification:

U = a.U · T + c.1

T = b.T + d.1.

The transformation yields:

VU∅ = a.i!∅.VUT + c.1

VUT = a.i!T.VUT + c.(o?∅.VT∅ + o?T.VTT )

VT∅ = b.VT∅ + d.1

VTT = b.VTT + d.(o?∅.VT∅ + o?T.VTT

The other variables are 0. We show the transition systems of U and τi,o(∂i,o(VU∅ ‖ S))
in Figure 4.14.

We conclude that the stack is the prototypical push-down process, as any
other push-down process can be written as a regular process communicating
with the stack.
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U

UT

UTT

1

T

TT

VU∅ ‖ S

VUT ‖ S∅

VUT ‖ ST∅
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VT∅ ‖ S
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c c

a

a

τ

c
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d d

a

a

τ

c c τ
b b

d d

a d a
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Figure 4.14: Example of a push-down process.
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Figure 4.15: Push-down process that does not have a recursive specifitation over
SA.
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Exercises

4.6.1 Do the construction of Note 1 for the process given by the recursive
specification S = a.T · S + b.1 and T = c.S + d.1.

4.6.2 Do the construction of Note 1 for the stack itself given by the recursive
specification

S = 1 +
∑

d∈D

i?d.Td · S

Td = o!d.1 +
∑

e∈D

i?e.Te · Td.

4.6.3 For the process in Figure 4.15, provide a push-down automaton. Argue
there is no recursive specification over SA for it.

4.7 Identifying languages that are not push-down

In this section, we will formulate and prove a pumping lemma for push-down
(or context-free) languages. This lemma can be used to show that certain lan-
guages are not push-down. As was the case for the pumping lemma for regular
languages, this lemma only works for infinite languages.

Theorem 4.61 (Pumping lemma for push-down languages). Let L be an in-
finite push-down language. Then there is a positive integer m such that any
w ∈ L with |w| ≥ m can be written as w = uvxyz with |vxy| ≤ m and |vy| ≥ 1
and for all i ≥ 0 we have that uvixyiz ∈ L.

Proof. As every push-down language is context-free, we can assume E to be a
recursive specification over SA with names N and initial variable S ∈ N such
that L = L(S). We can assume that E does not have any 1-summands or single
variable summands.

Suppose E has k equations, so |N | = k. As E has only finitely many
equations, there must be some number n such that every sequential summand
has at most n symbols (in A∪N ). Since L is an infinite language, we can take
a string w ∈ L of length greater than k ∗ n. Now consider a derivation S & w1.
Each sequential term in this derivation is obtained by replacing a variable with
one of its summands, so each of these terms can grow by at most n−1 symbols.
Given the length of w, there must be a variable A that is expanded at least two
times in this derivation. Take the last such repetition in the derivation.

For the second expansion, there must be a substring x of w such that A & x1.
But then, considering the first expansion, there must be substrings v, y of w such
that A & vA · y1. Repeating this, we find substrings u, z with S & uA · z1.
Putting everything together, we have

S & uA · z1 & uvA · yz1 & uvxyz1 = w1.

By repeating the second part of this derivation i times, we see that we obtain
uvixyiz ∈ L. As we have taken the last repetition, there is no repeating variable
in A & vA·y1 & vxy1 apart from A. This means |vxy| must be bounded, we can
assume |vxy| ≤ m. As E has no 1-summands and no single variable summands,
v and y cannot both be empty, so |vy| ≥ 1.
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We see that if we have an infinite push-down language L, then if we take
a string in L that is sufficiently long, then we can break this string into five
parts, and the parts to the left and right of the middle part of the string can be
pumped arbitrarily many times, staying inside L.

Example 4.62. L = {anbncn | n ≥ 0} is not push-down. For, if L were push-
down, then the pumping lemma can be applied. Take the value m given by the
pumping lemma. Take string w = ambmcm ∈ L. Then write w = uvxyz as
given by the pumping lemma. Taking i = 0, we find that since uxz ∈ L, the
number of a’s, b’s and c’s in uxz must be the same. But then also the number
of a’s, b’s and c’s in vy must be the same. This number must be at least 1 by
|vy| ≥ 1. But by |vxy| ≤ m, vy cannot contain both an a and a c. This is a
contradiction. So the assumption that L was push-down was wrong. Thus, L is
not push-down.

Example 4.63. L = {ww | w ∈ {a, b}∗} is not push-down. For, if L were
push-down, then the pumping lemma can be applied. Take the value m given
by the pumping lemma. Choose string w = ambmambm ∈ L. Then write
w = uvxyz as given by the pumping lemma. Of the four parts of which w
consists, the substring vxy can only be a substring of at most two adjacent
ones, since |vxy| ≤ m. Since |vy| ≥ 1, vy contains at least one a or at least one
b. Taking i = 0, we have that uxz ∈ L, but the string uxz will either lack at
least one a in one of the two a-groups or will lack at least one b in one of the
two b-groups. This is a contradiction. So the assumption that L was push-down
was wrong. Thus, L is not push-down.

Exercises

4.7.1 Show that the language {anbncm | n 6= m} is not push-down.

4.7.2 Show that the language {wwRw | w ∈ {a, b}∗} is not push-down.

4.7.3 Show that the following languages on A = {a, b, c} are not push-down:

(a) {anbmck | k = mn};

(b) {anbmck | k > m, k > n};

(c) {w | #a(w) < #b(w) < #c(w)};

(d) {anbm | n and m are both prime numbers }.

4.7.4 Show that the following languages are not push-down:

(a) L = {an2

| n ≥ 0};

(b) L = {anbman | n, m ≥ 0, n ≥ m};

(c) L = {wcw | w ∈ {a, b}∗};

(d) L = {am! | m ≥ 0};

(e) L = {ambn | m, n ≥ 0, m = n2}.

4.7.5 Determine whether or not the following languages are push-down:

(a) {anbmanbm | n, m ≥ 0};
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(b) {anbmambn | n, m ≥ 0};

(c) {anbmakbj | n + m ≤ k + j};

(d) {anbncm | n ≤ m}.

4.7.6 Determine whether or not the following language is push-down:

L = {vcw | v, w ∈ {a, b}∗, v 6= w}.

4.8 Properties of push-down languages and pro-

cesses

We look at some properties of the class of push-down languages and the class of
push-down processes and the class of processes defined by a recursive specifica-
tion over SA. These properties can be used to show that a language or process
is push-down or not.

Theorem 4.64. The class of processes defined by a recursive specification over
SA is closed under +, ·, ∗ and ∂i().

Proof. Let p, q be two context-free processes. Let E and E′ be two recursive
specifications over SA, with initial variables respectively S and S′, defining p, q.

1. Consider the recursive specification that consists of all the equations in
E and E′ plus the extra equation Ŝ = S + S′, with Ŝ as initial variable.
This specification defines p + q and is guarded if E and E′ are.

2. Consider the recursive specification that consists of all the equations in E
and E′ plus the extra equation Ŝ = S ·S′, with Ŝ as initial variable. This
specification defines p · q and is guarded if E is.

3. Consider the recursive specification that consists of all the equations in
E plus the extra equation Ŝ = 1 + S · Ŝ, with Ŝ as initial variable. This
specification defines p∗ and is guarded if E is.

4. For each variable P of E, let P̂ denote its encapsulation. Then, from E
we obtain a recursive specification over variables P̂ by using the laws of
Table 15 plus the additional law ∂i(x · y) ↔ ∂i(x)·∂i(y). This specification
defines ∂i(p) and is guarded if E is.

An immediate consequence of this proof is the following theorem. If we
define encapsulation also on languages, we find that the class of context-free
languages is also closed under encapsulation.

Theorem 4.65. The class of context-free languages is closed under union, con-
catenation and iteration.

Proof. As in the first three items of the proof above, using that L(Ŝ) = L(S) ∪

L(S′), L(Ŝ) = L(S) · L(S′) and L(Ŝ) = (L(S))∗, respectively.
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Note 2. In order to get this result for the class of push-down processes, we
need to define these operators on arbitrary transition systems. This is not
difficult to do, along the lines of Figures 2.29 and 3.1. Then, closure follows
straightforwardly.

Theorem 4.66. The class of context-free languages is closed under abstraction.

Proof. Suppose language L is given by a recursive specification E over SA with
added names N . For each P ∈ N , let P̂ denote its abstraction. Then, from
E we obtain a recursive specification over {P̂ | P ∈ N} by using the laws of
Table 16 plus the additional law τi(x · y) ↔ τi(x) · τi(y).

Theorem 4.67. The class of processes defined by a recursive specification over
SA is closed under abstraction. However, the class of processes defined by a
guarded recursive specification over SA is not.

This last fact is because the abstraction of a guarded recursive specification
need not be guarded.

Theorem 4.68. The class of processes defined by a recursive specification over
SA and the class of context-free languages are not closed under parallel compo-
sition.

Proof. Use Figure 4.15.

Again, we can also define parallel composition on arbitrary transition sys-
tems. Then, it can be establsihed that also the class of push-down processes is
not closed under parallel composition.

Theorem 4.69. The class of context-free languages is not closed under inter-
section and complementation.

Proof. Since we have to prove that something is not true, it is sufficient to
give a counterexample. Consider the two languages L = {anbncm | n, m ≥ 0}
and L′ = {anbmcm | n, m ≥ 0}. It is not difficult to show that L and L′ are
context-free. For instance, a recursive specification for L is

S = T · U

T = 1 + a.T · b.1

U = 1 + c.U.

We see L ∩ L′ = {anbncn | n ≥ 0}, and we know that this language is not
context-free by Example 4.62. Thus, context-free languages are not closed under
intersection.

The second part of this theorem follows from Theorem 4.65 and the identity

L ∩ L′ = L ∪ L′.

For, if the class of context-free languages were closed under complementation,
then the right-hand side of this identity would be a context-free language for
any context-free L, L′. But then we would have that context-free languages are
closed under intersection, which is not true.
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So we see that some properties that hold for regular languages do not hold
for context-free languages. The intersection of two context-free languages need
not be context-free, but we do have the following.

Theorem 4.70. Let L be a context-free language and L′ a regular language.
Then L ∩ L′ is context-free.

Proof. Take M = (S,A,D,→, ↑, ↓) to be a push-down automaton accepting L
and take M ′ = (S′,A,→′, ↑′, ↓′) to be a deterministic automaton accepting L′.

Now define a push-down automaton M̂ as follows:

1. Â = A and D̂ = D;

2. Ŝ = S × S′;

3. ↑̂ = (↑, ↑′);

4. ↓̂ =↓ × ↓′;

5. (s, s′)
d̂,a,x
−→(t, t′) holds iff s

d,a,x
−→ t and s′

a
−→

′
t′ (a ∈ A);

6. (s, s′)
d̂,τ,x
−→(t, s′) holds iff s

d,τ,x
−→ t.

It is not difficult to see that M̂ is a push-down automaton that accepts
L ∩ L′.

The result of this theorem can be phrased as follows: the class of context-free
languages is closed under regular intersection. We show how this theorem can
be used in the following example.

Example 4.71. The language L = {w ∈ {a, b, c}∗ | #a(w) = #b(w) = #c(w)}
is not context-free. This can be proved as follows. Since (a.1)∗ · (b.1)∗ · (c.1)∗ is
an iteration expression, the language L((a.1)∗ · (b.1)∗ · (c.1)∗) is regular. Then,
if L would be context-free, then also

L ∩ L((a.1)∗ · (b.1)∗ · (c.1)∗) = {anbncn | n ≥ 0}

would be context-free. This is a contradiction in view of Example 4.62.

Exercises

4.8.1 Is the complement of the language in Example 4.71 context-free?

4.8.2 Show that the family of context-free languages is closed under reversal.

4.8.3 Show that the family of context-free languages is not closed under dif-
ference. On the other hand, show that if L is context-free and L′ is
regular, then L − L′ is context-free.

4.8.4 Show that if L is deterministic context-free and L′ is regular, then L−L′

is deterministic context-free.

4.8.5 Show that the family of deterministic context-free languages is not
closed under union and not closed under intersection.
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4.8.6 Give an example of a context-free language whose complement is not
context-free.

4.8.7 Show that the family of unambiguous context-free languages is not
closed under union and not closed under intersection.



Chapter 5

Computability and

Executability

We have seen that a computer with a stack-like memory can do a number
of things. The class of context-free languages can be described with such a
computer. However, we have also seen some simple languages that are not
context-free, in Examples 4.62 and 4.63.

In this chapter, we consider the Turing machine of Figure 1.3, reproduced
here in Figure 5.1. This model can be used to define when a language is accepted
by a Turing machine, but also, if we take the input symbols one at a time,
describe the process of a Turing machine.

AutomatonInput yes/no

Tape

Figure 5.1: Turing machine.

The only difference with the push-down automaton of the previous chapter
is that the memory which could only be accessed at the top now is replaced
by a memory which again always has a string as contents, but which now can
be accessed at a given point. This entails that the access point (the head of a
reading device) can move around the string which is the memory content.

The Turing machine seems like a small advancement over the possibilities of
a push-down automaton. Nevertheless, we will argue that any computation that
can be done by any computer can also be done by a Turing machine, and we
will say that a language is computable exactly when it is accepted by a Turing
machine, and that is process is executable exactly when it is the process of a
Turing machine.

We will generalize the case of output of only yes or no to the case where
the output is an arbitrary string at the end of a computation. In this case, we
speak of a computable function. If input and output can be taken one element

123
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at a time, and in arbitrary order, we have to designate an input port i and an
output port o. See Figure 5.2.

AutomatonInput
i

Output
o

Tape

Figure 5.2: Interactive Turing machine.

5.1 The Turing machine

Definition 5.1 (Turing machine). An (Interactive) Turing machine M is de-
fined as a sixtuple (S,A,D,→, ↑, ↓) where:

1. S is a finite set of states,

2. A is a finite alphabet,

3. D is a finite set of data,

4. → ⊆ S × (D ∪ {ε})× (A∪ {τ})× (D ∪ {ε})× {L, R}× S is a finite set of
transitions or steps,

5. ↑ ∈ S is the initial state,

6. ↓ ⊆ S is the set of final states.

If (s, d, a, e, M, t) ∈ →, we write s
d,a,e,M
−→ t, and this means that the machine,

when it is in state s and reading symbol d on the tape, will execute input action
a, change the symbol on the tape to e, will move one step left if M = L and
right if M = R and thereby move to state t. It is also possible that d and/or
e is ε: if d is ε, we are looking at an empty part of the tape, but, if the tape
is nonempty, then there is a symbol immediately to the right or to the left; if
e is ε, then a symbol will be erased, but this can only happen at an end of the
memory string. The exact definitions are given below.

At the start of a Turing machine execution, we will assume the Turing ma-
chine is in the initial state, and that the memory tape is empty (denoted by the
blank symbol �).

By looking at all possible executions, we can define the transition system of
a Turing machine. To define a configuration, we need to know the contents of
the memory tape, a string x ∈ D∗, but also the present location. This location
can be an element of the memory string, but can also be immediately to the
left of the memory string, or immediately to the right of the memory string.
We indicate the present location by means of a bar, so if for instance 001 is
the contents of the tape, then we have configurations of a state together with
�̄001�, �0̄01�, �00̄1�,�001̄� or �001�̄.
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Definition 5.2. Let M = (S,A,D,→, ↑, ↓) be a Turing machine. The transi-
tion system of M is defined as follows:

1. The set of states is {(s, �̄) | s ∈ S} ∪ {(s, �x�, )̄ | s ∈ S, x ∈ D∗ − {ε}}
(in the second component there is an overbar on one of the elements of
the string �x�).

2. A symbol can be replaced by another symbol if the present location is not
a blank. Moving right, there are two cases: there is another symbol to the
right or there is a blank to the right.

• (s, �xd̄�)
a

−→ (t, �xe�̄) iff s
d,a,e,R
−→ t (d, e ∈ D, x ∈ D∗),

• (s, �xd̄fy�)
a

−→ (t, �xef̄y�) iff s
d,a,e,R
−→ t, for all d, e ∈ D, x, y ∈ D∗.

Similarly, there are two cases for a move left.

• (s, �d̄x�)
a

−→ (t, �̄ex�) iff s
d,a,e,L
−→ t (d, e ∈ D, x ∈ D∗),

• (s, �xfd̄y�)
a

−→ (t, �xf̄ey�) iff s
d,a,e,L
−→ t, for all d, e ∈ D, x, y ∈ D∗.

3. To erase a symbol, it must be at the end of the string. For a move right,
there are three cases.

• (s, �d̄�)
a

−→ (t, �̄) iff s
d,a,ε,R
−→ t (d ∈ D),

• (s, �xd̄�)
a

−→ (t, �x�̄) iff s
d,a,ε,R
−→ t (d ∈ D, x ∈ D∗ − {ε}),

• (s, �d̄fx�)
a

−→ (t, �f̄x�) iff s
d,a,ε,R
−→ t (d ∈ D, x ∈ D∗).

Similarly for a move left.

• (s, �d̄�)
a

−→ (t, �̄) iff s
d,a,ε,L
−→ t (d ∈ D),

• (s, �d̄x�)
a

−→ (t, �̄x�) iff s
d,a,ε,L
−→ t (d ∈ D, δ ∈ D∗ − {ε}),

• (s, �xfd̄�)
a

−→ (t, �xf̄�) iff s
d,a,ε,L
−→ t (d ∈ D, x ∈ D∗).

4. To insert a new symbol, we must be looking at a blank. We can only move
right, if we are to the left of a (possible) data string. This means there
are two cases for a move right.

• (s, �̄)
a

−→ (t, �d�̄) iff s
ε,a,d,R
−→ t (d ∈ D),

• (s, �̄fx�)
a

−→ (t, �df̄x�) iff s
ε,a,d,R
−→ t (d ∈ D, x ∈ D∗).

Similarly for a move left.

• (s, �̄)
a

−→ (t, �̄d�) iff s
ε,a,d,L
−→ t (d ∈ D),

• (s, �xf�̄)
a

−→ (t, �xf̄d�) iff s
ε,a,d,L
−→ t (d ∈ D, δ ∈ D∗).

5. Finally, looking at a blank, we can keep it a blank. Two cases for a move
right.

• (s, �̄)
a

−→ (t, �̄) iff s
ε,a,ε,R
−→ t,



126 CHAPTER 5. COMPUTABILITY AND EXECUTABILITY

• (s, �̄fx�)
a

−→ (t, �f̄x�) iff s
ε,a,ε,R
−→ t (x ∈ D∗).

Similarly for a move left.

• (s, �̄)
a

−→ (t, �̄) iff s
ε,a,ε,L
−→ t,

• (s, �xf�̄)
a

−→ (t, �xf̄�) iff s
ε,a,ε,L
−→ t (x ∈ D∗).

6. The initial state is (↑, �̄);

7. (s, �̄) ↓ iff s ↓.

Now we define an executable process as the branching bisimulation equiva-
lence class of a transition system of a Turing machine, and a computable language
as the language equivalence class of a transition system of a Turing machine.

ε, τ, ε, L

ε, a, 1, R 1, b, ε, L

Figure 5.3: Simple Turing machine.

Example 5.3. Consider the simple Turing machine depicted in Figure 5.3.
When started, any number of a’s can be executed, each time writing a 1 on the
tape. At any time, a move to the second state can occur, reversing direction.
Then, the same number of b’s can take place, each time erasing a 1. Coming to
the end of the string of 1’s, the tape is empty again, and termination can take
place.

We depict the transition system of this Turing machine in Figure 5.4. Ob-
serve its language is {anbn | n ≥ 0}.

a a a

τ τ τ τ

bbb

a

b

Figure 5.4: Transition system of simple Turing machine.

The language of a Turing machine can be defined directly.

Definition 5.4. Let M = (S,A,D,→, ↑, ↓) be a Turing machine. Then the

language accepted by M , L(M), is defined as follows: w ∈ L(M) iff (↑, �̄)
w
→−→

(s, �̄) for some s with s ↓.
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For a number of languages, Turing machines can be constructed. We start
out easy.

Example 5.5. Construction of a Turing machine that accepts the language
given by the iteration expression (a.1)∗ is shown in Figure 5.5. As long as the
input consists of a’s, we move to the right. No memory use is necessary. At any
time, termination can occur. No input of a symbol different from a can occur.

ε, a, ε, R

Figure 5.5: Turing machine for L((a.1)∗).

Example 5.6. The language {anbncn | n ≥ 0} is not push-down. However,
looking at the simple Turing machine of Figure 5.4, a Turing machine can be
constructed quite easily. See Figure 5.6. This implies that a Turing machine is
more powerful than a push-down automaton.

ε, τ, ε, L

ε, a, 1, R 1, b, 1, L

ε, τ, ε, R

1, c, ε, R

Figure 5.6: Turing machine for {anbncn | n ≥ 0}.

Example 5.7. With a variation on the Turing machine in Figure 5.6, also a
Turing machine for the language {ww | w ∈ {a, b}∗} can be constructed. Use
D = A.

ε, τ, ε, L

ε, a, a, R a, τ, a, L

ε, τ, ε, R

a, a, ε, R

ε, b, b, R b, τ, b, L b, b, ε, R

Figure 5.7: Turing machine for {ww | w ∈ {a, b}∗}.

Just like we did in the case of the push-down automaton (see Example 4.8),
we can explicitly denote inputs and outputs of a Turing machine. Let us give
the example of the (first-in first-out) queue.

Example 5.8. The queue over a data set D has the initial and final state at the
head of the queue. There, output of the value at the head can be given, after
which one move to the left occurs. If an input comes, then the position travels
to the left until a free position is reached, where the value input is stored, after
which the position travels to the right until the head is reached again. We show
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the Turing machine in Figure 5.8 in case D = {0, 1}. A label containing an n,
like n, τ, n, L means there are two labels 0, τ, 0, L and 1, τ, 1, L.

Without proof, we mention the fact that the queue process is not a push-
down process.

n, i?0, n, L

n, o!n, ε, L

n, i?1, n, L

n, τ, n, L

n, τ, n, L n, τ, n, R

ε, τ, 0, R

ε, τ, 1, R

ε, τ, ε, L

ε, i?n, n, R

Figure 5.8: Turing machine for the queue.

Definition 5.9. We speak of a Turing machine computation if

1. all steps are either an input i?d or an input o!d or τ (d ∈ D);

2. in every path from the initial state to a final state, all inputs take place
before all outputs;

3. in every path from the initial state to a final state, for a sequence of inputs
i?d1 · · · i?dn there is exactly one sequence of outputs o!e1 · · · o!em.

In this case, we say the Turing machine computes the function f on a domain
of data strings D (D ⊆ D∗) if for all input w in D it has output f(w).

We will argue that for all common mathematical functions, there is a Turing
machine that computes it.

Example 5.10. There is a Turing machine computing addition. For simplicity,
we assume the two numbers have an equal number of digits, by adding leading
0’s to the shortest number if necessary. First, the first number is input. When
the + is input, the machine travels to the left until the first digit is reached again,
and the second number is input, adding the two digits as we go along. When
the end of the second number is reached, the machine travels back, performing
the carry as needed. When the front is reached again, the resulting number can
be output, erasing the tape as we go along. We show the Turing machine in
Figure 5.9 in case D = {0, 1}, so the case of binary addition. The carry position
is on the bottom.
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ε, i?+, ε, L

ε, i?n, n, R n, τ, n, L

ε, τ, ε, R

ε, τ, ε, L ε, τ, ε, R

n, i?m, n + m, R

0, τ, 0, L
1, τ, 1, L n, o!n, ε, R

2, τ, 0, L
0, τ, 1, L
ε, τ, 1, L

1, τ, 0, L
2, τ, 1, L

Figure 5.9: Turing machine for addition.

ε, i? >, ε, L

ε, i?n, n, R n, τ, n, L

ε, τ, ε, R

1, i?0, ε, R ε, o!yes , L

n, i?n, ε, R

n, i?m, ε, R

n, i?m, ε, R

0, i?1, ε, R ε, o!no, ε, L

ε, o!no, ε, L

Figure 5.10: Turing machine comparing quantities.

Example 5.11. By an adaptation of the Turing machine in Figure 5.7, we
can cosntruct a Turing machine computing copying, computing f(w) = ww for
w ∈ {a, b}∗. In the initial state, we change the label ε, a, a, R to ε, i?a, a, R and
ε, b, b, R to ε, i?b, b, R, in the middle state we change a, τ, a, L to a, o!a, a, L and
b, τ, b, L to b, o!b, b, L, in the final state we change a, a, ε, R to a, o!a, ε, R and
b, b, ε, R to b, o!b, ε, R.

Example 5.12. There is a Turing machine that compares quantities. Suppose
we have two numbers in binary notation and we want to know whether the first
number is larger than the second. As in Figure 5.9, we assume the numbers
have an equal number of digits, adding leading zeroes if necessary. The input
consists the two numbers separated by a >-sign, and D = {0, 1, >, yes,no}.
n, m stand for an arbitrary bit. Figure 5.10 explains the rest.

Thus, a Turing machine can be used to program a conditional split in a
program. Combining the basic programs shown here, much more complicated
Turing machines can be constructed, realizing more difficult program constructs.
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Exercises

5.1.1 Construct a Turing machine with one state that accepts L((a.1+b.1)∗),
where A = {a, b}.

5.1.2 Give the transition system of the Turing machine of Figure 5.6.

5.1.3 Construct a Turing machine for the language {anbncn | n > 0} that
does not have any τ -moves.

5.1.4 For the Turing machine in Figure 5.7, write out the terminating path
with label aabaab from the initial state. Give the configuration of every
state passed through.

5.1.5 Give the initial part of the transition system of the queue of Figure 5.8.

5.1.6 Construct a Turing machine for binary addition, where the numbers
entered need not be of equal length. Do the same for the Turing machine
comparing quantities of Figure 5.10.

5.1.7 Construct Turing machines that accept the following languages over
{a, b}:

(a) {w | |w| is even };

(b) {anbmck | n 6= morm 6= k};

(c) {w | #a(w) = #b(w)}.

5.1.8 Construct a Turing machine that computes the function f(w) = wR on
{a, b}∗.

5.1.9 Let x be a positive integer in binary notation. Construct a Turing
machine that computes the function f , where f(x) = x/2 if x is even
and f(x) = (x + 1)/2 if x is odd.

5.2 Church-Turing thesis

We have seen that Turing machines can accept a language that is not push-
down, can define processes that are not push-down, and we have seen that
Turing machines can program a number of problems that can be programmed
with a computer. We now make a very sweeping statement. Any computation,
any execution that can be carried out by mechanical means can be performed
by a Turing machine. Thus, anything that can be done by any computer (now
or in the future) can also be done by a Turing machine. This statement is called
the Church-Turing thesis.

This is a statement that cannot be proved. It is like a law of nature: they
can also not be proved, they can only be refuted. The Church-Turing thesis is
the fundamental law of computer science.

Definition 5.13. A problem is computable if it can be computed by a Turing
machine. An algorithm for a function is a Turing machine computing this
function.

A process is executable if it is the process of a Turing machine.
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Although the Church-Turing thesis cannot be proved, there are strong ar-
guments indicating the thesis is valid.

1. Every feature of modern programming languages can be realized by means
of a Turing machine;

2. No example is known of a computation or execution by computer that
cannot be done by a Turing machine;

3. There are many different models of computation, and many variants on
the model of a Turing machine. All of them lead to the same definition of
computability and algorithm.

We present applications of these concepts.

Theorem 5.14. Let L be a regular language over alphabet A, presented by
a finite automaton, an iteration expression or a linear recursive specification,
and let w ∈ A∗ be a string over this alphabet. Then there is an algorithm
determining whether or not w ∈ L.

Proof. If L is given by an automaton, iteration expression or recursive speci-
fication, then there is a procedure described in Chapter 2 converting this to a
deterministic finite automaton. This procedure can be programmed by a Turing
machine.

Given a deterministic finite automaton, we can trace w through this au-
tomaton symbol by symbol. At each point, there is exactly one edge that can
be taken. Getting to the end of w, we only have to check if the resulting state is
a final state or not. Again, this can be done by means of a Turing machine.

In the proof, we presented a membership algorithm for regular languages.

Theorem 5.15. Let p, q be regular processes, presented by a finite automa-
ton or a linear recursive specification. Then there is an algorithm determining
whether or not p ↔ q.

Proof. We have not focused on procedures determining bisimulation or branch-
ing bisimulation. Nevertheless, several such procedures exist in literature. Tur-
ing machines can be constructed for them.

Theorem 5.16. Let L be a regular language, presented by an automaton, an
iteration expression or a linear recursive specification. There is an algorithm
that determines whether L is empty, finite or infinite.

Proof. Again, present the language by means of a deterministic finite automa-
ton. Reachability of states is computable. The language is empty if no final
state is reachable. The language is infinite if and only if there is a cycle in the
automaton that is reachable, and from which a final state can be reached.

Theorem 5.17. Let L, L′ be regular languages, presented by an automaton,
an iteration expression or a linear recursive specification. There is an algorithm
that determines whether L = L′.

Proof. Define L′′ = (L ∩ L′) ∪ (L ∩ L′). L′′ is regular, and we can construct
a deterministic finite automaton that accepts L′′. Now L = L′ if and only if
L′′ = ∅, and we can apply the previous theorem.
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Next, we look at a membership algorithm for context-free languages.

Theorem 5.18. Let L be a context-free language over A, presented by a re-
cursive specification over SA or a push-down automaton, and let w ∈ A∗. Then
there is an algorithm determining whether or not w ∈ L.

Proof. Let L and w be given. A given recursive specification over SA or a
push-down automaton for L can be converted into a recursive specification that
has no 1-summands or single variable summands. Then, the exhaustive search
parsing algorithm will always terminate, so can be programmed by a Turing
machine.

Theorem 5.19. Let L be a context-free language, presented by a recursive
specification over SA or a push-down automaton. There is an algorithm that
determines whether L is empty, finite or infinite.

Proof. If the language is given by a push-down automaton, convert this to a
recursive specification over SA. The language is empty if and only if the initial
variable is nonproductive.

In order to determine whether or not the language is infinite, assume we
have a specification without 1-summands, without single variable summands
and without nonproductive or unreachable variables. Then we claim that the
language is infinite if and only if there is a repeating variable A, i.e. a variable
with A & xA · y1 for some strings x, y ∈ A∗, not both empty.

For, if there is no repeating variable, then the length of every derivation is
bounded and the language is finite. On the other hand, if A is repeating, then
since A is reachable and productive, it generates a string in the language, and
this string can be pumped, and so the language is infinite.

To determine whether a repeating variable exists, we only need to check
whether or not the reachability relation has a cycle.

Next, the following theorem comes as a surprise.

Theorem 5.20. Let L, L′ be context-free languages, presented by a recursive
specification over SA or a push-down automaton. There is no algorithm that
determines whether or not L = L′.

At this point, we do not know how to prove that no algorithm exists for a
certain problem. We return to this at a later time.

Exercises

5.2.1 Use a search engine to find out more about the Church-Turing thesis,
about the Turing machine, and about Alonzo Church and Alan Turing.

5.2.2 Suppose regular languages L, L′ are given as a finite automaton, an
iteration expression or a linear recursive specification.

(a) Given a string w, present an algorithm to determine whether or
not w ∈ L − L′;

(b) Present an algorithm to determine whether or not L ⊆ L′;

(c) Present an algorithm to determine whether or not ε ∈ L;
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(d) Present an algorithm to determine whether or not L = A∗.

5.2.3 Given a recursive specification over SA with initial variable S, present
an algorithm to determine whether or not ε ∈ L(S).

5.2.4 Suppose L is a context-free language, given as a recursive specification
over SA, and L′ is a regular language, given as a recursive specification
over MA. Present an algorithm to determine whether or not L∩L′ = ∅.

5.3 Other types of Turing machines

We show the robustness of the definition of a Turing machine: if we change the
definition in several ways, nevertheless the class of languages accepted remains
the same.

First, we have a look at the Classical Turing Machine: this machine can
only define computable languages and computable functions, and is unsuitable
to define executable processes. The input is entered beforehand on the memory
tape (with the position at the left-most symbol of the input), then the machine
executes a number of unlabeled steps (reading the current position, writing
a new symbol, and moving right or left), and when the machine halts in a
final state, the contents of the memory tape is considered to be the output.
Acceptance of a string for a Classical Turing Machine is defined by starting
with this string in memory, and then executing a number of steps to a final
state, where the tape need not be empty.

Theorem 5.21. The class of computable languages and functions defined by a
Classical Turing Machine is the same as the class of computable languages and
functions defined by an Interactive Turing Machine.

1. Turing machines with a stay-option. If, instead of requiring that the
machine at every move moves right or left, we also allow that the machine
stays at the same cell, we get a definition of Turing machines that accepts
the same class of languages and defines the same class of processes. This
can be seen by mimicking a stay-step with a step right followed by a step
left.

2. Turing machines with multiple tracks on the tape. A Turing machine
with n tracks can be mimicked by a standard machine, by turning the
data alphabet into an alphabet where each symbol has n components.

3. Turing machines with a tape bounded on one side. A Turing machine with
a tape bounded on one side can mimick a standard machine, by dividing
each cell into two parts, and ‘going around the corner’ when we hit the
edge of the tape.

4. A Turing machine with multiple tapes. A Turing machine with n tapes
can be mimicked by a Turing machine with 2n tracks. The even-numbered
tracks put a checkmark under the symbol at the previous track, where that
reading head currently is.
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We very briefly indicated a number of variations that lead to the same class
of languages and processes. We spend a bit more space on the Universal Turing
Machine.

Turing machines as we have presented them up to now have a fixed program,
they are designed to compute one thing. This is different from computers as
we know them, that can be loaded with different programs. Also, the Turing
machine can be turned into a reprogrammable device, again substantiating the
claim that anything that can be done by computer can also be done by Turing
machine. A universal Turing machine is a Turing machine that, given the
description of a Turing machine M , can do all computations and executions of
M .

The key to the construction of a universal Turing machine is to code a
description of a Turing machine as a string. We have defined a Turing machine
by means of suitably labeled graphs, but these can easily be coded as a string.
For instance, the LaTeX code producing the pictures has the form of a string.
A universal Turing machine can now use three tapes: the first tape starts by
inputting string wM that codes the Turing machine M , the second tape will be
the working tape, taking inputs to M and producing outputs of M , and the
third tape will keep track of the current state of M . Thus, at any point in a
computation, the third tape will hold the current state of M and the second tape
the current memory contents of M , and the control unit of the universal Turing
machine will consult the first tape to see what M will do in this configuration,
and will adapt the second and third tape accordingly.

Exercises

5.3.1 Sketch a Turing machine that computes multiplication of numbers in
binary notation. Hint: use the Turing machines for addition and copy-
ing.

5.3.2 Give a formal definition of the Classical Turing Machine. Define a
Classical Turing Machine that accepts the language {anbn | n ≥ 0}.

5.3.3 Sketch the construction of a Turing machine that accepts the language
{wwR | w ∈ {a, b}∗. Also sketch the construction of a Turing machine
that accepts the complement of this language.

5.3.4 A multihead Turing machine is a Turing machine with a single tape
and single control unit but with multiple independent read-write heads.
Formalise the notion of a multihead Turing machine and then indicate
how such a machine can be simulated by a standard Turing machine.

5.3.5 Give an explicit encoding of a Turing machine. Compute the code of a
very simple Turing machine, say the one in Figure 5.3. Now write out
the construction of a universal Turing machine in some more detail.

5.4 An undecidable problem

Three main classes of formal languages have been considered. The class of reg-
ular languages contain the languages that are accepted by a computer without
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memory, the class of context-free languages are accepted by a computer with
restricted memory, and finally the class of languages accepted by a Turing ma-
chine holds all computable languages. We have seen examples of languages that
are regular, we have seen examples that are context-free but not regular, and
we have seen examples that are computable but not context-free.

In this section, we give an example of a language that is not computable. We
phrase this in a slightly different way, in the form of an undecidable problem.

Definition 5.22. Suppose D is a given alphabet, and D ⊆ D∗. Let P be
some statement that is either true or false for every element of D. We say P
is decidable on D if the function f : D → {yes, no} defined by f(w) = yes if
P (w) = true and f(w) = no if P (w) = false is computable.

P is undecidable on D if this function f is uncomputable.

Decidability is closely related to computability. A problem is decidable if
a certain input always leads to an answer (positively or negatively), so the
computation is bound to terminate, may not go on indefinitely.

Decidability can also be phrased in terms of a language: problem P is de-
cidable on D if the language {yw | P (w) = true} ∪ {nw | P (w) = false} is
computable. Thus, exhibiting an undecidable problem amounts to exhibiting
an uncomputable language.

The undecidable problem we will investigate is the halting problem. The
halting problem is the following problem: given a Turing machine M and an
input w, does M terminate on w, i.e. when M is started by the input of w, is
there a computation to a final state?

Theorem 5.23. The halting problem is undecidable on the set of strings over
a finite alphabet.

Proof. Suppose the halting problem is decidable. Then there must be a Turing
machine H that computes the halting problem, i.e. when it gets as input the
code of a Turing machine M and a string w, it will execute a step o!yes leading
to a final state whenever M terminates on w and will halt execute a step o!no
leading to a final state whenever M does not terminate on w.

Given H , we construct another Turing machine H ′. Machine H ′ will be just
like H , except that step o!yes does not lead to a final state but to a deadlock
state, having no outgoing edges.

We see that whenever H will terminate with o!yes on input wMw, then H ′

will deadlock, and whenever H will terminate with o!no on input wMw, then
H ′ will also terminate with o!no on this input.

Next, we construct another Turing machine Ĥ . When given an input that
is the code of a Turing machine, wM , it will copy this input and next enter the
initial state of H ′, so it will behave as H ′ on input wMwM .

Now, Ĥ is a Turing machine, so it has a code w bH
. What will Ĥ do on

input w bH
? Well, Ĥ on input w bH

behaves as H ′ on input w bH
w bH

, so it deadlocks

whenever Ĥ terminates on input w bH
, and it terminates in a final state whenever

Ĥ does not terminate on input w bH
. This is a contradiction, so the halting

problem must be undecidable.

Now if we want to prove that some other problem is undecidable, then we
can do this by reducing the halting problem to it: we show that assuming that
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the other problem is decidable leads to the conclusion that the halting problem
is decidable, thereby reaching a contradiction.

Other proofs of undecidability, uncomputability or unexecutability can be
given by working in another model of computation, or starting from another
well-known undecidable problem: for instance, to show that equality of context-
free languages is uncomputable, it is easier to reduce the so-called Post corre-
spondence problem to it rather than the halting problem.

Exercises

5.4.1 The state-entry problem is as follows: given any Turing machine M ,
state s of M and string w, decide whether or not the state s is en-
tered when M gets w as input. Prove that the state-entry problem is
undecidable.

5.4.2 Given any Turing machine M and string w, determining whether a
symbol d ∈ D is ever written when M is gets input w is an undecidable
problem. Prove this.

5.4.3 Show that there is no algorithm to decide whether or not an arbitrary
Turing machine terminates on all input.

5.4.4 Show there is no algorithm to decide if two Turing machines accept the
same language.

5.4.5 Is the halting problem decidable for deterministic push-down automata?

5.4.6 Show that any problem is decidable on a finite domain.

5.5 Executable processes

We investigate the class of executable processes. The first statement is obvious.

Theorem 5.24. Every push-down process is executable.

Proof. Let p be a push-down process, and let M = (S,A,D,→, ↑, ↓) be a push-
down automaton with transition system branching bisimilar to p. We can as-
sume M has only push and pop transitions. We define a Turing machine as
follows:

1. The set of states is S ∪ {s′, s′′, s∗ | s ∈ S} (three extra copies of S;

2. the alphabet, set of data, initial state and set of final states are the same;

3. whenever s
ε,a,d
−→ t is a step of the push-down automaton, then s

ε,a,d,L
−→

s∗
ε,τ,ε,R
−→ t are steps in the Turing machine;

4. whenever s
d,a,ε
−→ t is a step of the push-down automaton, then s

d,a,ε,R
−→ t is

a step of the Turing machine;

5. whenever s
d,a,ed
−→ t is a step of the push-down automaton, then s

d,a,d,L
−→

s′
ε,τ,e,L
−→ s′′

ε,τ,ε,R
−→ t are steps in the Turing machine.
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We leave it to the reader to check that this Turing machine defines p.

Theorem 5.25. The class of executable processes is closed under a. , +, ·, ∗ ‖
, ∂p(), τp().

Proof. Like Note 2 in Chapter 4.

Just like we did in Theorem 4.58, also in a Turing machine we can make
the communication between control and memory explicit. In the push-down
automaton, the memory was the stack process. Here, we need to define the
tape process. We do this by using two stacks: one holding the contents of
the memory to the left of the current position, one holding the contents of the
memory to the right of the current position. At all times, we need to know
whether the stack to the right or the one to the right is empty or not.

Thus, we have given two stack processes, the right stack Sr and the left
stack Sl. Given a data set D, we use one extra symbol ∅ to denote an empty
stack.

Sr = 1 +
∑

k∈D∪{∅}

r?k.Sr · r!k.Sr

Sl = 1 +
∑

k∈D∪{∅}

l?k.Sl · l!k.Sl

Next, we define a regular control process C, with variables:

1. the initial state C∅ε∅: looking at a blank, both stacks are empty;

2. C∅d∅: reading d ∈ D, both stacks are empty;

3. Cε∅: looking at a blank, right stack is empty, left stack is not;

4. Cd∅: reading d ∈ D, right stack is empty, left stack is not;

5. C∅ε: looking at a blank, left stack is empty, right stack is not;

6. C∅d: reading d ∈ D, left stack is empty, right stack is not;

7. Cd: reading d ∈ D, neither stack is empty.
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The specification of C is now as follows:

C∅ε∅ = 1 + i?ε.C∅ε∅ +
∑

d∈D

i?d.C∅d∅ + i?L.C∅ε∅ + i?R.C∅ε∅ + o!ε.C∅ε∅

C∅d∅ = i?ε.C∅ε∅ +
∑

e∈D

i?e.C∅e∅ + i?L.r!∅.r!d.C∅ε + i?R.l!∅.l!d.Cε∅ + o!d.C∅d∅

(d ∈ D)

C∅ε = i?ε.C∅ε +
∑

d∈D

i?d.C∅d + i?R.
∑

d∈D

r?d.(r?∅.C∅d∅ +
∑

e∈D

r?e.r!e.C∅d)

+ o!ε.C∅ε

C∅d = i?ε.C∅ε +
∑

e∈D

i?e.C∅e + i?L.r!d.C∅ε +

+ i?R.l!∅.l!d.
∑

e∈D

r?e.(r?∅.Ce∅ +
∑

f∈D

r?f.r!f.Ce) + o!d.C∅d (d ∈ D)

Cε∅ = i?ε.Cε∅ +
∑

d∈D

i?d.Cd∅ + i?L.
∑

d∈D

l?d.(l?∅.C∅d∅ +
∑

e∈D

l?e.l!e.Cd∅)

+ o!ε.Cε∅

Cd∅ = i?ε.Cε∅ +
∑

d∈D

i?e.Ce∅ + i?L.r!∅.r!d.
∑

e∈D

l?e.(l?∅.Ce∅ +
∑

f∈D

l?f.l!f.Ce)

+ i?R.l!d.Cε∅ + o!d.Cd∅ (d ∈ D)

Cd =
∑

e∈D

i?e.Ce + i?L.r!d.
∑

e∈D

l?e.(l?∅.C∅e +
∑

f∈D

l?f.l!f.Ce)

+ i?R.l!d.
∑

e∈D

r?e.(r?∅.Ce∅ +
∑

f∈D

r?f.r!f.Ce) + o!d.Cd (d ∈ D).

Finally, the tape process can be defined as follows:

Tape = τl,r(∂l,r(S
l ‖ C∅ε∅ ‖ Sr)).

We see the tape process is an executable process.
Now we can prove the analogue of Theorem 4.58. In this way, we get a

specification over CA for every executable process.

Theorem 5.26. A process p is an executable process if and only if there is a
regular process q such that

p ↔b τi,o(∂i,o(q ‖ Tape)).

Proof. First of all, suppose we have a process of which the transition system
consists of all executions of the Turing machine M = (S,A,D,→, ↑, ↓).

We define a regular process as follows: it will have variables Vsk, for each

s ∈ S and k ∈ D ∪ {ε}. The initial variable is V↑ε. For each transition s
k,a,j,R
−→

t, variable Vsk has a summand a.i!j.i!R.
∑

m∈D∪{ε}

o?m.Vtm. Likewise, for each

transition s
k,a,j,L
−→ t, variable Vsk has a summand a.i!j.i!L.

∑
m∈D∪{ε}

o?m.Vtm.

Whenever s ↓ every variable Vsε has a 1 summand. Now it is just a matter of
checking every transition.

The other direction simply follows from the closure properties of the set of
executable processes.
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We can specialize this theorem to the case of the computable function. Given
a computable function f : D∗ → D∗, take a Turing machine for it, and let Q
be a linear specification of the regular process of the previous theorem. Since
we used communication ports i, o for the communication of the control of the
Turing machine with the tape process, we will have to use different port names
for the input and the output of the computable function: we will use in , out .

Theorem 5.27. Let f : D∗ → D∗ be a computable function. Then

f(d1 . . . dn) = e1 . . . em ⇔

τin (∂in(in !d1. . . . in!dn.1 ‖ τi,o(∂i,o(Q ‖ Tape)))) ↔b out !e1. . . . out !em.1

and
f(d1 . . . dn) is not defined ⇔

τin (∂in(in !d1. . . . in !dn.1 ‖ τi,o(∂i,o(Q ‖ Tape)))) ↔b 0.

Any executable process can be specified by means of a recursive specification
over CA. Often, a more direct specification can be given.

As an example, we give a recursive specification of the queue of Figure 5.8.
The specification is based on the principle that putting two (unbounded) queues
in a row again yields a queue. For the internal, connecting port we use l. The
two constituating queues can again be specified using an internal port...

Qio = 1 +
∑

d∈D

i?d.τl(∂l(Q
il ‖ o!d.Qlo))

Qil = 1 +
∑

d∈D

i?d.τo(∂o(Q
io ‖ l!d.Qol))

Qlo = 1 +
∑

d∈D

l?d.τi(∂i(Q
li ‖ o!d.Qio))

Qol = 1 +
∑

d∈D

o?d.τi(∂i(Q
oi ‖ l!d.Qil))

Qli = 1 +
∑

d∈D

l?d.τo(∂o(Q
lo ‖ i!d.Qoi))

Qoi = 1 +
∑

d∈D

o?d.τl(∂l(Q
ol ‖ i!d.Qli))
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