Internet of Things
2017/2018

Life Cycles and Application Domains

Johan Lukkien
Tanir Ozcelebi
Leila Rahmann

John Carpenter, 1982
Questions

- What is the life cycle of IoT systems and components?
- What is the impact of the application domain on these life cycles?

- domains
 - home
 - mobile / outdoor (fields, ad-hoc)
 - office
 - industry
 - public (city)

- architecture, layered and deployment view
 - devices, things
 - functionality placement alternatives
 - data and control flow

- communication stack, protocols

- lifecycles
 - devices
 - services
 - applications
Life cycle

- The life cycle of a product or system is the series of stages it goes through from inception to decline.

- A typical life cycle for a software system is given to the right.

- More detail is obtained by adding information regarding the activities in the stages.

- Notes:
 - also system parts have life cycles, affecting the overall system.
 - the life cycle also addresses evolution, redesign.

Johan J. Lukkien, j.j.lukkien@tue.nl
TU/e Informatica, System Architecture and Networking
14-Nov-17
Life cycles for IoT

- IoT life cycles pertain to
 - devices
 - (software) components & services
 - applications

- IoT applications are networked
 - distributed system (distributed programming)
 • needs concept development and tooling support
 - cumbersome deployment & commissioning
 - inevitably, increasing points of failure
 • require machine intelligence both in deployment as well in self management during the life cycle

- Concrete life cycles differ per domain
 - Home
 - Office
 - Outdoor
 • city
 • field – e.g. crops
 • mobile – vehicles, people
 • ad-hoc (emergency response)
 - Industry

- Life cycle stages have typical use cases and actors (stakeholders) in those cases
- Life cycle analysis is key in understanding architectural requirements
IoT Device life cycle

- Life cycles have a generic structure but are different for each device type
- Examples:
 - **phone**: deployment is through purchasing; other commissioning is through manufacturer. Life cycle server is with connectivity provider or manufacturer; operation is by user
 - **office IoT**: commissioning is by an installation company. Life cycle server is with owner or with manufacturer.
- Important aspects concern responsibilities and control by involved stakeholders
 - in particular: responsibility for software updates
Example: commissioning of mediaplayer

- Mediaplayer device contains separate access point
- Mediaplayer may be difficult to reach (for updates)
- MP-AP must be as secure as the home network
- Malicious takeover of MP difficult to see
IoT: involved software types

- Embedded Operating System / runtime executive, middleware
 - typically installed as part of a firmware image
 - supporting the running of components, applications
- Libraries
 - e.g. a CoAP library, linked into an executable
- (Runnable) components exposing services
 - e.g. a CoAP based service for inspecting the temperature or adjusting the heater
- Applications (application components)
 - e.g. a management application using temperature services and controlling the heater
 - e.g. a data analytics application
IoT: software update packaging

- Firmware
 - full update of a node’s software
- Module
 - a library or application component, possibly even an OS or system part
- Setting
 - parameter settings on the existing system
IoT service and component life cycle

- Components deliver services, or take part in that
- Example:
 - **temperature service**: a component implementing a temperature service is installed on the sensor node over the air
- Recommissioning is triggered by renewal of libraries, of versions
- Important again are **responsibilities and control** by involved stakeholders
 - in particular: responsibility for software updates after first install
 - also of commissioning, service publication (repository)
IoT Application life cycle

- Life cycles of applications may depend on life cycles of components, libraries
- Examples:
 - thermostat application: searches and finds services that yield temperature and control services that control the heater (needs further details and access control of course)
- Important aspects concern access control by involved stakeholders
Extra functional properties: dependability throughout the life cycle

- **Security**
 - network must trust new device
 - execution platform must trust new components
 - access control, authentication, authorization
 - encryption, certification
 - security (key, access) management

- **Privacy**
 - control about personal information
 - retain information within context
 - information modeling, aggregation
 - components must obey privacy rules

- **Reliability, availability, safety**
 - self monitoring and repair of broken updates
Characteristics of the home domain

- The home is in principle unmanaged
 - one-time configuration of new equipment
 - legacy effects: a very old device requiring obsolete security protocols
 - default configuration not altered
 - wide variety of policies and mechanisms for installation
 - responsibility for software updates not assigned
 - devices difficult to reach after installation
 - automatic update by manufacturer is a security and functionality hazard
 - problems and side effects very difficult to understand
 - lack of conceptual model
 - lack of management addressing system level concerns like data protection and service quality
 - no control over data
 - no money available for extra management services
The office domain

• The office is managed
 – central access control, policies
 – clear procedures and responsibilities for system updates
 – extensive standardization is possible
 – higher cost acceptable

• Conflicting concerns of stakeholders
 – ‘BYOD’ interferes
 – Data management
 • office manager has details about users, visitors
Other domains have further characteristics

- City, mobile:
 - services provide access to infrastructure
 - ownership needs attention
- Industry
 - single owner of data
 - very controlled environment
 - production data integrated with process improvement, maintenance and logistics

- These characteristics:
 - alter the implementation of the life cycles
 - lead to very different problems in life cycle stages
Questions

• What is the life cycle of IoT systems and components?
• What is the impact of the application domain on these life cycles?