Internet of Things
2017/2018

Life Cycles and Domains

Johan Lukkien
Leila Rahmann

John Carpenter, 1982
Questions

• What is the life cycle of IoT systems and components?
• What is the impact of the application domain on these life cycles?
The life cycle of a product or system is the series of stages it goes through from inception to decline.

A typical life cycle for a software system is given to the right.

More detail is obtained by adding information regarding the activities in the stages.

Notes:
- Also system parts have life cycles, affecting the overall system.
- The life cycle should also address evolution, redesign.
Life cycles for IoT

• IoT life cycles pertain to
 – devices,
 – (software) components & services
 – applications

• IoT applications are networked
 – distributed system (programming)
 • needs concept development and tooling support
 – cumbersome deployment/commissioning
 – inevitably increasing points of failure
 • require machine intelligence both in deployment as well in self management during the life cycle

• Concrete life cycles differ per domain
 – Home
 – Office
 – Outdoor
 • city
 • field – e.g. crops
 • mobile – vehicles, people
 • ad-hoc (emergency response)
 – Industry

• Life cycle analysis is key in understanding architectural requirements
IoT Device life cycle

- Life cycles have a generic structure but are different for each device type

- Examples:
 - **phone**: deployment is through purchasing; other commissioning is through manufacturer. Life cycle server is with connectivity provider or manufacturer.
 - **office IoT**: commissioning is by an installation company. Life cycle server is with owner or with manufacturer.

- Important aspects concern responsibilities and control by involved stakeholders
 - in particular: responsibility for software updates
IoT: involved software types

- Embedded Operating System / runtime executive, middleware
 - typically installed as part of a firmware image
 - supporting the running of components, applications
- Libraries
 - e.g. a CoAP library, linked into an executable
- (Runnable) components exposing services
 - e.g. a CoAP based service for inspecting the temperature or adjusting the heater
- Applications (application components)
 - e.g. a management application using temperature services and controlling the heater
 - e.g. a data analytics application
IoT: software update packaging

- **Firmware**
 - full update of a node’s software
- **Module**
 - a library or application component, possibly even an OS or system part
- **Setting**
 - parameter settings on the existing system
IoT service and component life cycle

- Components deliver services, or take part in that
- Example:
 - **temperature sensor**: a component implementing a temperature service is installed on the sensor node over the air
- Recommissioning is triggered by renewal of libraries, of versions
- Important again are **responsibilities and control** by involved stakeholders
 - in particular: responsibility for software updates after first install
 - also of commissioning, service publication (repository)

CONSTRUCTION
- Service component development:
 - Specification
 - Design
 - Implementation
 - Testing

DEPLOYMENT
- Install service component on IoT devices
- Configure service
- Register or publish service for discovery

UNDEPLOYMENT
- Unregister or unpublish service from discovery
- Remove service component from device

OPERATION
- Handle service requests

DESTRUCTION
- End of life
IoT Application life cycle

- Life cycles of applications may depend on life cycles of components, libraries
- Examples:
 - thermostat application: searches and finds services that yield temperature and control services that control the heater (needs further details and access control of course)
- Important aspects concern access control by involved stakeholders
Characteristics of the home domain

- The home is in principle unmanaged
 - one-time configuration of new equipment
 - legacy effects: a very old device requiring obsolete security protocols
 - default configuration not altered
 - wide variety of policies and mechanisms for installation
 - responsibility for software updates not assigned
 - devices difficult to reach after installation
 - automatic update by manufacturer is a security and functionality hazard
 - problems and side effects very difficult to understand
 - lack of conceptual model
 - lack of management addressing system level concerns like data protection and service quality
 - no control over data
 - no money available for extra management services
The office domain

• The office is managed
 – central access control, policies
 – clear procedures and responsibilities for system updates
 – extensive standardization is possible
 – higher cost acceptable

• Conflicting concerns of stakeholders
 – ‘BYOD’ interferes
 – Data management
 • office manager has details about users, visitors
Other domains have further characteristics

• City, mobile:
 – services provide access to infrastructure
 – ownership needs attention

• Industry
 – single owner of data
 – very controlled environment
 – production data integrated with process improvement, maintenance and logistics

• These characteristics:
 – alter the implementation of the life cycles
 – lead to very different problems in life cycle stages
Questions

• What is the life cycle of IoT systems and components?
• What is the impact of the application domain on these life cycles?