Verified and robust integration of safety critical functions

Reinder J. Bril
Overview

• Background and motivation
 – Historic perspective
 – Examples
 – Automotive architectures
 – From *federated* to *integrated* architectures

• Requirements
 – Verification
 – Robustness

• An example application: Active suspension

• Conclusion
Historic perspective

• 1977 General Motors Oldsmobile Tornado:
 – 1st production automotive ECU
 • Electronic spark timing.

• \approx 1990 (Mercedes, BMW, Audi, and VW)
 – Up to 5 ECUs, point-to-point connections;
 – Issues: expensive to fit, heavy, faulty connectors.

• 1991 Mercedes S-class:
 – 1st deployed CAN (Controller Area Network).

• \approx 2000 (Mercedes, BMW, Audi, and VW)
 – Around 40 ECUs and multiple busses.
Historic perspective

• Today:
 – 100+ ECUs and 5-7 busses;
 – > 100 MLOCS (Million Lines Of Code).

Manufacturing costs: 15 – 40%;
Innovation costs: 80%.

(by courtesy of Daren Buttle)
Examples

(by courtesy of Thomas Nolte)
Automotive architectures

- Example network architectures

- Trends:
 - Reduction of the number of ECUs
 - Functionalities sharing ECUs
 - Integration of functionalities and domains
From *federated* to *integrated* architectures

Step 1: Inter-application isolation on ECU.

(by courtesy of Martijn M.H.P. v.d. Heuvel)
From *federated* to *integrated* architectures

Step 1: Inter-application isolation on ECU.
Step 2: Replace CAN by FlexRay, isolating network traffic.
Requirements

• Verification:
 – Individual applications;
 – Composition of applications;
 – Temporal analysis of components and platforms
 – Protocol analysis (e.g. network specifications).

• Robustness:
 – Inter-application isolation on ECU;
 – Inter-application isolation on network;
 – Invalid input data;
 – Network loss.
Verification

• Model-based development (TNO):
 – Matlab/Simulink: control algorithms verified independent of target platform;

• ASD (Analytical Software Design) (Verum):
 – Behavioral correctness guaranteed for composition of software components;

• Temporal analysis for virtual platforms (TU/e);

• FlexRay start-up protocol (TU/e).
Robustness

• Inter-application
 – ECU (TU/e):
 • Virtual processor: isolate applications on ECU;
 – Network (NXP):
 • FlexRay: isolate applications on network;
 • Active Star: isolation of an erroneous branch.

• Distributed AS Application Functionality:
 – Control loop values monitoring (TNO):
 • Central/local control: application mode change;
 – Network loss detection (Verum):
 • Supervisory control: application mode change.
An example: Active suspension

- Mechanics: Suspension struts
An example: Active suspension

- Mechanics: Suspension struts & hydraulic system

Hydraulics system

Jaquar XF
An example: Active suspension

- Mechanics: Suspension struts & hydraulic system
- Control system
 - Step 0: Centralized \rightarrow distributed;
 - Step 1: Inter-application isolation on ECU;

Jaquar XF
An example: Active suspension

- Mechanics: Suspension struts & hydraulic system
- Control system
 - Step 0: Centralized → distributed;
 - Step 1: Inter-application isolation on ECU;
 - Step 2: CAN → FlexRay, isolation on network.

Jaquar XF
An example: Active suspension

• “Embedded” demonstrations:
 – December 2012:
 • Step 0: Centralized → distributed;
 – Integrated functionality (Verum, TNO, TU/e);
 – Distributed AS functionality:
 » CAN: Network-loss detection (Verum);
 » Mode change (TNO);
 • Step 1: Inter-applications isolation on ECU (TU/e).
 – November 2013:
 • Step 2: CAN → FlexRay, isolation on network.
An example: Active suspension

• “Embedded” demonstrations:
 – November 2013:
 • Step 2: CAN → FlexRay, isolation on network
An example: Active suspension

• “Embedded” demonstrations:
 – November 2013:
 • Step 2: CAN → FlexRay, isolation on network
 • Scenarios:
 1. FlexRay: Disconnect and reconnect;

Central dSpace box

“auxiliary” ECU

Active Star

“embedded” ECU
An example: Active suspension

- “Embedded” demonstrations:
 - **November 2013:**
 - Step 2: CAN → FlexRay, isolation on network
 - Scenarios:
 1. FlexRay: Disconnect and reconnect;
 2. Active star: isolate erroneous branch.
An example: Active suspension

• Acknowledgements:
 – NXP: Abhijit Deb;
 – Verum: Henk Katerberg;
 – TNO: Can Cilli;
 – TU/e: Erik Luit, Richard Verhoeven, Mike Holenderski, Sjoerd Cranen, Daan Gerrits.
Conclusion

• Vision
 – From *federated* to *integrated* architectures

• Requirements
 – Verification and robustness

• Demonstrator
 – Verification
 • Model-based development (TNO);
 • Analytical Software Design (ASD, Verum);
 – Robustness:
 • Inter-application isolation on ECU (TU/e);
 • Isolation on network (NXP);
 • Control-loop values monitoring (TNO);
 • Network-loss (Verum).