Matroids, the greedy algorithm, and the matroid polytope

Rudi Pendavingh

June 2, 2014
Spanning forests and -trees

Let $G = (V, E)$ be an undirected graph, and let $F \subseteq E$

- F is a forest if (V, F) does not contain any cycles.
- F spans G if (V, F) and G have the same number of components.
- F is a tree if (V, F) is a forest with exactly one component.

The maximum spanning forest problem

Given: A graph $G = (V, E)$, a weight function $w : E \to \mathbb{R}$.

Find: A spanning forest F such that $w[F]$ is as large as possible.
Kruskal’s algorithm

Given are an undirected graph $G = (V, E)$ and a weight function $w : E \to \mathbb{R}$.

Kruskal’s algorithm

1. Sort the edges by weight, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
2. $F \leftarrow \emptyset$, $i \leftarrow 1$
3. while $i < |E|$:
 1. if $F \cup \{e_i\}$ is a forest, put $F \leftarrow F \cup \{e_i\}$
 2. $i \leftarrow i + 1$

Theorem

Kruskal’s algorithm finds a maximum-weight spanning forest.
A matroid is determined by a finite set E, the *ground set*, and a partition of the set of subsets of E in *dependent* and *independent sets*.
Matroids

A matroid is determined by a finite set E, the *ground set*, and a partition of the set of subsets of E in *dependent* and *independent sets*.

Definition (Matroid)

A *matroid* is a pair (E, \mathcal{I}), where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

1. $\emptyset \in \mathcal{I}$
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
3. if $I, J \in \mathcal{I}$ and $|I| < |J|$, then $\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

Example (The Fano Matroid)

Let $E := \{a, b, c, d, e, f, g\}$ and let $\mathcal{I} := \{I \subseteq E | |I| \leq 3\} \setminus \{abc, cde, efa, adg, cfg, beg, bdf\}$.

Then $F_7 := (E, \mathcal{I})$ is the Fano matroid.
A matroid is determined by a finite set E, the *ground set*, and a partition of the set of subsets of E in *dependent* and *independent sets*.

Definition (Matroid)

A *matroid* is a pair (E, \mathcal{I}), where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

1. $\emptyset \in \mathcal{I}$
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
3. if $I, J \in \mathcal{I}$ and $|I| < |J|$, then $\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

Example (The Fano Matroid)

Let $E := \{a, b, c, d, e, f, g\}$ and let

$$\mathcal{I} := \{I \subseteq E \mid |I| \leq 3\} \setminus \{abc, cde, efa, adg, cfg, beg, bdf\}$$

Then $F_7 := (E, \mathcal{I})$ is the *Fano matroid*.
A matroid is determined by a finite set \(E \), the ground set, and a partition of the set of subsets of \(E \) in dependent and independent sets.

Definition (Matroid)

A matroid is a pair \((E, \mathcal{I})\), where \(E \) is a finite set, and \(\mathcal{I} \subseteq 2^E \), such that:

1. \(\emptyset \in \mathcal{I} \)
2. if \(J \in \mathcal{I} \) and \(I \subseteq J \), then \(I \in \mathcal{I} \)
3. if \(I, J \in \mathcal{I} \) and \(|I| < |J|\), then \(\exists e \in J \setminus I \) such that \(I \cup \{e\} \in \mathcal{I} \)

Example (Graphic matroid)

Let \(G = (V, E) \) be an undirected graph and let

\[
\mathcal{I} := \{ F \subseteq E \mid (V, F) \text{ is a forest} \}.
\]

Then \(M(G) := (E, \mathcal{I}) \) is a graphic matroid.
A matroid is determined by a finite set E, the ground set, and a partition of the set of subsets of E in dependent and independent sets.

Definition (Matroid)

A matroid is a pair (E, \mathcal{I}), where E is a finite set, and $\mathcal{I} \subseteq 2^E$, such that:

10. $\emptyset \in \mathcal{I}$
11. If $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$
12. If $I, J \in \mathcal{I}$ and $|I| < |J|$, then there exists $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$

Example (Linear matroid)

Let \mathbb{F} be a field and let $E \subseteq \mathbb{F}^k$ be a finite set of vectors. Let

$$\mathcal{I} := \{F \subseteq E \mid F \text{ is linearly independent over } \mathbb{F}\}.$$

Then $M(E, \mathbb{F}) := (E, \mathcal{I})$ is a linear matroid.
The greedy algorithm

if $M = (E, \mathcal{I})$ is a matroid, then $F \subseteq E$ is a *basis* if F is an inclusionwise maximal independent set.

The maximum-weight basis problem

Given: A matroid $M = (E, \mathcal{I})$, a weight function $w : E \rightarrow \mathbb{R}$.

Find: A basis F such that $w[F]$ is as large as possible.

The greedy algorithm

1. Sort the edges by weight, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.
2. $F \leftarrow \emptyset$, $i \leftarrow 1$
3. while $i < |E|$:
 1. if $F \cup \{e_i\}$ is independent, put $F \leftarrow F \cup \{e_i\}$
 2. $i \leftarrow i + 1$
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, I)$ be such that

1. $\emptyset \in I$, and
2. if $J \in I$ and $I \subseteq J$, then $I \in I$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, \Rightarrow. Suppose $M = (E, I)$ is not a matroid. Then there exist $I, J \in I$ such that $|I| < |J|$, but $\nexists e \in J \setminus I$ such that $I \cup \{e\} \in I$. Let $k := |I|$. Define $w : E \to \mathbb{R}_+$ by $w(e) := k + 2$ if $e \in I$, $w(e) := k + 1$ if $e \in J \setminus I$, and $w(e) := 0$ if $e \not\in J$. The greedy algorithm outputs $B \supseteq I$ with $w[B] = w[I] = k(k+2) < (k+1)(k+1) \leq w[J]$. So B is not optimal.
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, \Leftarrow.
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \rightarrow \mathbb{R}_+$.

Proof outline: We first prove sufficiency, ‘\Leftarrow’.

- Suppose $M = (E, \mathcal{I})$ is not a matroid. Then there exist $I, J \in \mathcal{I}$ such that $|I| < |J|$, but $\not\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$.
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, ‘\Leftarrow’.

- Suppose $M = (E, \mathcal{I})$ is not a matroid. Then there exist $I, J \in \mathcal{I}$ such that $|I| < |J|$, but $\not\exists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$.
- Let $k := |I|$. Define $w : E \to \mathbb{R}_+$ by $w(e) := k + 2$ if $e \in I$, $w(e) := k + 1$ if $e \in J \setminus I$, $w(e) := 0$ if $e \not\in J$.

Rudi Pendavingh
Matroids I
June 2, 2014 8 / 1
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We first prove sufficiency, ‘\Leftarrow’.

- Suppose $M = (E, \mathcal{I})$ is not a matroid. Then there exist $I, J \in \mathcal{I}$ such that $|I| < |J|$, but $\nexists e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$
- Let $k := |I|$. Define $w : E \to \mathbb{R}_+$ by $w(e) := k + 2$ if $e \in I$, $w(e) := k + 1$ if $e \in J \setminus I$, $w(e) := 0$ if $e \notin J$.
- The greedy algorithm outputs $B \supseteq I$ with $w[B] = w[I] = k(k + 2) < (k + 1)(k + 1) \leq w[J]$. So B is not optimal.
The greedy algorithm characterizes matroids

Theorem

Let \(M = (E, \mathcal{I}) \) be such that

1. \(\emptyset \in \mathcal{I} \), and
2. if \(J \in \mathcal{I} \) and \(l \subseteq J \), then \(l \in \mathcal{I} \).

Then \(M \) is a matroid if and only if the greedy algorithm finds a basis \(B \) of maximum weight \(w[B] \), for each weight function \(w : E \rightarrow \mathbb{R}_+ \).

Proof outline: We next prove necessity, \(\Rightarrow \).
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, ‘\Rightarrow’.

- Suppose $M = (E, \mathcal{I})$ is a matroid. Let $w : E \to \mathbb{R}_+$ be a weight function.
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, ‘\Rightarrow’.

- Suppose $M = (E, \mathcal{I})$ is a matroid. Let $w : E \to \mathbb{R}_+$ be a weight function.
- Call an independent set $I \in \mathcal{I}$ *greedy* if there is a maximum-weight basis B so that $I \subseteq B$.
The greedy algorithm characterizes matroids

Theorem

Let $M = (E, \mathcal{I})$ be such that

1. $\emptyset \in \mathcal{I}$, and
2. if $J \in \mathcal{I}$ and $I \subseteq J$, then $I \in \mathcal{I}$.

Then M is a matroid if and only if the greedy algorithm finds a basis B of maximum weight $w[B]$, for each weight function $w : E \to \mathbb{R}_+$.

Proof outline: We next prove necessity, ‘\Rightarrow’.

- Suppose $M = (E, \mathcal{I})$ is a matroid. Let $w : E \to \mathbb{R}_+$ be a weight function.
- Call an independent set $I \in \mathcal{I}$ greedy if there is a maximum-weight basis B so that $I \subseteq B$.
- To prove: if I is greedy, and e attains the maximum in $\max\{w(e) \mid I \cup \{e\} \in \mathcal{I}, e \in E \setminus I\}$, then $I \cup \{e\}$ is greedy.
Let E be a finite set, and let \mathcal{A} be a finite set of subsets of E. A *transversal* of \mathcal{A} is a set $F \subseteq E$ so that there exists an injection $\phi : F \to \mathcal{A}$ with $e \in \phi(e)$ for all $e \in F$.

Example (Transversal matroids)

Let E be a finite set, and let \mathcal{A} be a finite set of subsets of E. Put

$$\mathcal{I} := \{F \subseteq E \mid F \text{ is a transversal of } \mathcal{A}\}.$$

Then $M(E, \mathcal{A}) := (E, \mathcal{I})$ is a *transversal matroid*.

Let $D = (V, A)$ be a directed graph and let $S, T \subseteq V$. Then a subset $F \subseteq T$ is *linked* to S in D if there is a set of vertex-disjoint directed paths with starting points in S and with endpoints F.

Example (Gammoids)

Let $D = (V, A)$ be a directed graph, and let $S, T \subseteq V$. Let

$$I := \{ F \subseteq T \mid F \text{ is linked to } S \text{ in } D \}.$$

Then $M(D, S, T) := (V, I)$ is a *gammoid*.
Definition

Let \mathbb{K} be an extension field of \mathbb{F}. A set $\{x_1, \ldots, x_n\} \subseteq \mathbb{K}$ is \textit{algebraically dependent over} \mathbb{F} if there exists a polynomial p with coefficients in \mathbb{F} such that $p(x_1, \ldots, x_n) = 0$.
Algebraic matroids

Definition
Let K be an extension field of F. A set $\{x_1, \ldots, x_n\} \subseteq K$ is algebraically dependent over F if there exists a polynomial p with coefficients in F such that $p(x_1, \ldots, x_n) = 0$.

Example (Algebraic matroids)
Let K be an extension field of F, and let $E \subseteq K$ be finite. Let

$$I := \{F \subseteq E \mid F \text{ algebraically independent over } F\}$$

Then $M(E, F) := (E, I)$ is an algebraic matroid.
Definition

Let $H := \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$. A complex polynomial p in n variables has the half-plane property if $p(x_1, \ldots, x_n) \neq 0$ for all $x_1, \ldots, x_n \in H$.

Theorem

Let $p = \sum_{F \subseteq E} p_F x_F$ be a homogeneous complex polynomial. If p has the half-plane property, then $\{ F \subseteq E \mid p_F \neq 0 \}$ is the set of bases of a matroid on E.

... so these are the half-plane-property (HPP) matroids.
'Half-plane property' matroids

Definition

Let \(H := \{ z \in \mathbb{C} \mid \Re(z) > 0 \} \). A complex polynomial \(p \) in \(n \) variables has the **half-plane property** if \(p(x_1, \ldots, x_n) \neq 0 \) for all \(x_1, \ldots, x_n \in H \).

Let \(\{ x_e \mid e \in E \} \) be variables. For \(F \subseteq E \), we write \(x^F := \prod_{e \in F} x_e \).
Definition

Let \(H := \{ z \in \mathbb{C} \mid \Re(z) > 0 \} \). A complex polynomial \(p \) in \(n \) variables has the \textit{half-plane property} if \(p(x_1, \ldots, x_n) \neq 0 \) for all \(x_1, \ldots, x_n \in H \).

Let \(\{ x_e \mid e \in E \} \) be variables. For \(F \subseteq E \), we write \(x^F := \prod_{e \in F} x_e \).

Theorem

Let \(p = \sum_{F \subseteq E} p_F x^F \) be a homogeneous complex polynomial. If \(p \) has the half-plane property, then

\(\{ F \subseteq E \mid p_F \neq 0 \} \)

is the set of bases of a matroid on \(E \).
‘Half-plane property’ matroids

Definition

Let $H := \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$. A complex polynomial p in n variables has the *half-plane property* if $p(x_1, \ldots, x_n) \neq 0$ for all $x_1, \ldots, x_n \in H$.

Let $\{x_e \mid e \in E\}$ be variables. For $F \subseteq E$, we write $x^F := \prod_{e \in F} x_e$.

Theorem

Let $p = \sum_{F \subseteq E} p_F x^F$ be a homogeneous complex polynomial. If p has the half-plane property, then

$$\{ F \subseteq E \mid p_F \neq 0 \}$$

is the set of bases of a matroid on E.

... so these are the *half-plane-property (HPP) matroids.*
'Half-plane property' matroids

Definition
Let $H := \{ z \in \mathbb{C} \mid \Re(z) > 0 \}$. A complex polynomial p in n variables has the *half-plane property* if $p(x_1, \ldots, x_n) \neq 0$ for all $x_1, \ldots, x_n \in H$.

Let $\{ x_e \mid e \in E \}$ be variables. For $F \subseteq E$, we write $x^F := \prod_{e \in F} x_e$.

Theorem
Let $p = \sum_{F \subseteq E} p_F x^F$ be a homogeneous complex polynomial. If p has the half-plane property, then

$$\{ F \subseteq E \mid p_F \neq 0 \}$$

is the set of bases of a matroid on E.

... so these are the *half-plane-property (HPP)* matroids.
The matroid polytope

If $A \subseteq E$, then its incidence vector $x^A \in \mathbb{R}^E$ is determined by

$$x_e^A = \begin{cases} 1 & \text{if } e \in A \\ 0 & \text{if } e \notin A \end{cases}$$

Definition (Matroid polytope)

Let $M = (E, \mathcal{I})$ be a matroid. The matroid polytope is

$$P(M) := \text{conv.hull}\{x^I \mid I \in \mathcal{I}\}.$$

The rank of $F \subseteq E$ in $M = (E, \mathcal{I})$ is $r_M(F) := \max\{|I| \mid I \in \mathcal{I}, I \subseteq F\}$.

Theorem

$$P(M) = \{x \in \mathbb{R}^E \mid x[F] \leq r_M(F) \text{ for all } F \subseteq E, \ x \geq 0\}$$
Theorem

\[P(M) = \{ x \in \mathbb{R}^E \mid x[F] \leq r_M(F) \text{ for all } F \subseteq E, \ x \geq 0 \} \]

Proof outline: It suffices to prove that for any \(w : E \to \mathbb{R} \), the problem

\[\max \{ w^T x \mid x \in P(M) \} \]

has an optimal solution \(x^* = x^I \), where \(I \) is an independent set of \(M \).

- Let \(f_1, f_2, \ldots, f_m \) be the elements of \(E \) as chosen by the greedy algorithm.
- Let \(F_i := \{ e \in E \mid r_M\{f_1, \ldots, f_i, e\} = r_M\{f_1, \ldots, f_i\} \} \).
- Let \(p = \max \{ i \mid w(f_i) > 0 \} \), and put \(I := \{ f_1, \ldots, f_p \} \).
- If \(x \in P(M) \), then

\[
w^T x \leq \sum_{i=1}^{p} u_i x[F_i] \leq \sum_{i=1}^{p} u_i r_M(F_i) \leq \sum_{i=1}^{p} w(f_i) = w^T x^I
\]

for an appropriate choice of \(u_i \geq 0 \). So \(x^I \) is an optimal solution.
Some proof details

We choose $u_i := w(f_i) - w(f_{i+1})$ for $i = 1, \ldots, p - 1$, $u_p := w(f_p)$.

- note: $r(F_i) = i$ for each i
- $\sum_{i=1}^{p} u_i r_M(F_i) = \sum_{i=1}^{p} w(f_i)$
- if $x \in P(M)$, then $x[F_i] \leq r(F_i)$ by definition of $P(M)$, hence

$$\sum_{i=1}^{p} u_i x[F_i] \leq \sum_{i=1}^{p} u_i r_M(F_i)$$

- to prove $w^T x \leq \sum_{i=1}^{p} u_i x[F_i]$, we need to argue for each e that

$$w(e) \leq \sum_{i=k}^{p} u_i = w(f_k)$$

where $k := \min\{i \mid e \in F_i\}$. But if $e \in F_k \setminus F_{k-1}$, then $w(f_k) \geq w(e)$.