Closed formulas for the error locator polynomials of cyclic codes

Dedicated to Tom Høholdt
in honour of his 60-th birthday

by Ruud Pellikaan
Discrete Mathematics
Technical University of Eindhoven

June 2, 2005
Decoding cyclic codes
beyond the BCH error-correcting capacity.

Roughly four methods:

I) Buchberger’s algorithm, Gröbner basis
syndrome equations in
error-positions and values

II) Newton identities
in syndromes and coefficients of
error-locator polynomial

III) Majority voting of unknown syndromes,
error-locating pairs

IV) Sudan’s list decoding
Ternary Golay code $[11,6,5]$

Cyclic code of length $n = 11$ over \mathbb{F}_3

11 divides $3^5 - 1$: $11 \cdot 22 = 242$

$\alpha \in \mathbb{F}_{243}$ of order 11

$c(x) = c_0 + c_1x + \cdots + c_{10}x^{10}$

with $c_i \in \mathbb{F}_3$ and $x^{11} = 1$

is a codeword if and only if $c(\alpha) = 0$
if $c(x)$ is a codeword, then $c(\alpha) = 0$

so $c(\alpha^3) = 0$, $c(\alpha^9) = 0$, ...

Hence $c(\alpha^i) = 0$ for i one of

1, 3, 9, 27 ≡ 5, 15 ≡ 4, 12 ≡ 1

that is

1, −, 3, 4, 5, −, −, −, 9, −, −,
complete defining set

1, −, 3, 4, 5, −, −, −, 9, −, −

hence the dimension is 11 − 5 = 6

minimum distance d is at least $d_{BCH} = 4$

in fact $d = 5$

so 2 error-correcting
Error-correction

c(x) the codeword sent over a channel

y(x) the received word

y(x) = c(x) + e(x) with

e(x) the error vector/polynomial

s_j = e(\alpha^j) the j-th syndrome

If j in the complete defining set, then

s_j = y(\alpha^j) is a known syndrome,

otherwise an unknown syndrome
Now

\[s_j^3 = s_{3j} \]

Hence

\[s_1^3 = s_3 \]
\[s_1^{27} = s_5 \]
\[s_1^9 = s_9 \]
\[s_1^{81} = s_4 \]
\[s_1^{243} = s_1 \]
in case of t errors

error polynomial $e(x)$

has weight t supported at positions

$$i_1 < \cdots < i_t$$

$$e(x) = e_{i_1}x^{i_1} + \cdots + e_{i_t}x^{i_t}$$
\[
e(\alpha^j) = e_{i_1} \alpha^{j_{i_1}} + \cdots + e_{i_t} \alpha^{j_{i_t}}
\]

\[
s_j = e(\alpha^j) = y_1 x_1^j + \cdots + y_t x_t^j
\]

\[
x_w = \alpha^{i_w} \text{ error position}
\]

\[
y_w = e_{i_w} \text{ error value}
\]
Minimum distance $d = 5$

Assume that number of errors $t \leq 2$

Then $c(x)$ is the unique closest codeword

and $s_1 = y_1x_1 + y_2x_2$

$y_i^3 = y_i$ and $x_i^{11} = 1$ for $i = 1, 2$
Try to solve these nonlinear equations by clever manipulations,
or apply **Buchberger’s algorithm**
for a **Gröbner basis**

1990-1994: Brinton Cooper III and Chen-Helleseth-Reed-Truong
Polynomial equations

\[S_1 = Y_1X_1 + Y_2X_2 \]

\[Y_1^2 = 1, \; X_1^{11} = 1, \; Y_2 = 1, \; X_2^{11} = 1 \]

\[(X_1 - X_2)^{242} = 1 \]

in the variables with lex order

\[S_1 < X_1 < X_2 < Y_1 < Y_2 \]

elimination order
Computer algebra packages

Maple, Mathematica: slow

Singular, Magma: fast

computing Gröbner bases
Example with Magma

P<Y2,Y1,X2,X1,S1> := PolynomialRing(GF(3),5);
I := ideal<P|X1*Y1+X2*Y2-S1,
Y1^2-1,Y2^2-1,X1^11-1,X2^11-1,
(X1-X2)^242-1>;
GroebnerBasis(I);
X1^2 + 2*X1*S1^144 + X1*S1^100 + 2*X1*S1^34 +
X1*S1^12 + 2*S1^200 + S1^178 + 2*S1^156 +
2*S1^134 + S1^90 + 2*S1^68 + 2*S1^46 +
S1^24 + 2*S1^2,
S1^220 + S1^198 + S1^176 + S1^154 + S1^132 +
S1^110 + S1^88 + S1^66 + S1^44 + S1^22 + 1
]

Total time: 0.230 seconds,
Total memory usage: 3.99MB
\[X_1^2 + \]
\[2X_1S_1^{144} + X_1S_1^{100} + 2X_1S_1^{34} + X_1S_1^{12} + \]
\[2S_1^{200} + S_1^{178} + 2S_1^{156} + 2S_1^{134} + S_1^{90} + \]
\[2S_1^{68} + 2S_1^{46} + S_1^{24} + 2S_1^2 \]

Coefficient of \(X_1^2 \): 1

Coefficient of \(X_1 \): \(2S_1^{144} + S_1^{100} + 2S_1^{34} + S_1^{12} \)

Coefficient of 1:

\[2S_1^{200} + S_1^{178} + 2S_1^{156} + 2S_1^{134} + \]
\[S_1^{90} + 2S_1^{68} + 2S_1^{46} + S_1^{24} + 2S_1^2 \]
Closed formula of

error-locator polynomial

\[\sigma(X) = (X - x_1)(X - x_2) = 1 + \sigma_1 X + \sigma_2 X^2 \]

\[\sigma_1(S_1) = -S_1^{144} + S_1^{100} - S_1^{34} + S_1^{12} \]

\[\sigma_2(S_1) = -S_1^{200} + S_1^{178} - S_1^{156} - S_1^{134} + S_1^{90} - S_1^{68} - S_1^{46} + S_1^{24} - S_1^2 \]
Generic case of cyclic code

with 1, 2, . . . , 2t in defining set

and received word with at most t errors

 Syndrome equations:

\[S_j = Y_1X_1^j + Y_2X_2^j + \cdots + Y_tX_t^j \quad j = 1, \ldots, 2t, \]

 Error-locator polynomial

\[\sigma^{(t)}(X) = \prod_{i=1}^{t} (X - X_i) = \sum_{j=0}^{t} \sigma^{(t)}_j X^{t-j} \]
Elementary symmetric functions:

\[
\sigma_0^{(t)} = 1
\]

\[
\sigma_1^{(t)} = -(X_1 + X_2 + \cdots + X_t)
\]

\[\vdots\]

\[
\sigma_t^{(t)} = (-1)^t X_1 X_2 \cdots X_t
\]

\[
\sigma_j^{(t)} = (-1)^j \sum_{1 \leq i_1 < \cdots < i_j \leq t} X_{i_1} X_{i_2} \cdots X_{i_t}
\]
Peterson-Arimoto

use Generalized Newton identities:

\[
\begin{align*}
S_{t+1} + \sigma_1 S_t + \cdots + \sigma_t S_1 &= 0 \\
S_{t+2} + \sigma_1 S_{t+1} + \cdots + \sigma_t S_2 &= 0 \\
& \vdots \quad \vdots \quad \vdots \\
S_{2t} + \sigma_1 S_{2t-1} + \cdots + \sigma_t S_t &= 0.
\end{align*}
\]

to solve linear equations in the variables σ_j with coefficients in the S_r.
Matrix equation:

\[
\begin{pmatrix}
S_{t+1} & S_t & \cdots & S_1 \\
S_{t+2} & S_{t+1} & \cdots & S_2 \\
\vdots & \vdots & \ddots & \vdots \\
S_{2t} & S_{2t-1} & \cdots & S_t
\end{pmatrix}
\begin{pmatrix}
1 \\
\sigma_1 \\
\sigma_2 \\
\vdots \\
\sigma_t
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}.
\]

or equivalently

\[
\begin{pmatrix}
S_t & \cdots & S_1 \\
S_{t+1} & \cdots & S_2 \\
\vdots & \ddots & \vdots \\
S_{2t-1} & \cdots & S_t
\end{pmatrix}
\begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\vdots \\
\sigma_t
\end{pmatrix}
= -
\begin{pmatrix}
S_{t+1} \\
S_{t+2} \\
\vdots \\
S_{2t}
\end{pmatrix}.
\]
Case $t = 2$

\[
\begin{align*}
S_2 \sigma_1 + S_1 \sigma_2 &= -S_3 \\
S_3 \sigma_1 + S_2 \sigma_2 &= -S_4
\end{align*}
\]

Cramer’s rule:

\[
\sigma_1 = \frac{\begin{vmatrix}
-S_3 & S_1 \\
-S_4 & S_2
\end{vmatrix}}{\begin{vmatrix}
S_2 & S_1 \\
S_3 & S_2
\end{vmatrix}} = \frac{S_1 S_4 - S_2 S_3}{S_2^2 - S_1 S_3}
\]

and similarly

\[
\sigma_2 = \frac{S_3^2 - S_2 S_4}{S_2^2 - S_1 S_3}
\]
Generic error-locator polynomial for $t = 2$

\[(S_2^2 - S_1 S_3)X^2 + (S_1 S_4 - S_2 S_3)X + (S_3^2 - S_2 S_4)\]

\[
\begin{vmatrix}
X^2 & X & 1 \\
S_3 & S_2 & S_1 \\
S_4 & S_3 & S_2 \\
\end{vmatrix}
\]
Closed formula of
generic error-locator polynomial

\[
\sigma^{(t)}(X) = \begin{vmatrix}
X^t & X^{t-1} & \cdots & 1 \\
S_{t+1} & S_t & \cdots & S_1 \\
S_{t+2} & S_{t+1} & \cdots & S_2 \\
\vdots & \vdots & \ddots & \vdots \\
S_{2t} & S_{2t-1} & \cdots & S_t
\end{vmatrix}
\]
Binary cyclic codes

error values are always one: $Y_i = 1$,

syndromes: $S_{2j} = S_j^2$

equations:

$$S_{2j-1} = X_1^{2j-1} + X_2^{2j-1} + \cdots + X_t^{2j-1}$$

for $j = 1, \ldots, t$
Algebraic system of

t equations in 2t variables.

Eliminate the X_2, \ldots, X_t.

Gives one equation

$$\beta^{(t)}(X_1) = 0$$

in the variable X_1

with coefficients

$$\beta_i^{(t)}(S_1, S_3 \ldots, S_{2t-1})$$
For $t = 1$

$$\beta^{(1)}(X) = X + S_1$$

Compare:

$$\sigma^{(1)}(X) = S_1X - S_2$$

Reduce mod 2 and $S_{2j} = S_j^2$

$$\sigma^{(1)}(X) = S_1X + S_1^2 = S_1\beta^{(1)}(X)$$
For $t = 2$,

$$\beta^{(2)}(X) = S_1X^2 + S_2^2X + (S_3 + S_1^3)$$

Compare:

$$\sigma^{(2)}(X) =
(S_3S_1 - S_2^2)X^2 - (S_4S_1 - S_2S_3)X + (S_4S_2 - S_3^2)$$
Reduction mod 2 and $S_{2j} = S_j^2$ gives

$$(S_3S_1 + S_1^4)X^2 + (S_3S_1^3 + S_1^5)X + (S_3^2 + S_1^6)$$

Divide by $S_3 + S_1^3$

$$S_1X^2 + S_1^2X + (S_3 + S_1^3)$$

is again $\beta^{(2)}(X)$
For $t = 3$,

$$
\beta^{(3)}(X) = (S_3 + S_1^3)X^3 + S_1(S_3 + S_1^3)X^2 + (S_5 + S_3S_1^2)X + (S_5S_1 + S_3^2 + S_3S_1^3 + S_1^6)
$$

Compare:

$$
\sigma^{(3)}(X) = (S_5S_3S_1 - S_5S_2^2 - S_4^2S_1 + 2S_4S_3S_2 - S_3^3)X^3
\quad -(S_6S_3S_1 - S_6S_2^2 - S_5S_4S_1 + S_5S_3S_2 - S_4S_3^2 + S_4^2S_2)X^2
\quad +(S_6S_4S_1 - S_6S_3S_2 - S_5^2S_1 + S_5S_3^2 + S_5S_4S_2 - S_4^2S_3)X
\quad -(S_6S_4S_2 - S_3^2S_6 - S_5^2S_2 + 2S_5S_4S_3 - S_4^3)
$$
Reduction mod 2 and $S_{2j} = S_j^2$ gives

$$(S_5S_3S_1 + S_5S_1^4 + S_3^3 + S_1^9)X^3 +$$
$$(S_3^3S_1 + S_5S_1^5 + S_5S_3S_1^2 + S_1^{10})X^2 +$$
$$(S_5^2S_1 + S_5S_3^2 + S_5S_1^6 + S_3^3S_1^2 + S_3^2S_1^5 + S_3S_1^8)X +$$
$$(S_5^2S_1^2 + S_3^4 + S_3^2S_1^6 + S_1^{12})$$

Division by $(S_3S_1^3 + S_3^2 + S_5S_1 + S_1^6)$ gives

$$(S_3 + S_1^3)X^3 + S_1(S_3 + S_1^3)X^2 +$$
$$(S_5 + S_3S_1^2)X + (S_5S_1 + S_3^2 + S_3S_1^3 + S_1^6)$$

is again $\beta^{(3)}(X)$
General result

- $\beta^{(t)}(X)$ weighted homogeneous of degree $t(t + 1)/2$

- $\beta_{t}^{(t)} = \beta_{0}^{(t+1)}$

- $\beta_{1}^{(t)} = S_{1}\beta_{0}^{(t)}$

- The reduction of $\sigma^{(t)}(X)$ modulo 2 and $S_{2j} = S_{j}^{2}$ is equal to $\beta_{0}^{(t)}\beta^{(t)}(X)$
Newton identities

\[
\begin{align*}
S_1 & + \sigma_1 + 0 + 0 + \cdots + 0 = 0 \\
S_2 & + \sigma_1 S_1 + 2\sigma_2 + 0 + \cdots + 0 = 0 \\
S_3 & + \sigma_1 S_2 + \sigma_2 S_1 + 3\sigma_3 + \cdots + 0 = 0 \\
& \vdots \\
S_t & + \sigma_1 S_{t-1} + \sigma_2 S_{t-2} + \sigma_3 S_{t-3} + \cdots + t\sigma_t = 0.
\end{align*}
\]

\[
\begin{align*}
S_{t+1} & + \sigma_1 S_t + \cdots + \sigma_t S_1 = 0 \\
S_{t+2} & + \sigma_1 S_{t+1} + \cdots + \sigma_t S_2 = 0 \\
& \vdots \\
S_{2t} & + \sigma_1 S_{2t-1} + \cdots + \sigma_t S_t = 0.
\end{align*}
\]