Cryptanalysis of public-key cryptosystems based on algebraic geometry codes

Ruud Pellikaan
cjoint work with
Irene Márquez-Corbella and Edgar Martínez-Moro

Number Theory Seminar
11 November 2011, Queens University, Kingston
Introduction

- ECC = Error-correcting codes
- AGC = Algebraic geometry curves
- PKC = Public-key cryptosystems
Error-correcting codes

\mathbb{F}_q finite field with q elements

Hamming distance on \mathbb{F}_q^n:

$$d(x, y) = |\{i \mid x_i \neq y_i \}|$$

C linear block code: \mathbb{F}_q-linear subspace of \mathbb{F}_q^n

parameters $[n, k, d]$:
$n = \text{length}$
$k = k(C) = \text{dimension of } C$
$d = d(C) = \text{minimum distance of } C$

$$d(C) = \min |\{d(x, y) \mid x, y \in C, x \neq y \}|$$
Generator and parity check matrix

C an \mathbb{F}_q-linear code of dimension k

G generator matrix of C: a $k \times n$ matrix with entries in \mathbb{F}_q and

$$C = \{ xG \mid x \in \mathbb{F}_q^k \}$$

Code is **nondegenerate** if G has no zero column

H parity check matrix of C: a $(n - k) \times n$ matrix with entries in \mathbb{F}_q and

$$C = \{ c \in \mathbb{F}_q^n \mid cH^T = 0 \}$$
Katsman-Tsfasman-Vladut:

Let \(\mathbb{F} \) be a field.

A projective system \(\mathcal{P} = (P_1, \ldots, P_n) \) in \(\mathbb{P}^r(\mathbb{F}) \) is an \(n \)-tuple of points \(P_j \) in this projective space such that not all these points lie in a hyperplane.

Let \(P_j = (p_{0j} : p_{1j} : \ldots : p_{rj}) \).

Let \(G_{\mathcal{P}} \) be the \((r + 1) \times n \) matrix with \((p_{0j}, p_{1j}, \ldots, p_{rj})^T \) as \(j \)-th column.

Then \(G_{\mathcal{P}} \) has rank \(r + 1 \), since not all points lie in a hyperplane.
If \mathbb{F} is a finite field, then $G_{\mathcal{P}}$ is the generator matrix of a nondegenerate $[n, r + 1, d]$ code over \mathbb{F} where $n - d$ is the maximal number of points of \mathcal{P} that lie in a hyperplane of $\mathbb{P}^{k-1}(\mathbb{F})$.

Example
Let \mathcal{X} be an irreducible projective curve over \mathbb{F}_q of degree m in \mathbb{P}^{k-1}.
Let \mathcal{P} be an enumeration of n points of $\mathcal{X}(\mathbb{F}_q)$.
Then $G_{\mathcal{P}}$ is the generator matrix of a code with parameters n, k, d]

\[d \geq n - m \]
Conversely:
Let G be a generator matrix of a nondegenerate $[n, k, d]$ code over \mathbb{F}_q.
Then G has no zero columns.
Take the columns of G as homogeneous coordinates of points in $\mathbb{P}^{k-1}(\mathbb{F}_q)$.
This gives the projective system \mathcal{P}_G over \mathbb{F}_q of G.

One-to-one correspondence between:
- generalized equivalence classes of nondegenerate $[n, k]$ codes over \mathbb{F}_q,
- equivalence classes of projective systems of n points in $\mathbb{P}^{k-1}(\mathbb{F}_q)$.
Generalized Reed-Solomon codes

\[a = (a_1, \ldots, a_n) \text{ an } n\text{-tuple of mutually distinct elements of } \mathbb{F}_q \]

\[b = (b_1, \ldots, b_n) \text{ an } n\text{-tuple of nonzero elements of } \mathbb{F}_q \]

\[\text{GRS}_k(a, b) = \{ (f(a_1)b_1, \ldots, f(a_n)b_n) \mid f(X) \in \mathbb{F}_q[X], \deg(f(X) < k) \} \]

parameters: \([n, k, n - k + 1]\) if \(k \leq n\)

generator matrix:

\[
G_k(a, b) = \begin{pmatrix}
 b_1 & \cdots & b_j & \cdots & b_n \\
 a_1 b_1 & \cdots & a_j b_j & \cdots & a_n b_n \\
 \vdots & \cdots & \vdots & \cdots & \vdots \\
 a_1^{k-1} b_1 & \cdots & a_j^{k-1} b_j & \cdots & a_n^{k-1} b_n
 \end{pmatrix}
\]
Normal rational curves and GRS codes

The projective system of the code $GRS_k(a, b)$ with generator matrix $G_k(a, b)$ is

$$\mathcal{P}_k(a) = \{(1 : a_j : \cdots : a_j^i : \cdots : a_j^{k-1}) \mid j = 1, \ldots, n\}$$

Consider the embedding $\mathbb{P}^1 \to \mathbb{P}^r$ by the degree r map given by

$$(y_0 : y_1) \mapsto (y_0^r : y_0^{r-1} y_1 : \cdots : y_0^{r-j} y_1^i : \cdots : y_0 y_1^{r-1} : y_1^r)$$

The image of this map in \mathbb{P}^r is the NRC (normal rational curve) \mathcal{X}_r

Every hyperplane intersects \mathcal{X}_r in at most r points and

$$\mathcal{P}_k(a) \subseteq \mathcal{X}_{k-1}(\mathbb{F}_q)$$
The vanishing ideal $I(\mathcal{X}_r)$ of \mathcal{X}_r is generated by the quadratic polynomials:

$$X_iX_{r-i} - X_jX_{r-j}, \text{ for } 0 \leq i < j \leq r$$

that is the determinantal ideal of the 2×2 minors of the $2 \times r$ matrix

$$
\begin{pmatrix}
X_0 & X_1 & \cdots & X_i & \cdots & X_{r-1} \\
X_1 & X_2 & \cdots & X_{i+1} & \cdots & X_r
\end{pmatrix}
$$

since the rows of the matrix

$$
\begin{pmatrix}
1 & y & \cdots & y^i & \cdots & y^{r-1} \\
y & y^2 & \cdots & y^{i+1} & \cdots & y^r
\end{pmatrix}
$$

are dependent for all y and
Let X be an algebraic variety over \mathbb{F}_q with a subset \mathcal{P} of $X(\mathbb{F}_q)$ enumerated by P_1, \ldots, P_n.

Suppose that we have a vector space L over \mathbb{F}_q of functions on X with values in \mathbb{F}_q.

So $f(P_i) \in \mathbb{F}_q$ for all i and $f \in L$.

In this way we have an evaluation map

$$ev_{\mathcal{P}} : L \rightarrow \mathbb{F}_q^n$$

defined by $ev_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n))$.

This evaluation map is linear, so its image is a linear code.
Codes on the affine line

The classical example:

Generalized Reed-Solomon codes

The geometric object \mathcal{X} is the affine line over \mathbb{F}_q.
The points are n distinct elements of \mathbb{F}_q.
L is the vector space of polynomials of degree at most $k - 1$ and with coefficients in \mathbb{F}_q.

This vector space has dimension k.
Such polynomials have at most $k - 1$ zeros.
so nonzero codewords have at least $n - k + 1$ nonzeros.

This code has parameters $[n, k, n - k + 1]$ if $k \leq n$.
Dictionary

\(K \) function field over \(\mathbb{F}_q \)
\[[K : \mathbb{F}_q(X)] < \infty \]
discrete valuation
\(\mathbb{F}[X] \) regular functions
Zeta function
RHS is proved
block code \(C \subseteq \mathbb{F}_q^n \)

\(K \) number field
\[[K : \mathbb{Q}] < \infty \]
valuation
\(\mathbb{O} \) ring of integers
Zeta function
RHS conjectured
lattice \(\Gamma \subseteq \mathbb{R}^n \)
Let \mathcal{X} be an algebraic curve over \mathbb{F}_q of genus g

$\mathbb{F}_q(\mathcal{X})$ is the function field of the curve \mathcal{X} with field of constants \mathbb{F}_q

Let f be a nonzero rational function on the curve

The divisor of zeros and poles of f is denoted by (f)

Let E be a divisor of \mathcal{X} of degree m

Then

$$L(E) = \{ f \in \mathbb{F}_q(\mathcal{X}) \mid f = 0 \text{ or } (f) \geq -E \}$$

The dimension of the space $L(E)$ is denoted by $l(E)$

Then $l(E) \geq m + 1 - g$ and equality holds if $m > 2g - 2$

by the Theorem of Riemann-Roch
Let $\mathcal{P} = (P_1, \ldots, P_n)$ an n-tuple of mutual distinct points of $X(\mathbb{F}_q)$ with divisor $D = P_1 + \cdots + P_n$

If the support of E is disjoint from D, then the evaluation map

$$\text{ev}_{\mathcal{P}} : L(E) \to \mathbb{F}_q^n$$

where $\text{ev}_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n))$, is well defined.

The algebraic geometry code $C_L(X, \mathcal{P}, E)$ is the image of $L(E)$ under the evaluation map $\text{ev}_{\mathcal{P}}$

If $m < n$, then $C_L(X, \mathcal{P}, E)$ is an $[n, k, d]$ code with

$$k \geq m + 1 - g \text{ and } d \geq n - m$$
Information rate

Relative minimum distance \(\delta = d / n \)

Singleton

Gilbert-Varshamov

q-ary entropy function \(H_q \)

Goppa for AG codes

Relative genus

Ihara-Tsfasman-Vladut-Zink

\[
R = \frac{k}{n} \\
\delta = \frac{d}{n} \\
R + \delta \leq 1 \\
R \geq 1 - H_q(\delta) \\
R + \delta \geq 1 - \gamma \\
\gamma = \frac{g}{n} \\
\gamma = \frac{1}{\sqrt{q-1}}
\]
Figuur: Bounds on R as a function of δ for $q = 49$ and $\gamma = \frac{1}{6}$.
Dual codes on curves

Let ω be a differential form with a simple pole at P_j with residue 1 for all $j = 1, \ldots, n$

Let K be the canonical divisor of ω
Let m be the degree of the divisor E on \mathcal{X} with disjoint support from \mathcal{P}

Let $E^\perp = D - E + K$ and $m^\perp = \deg(E^\perp)$
Then $m^\perp = 2g - 2 - m + n$ and

$$C_L(\mathcal{X}, \mathcal{P}, E)^\perp = C_L(\mathcal{X}, \mathcal{P}, E^\perp)$$
Embedding of X in linear system of E of degree m

Let f_1, f_2, \ldots, f_k be a basis of $L(E)$

$$
\varphi : X \longrightarrow \mathbb{P}^{k-1}
$$

$$
P \mapsto (f_1(P), f_2(P), \ldots, f_k(P))
$$

$\mathcal{Y} = \varphi(X)$ is a curve of degree m in \mathbb{P}^{k-1}

$\mathcal{Q} = (\varphi(P_1), \ldots, \varphi(P_n))$ projective system

$$
G_\mathcal{Q} = \begin{pmatrix}
 f_1(P_1) & \cdots & f_1(P_j) & \cdots & f_1(P_n) \\
 f_2(P_1) & \cdots & f_2(P_j) & \cdots & f_2(P_n) \\
 \vdots & \cdots & \vdots & \cdots & \vdots \\
 f_k(P_1) & \cdots & f_k(P_j) & \cdots & f_k(P_n)
\end{pmatrix}
generator\ matrix
$$

minimum distance $\geq n - m$
Decoding linear codes

Decoding problem

Input: \((G, y)\)
where \(G\) is a \(k \times n\) matrix \(G\) over \(\mathbb{F}_q\) of rank \(k\), and \(y\) in \(\mathbb{F}_q^n\)

Output: A closest codeword \(c\)
so \(d(c, y)\) is minimal for all \(c\) in the code \(C\) with generator matrix \(G\)

This problem is \textbf{NP-hard}
Berlekamp-McEliece-Van Tilborg
Decoding arbitrary linear codes

Exponential complexity $\approx q^{e(R)n}$

x-axis: information rate $R = k/n$
y-axis: complexity exponent $e(R)$
Decoding special classes of codes

Efficient decoding algorithms up to half the minimum distance for:

– Generalized Reed-Solomon codes
– Goppa codes
– Algebraic geometry codes

Polynomial complexity $\mathcal{O}(n^3)$

– Peterson, Arimoto 1960
– Berlekamp-Massey 1963
– Skorobogatov-Vladut 1990
– Sakata 1990
– Feng-Rao, Duursma 1993
– Sudan, Guruswami 1997
Public-key cryptosystems

PKC systems use **trapdoor one-way functions**
by mathematical problems that are (supposedly) **hard**

RSA, **factoring integers**: given \(n = pq \) find \((p, q)\)
Diffie-Hellman, **discrete-log problem** in \(\mathbb{F}_q \): given \(b = a^n \) find \(n \)
Elliptic curve PKC, **addition on elliptic curve**: given \(Q = nP \), find \(n \)

Code based PKC systems: decoding of codes

McEliece (Goppa codes)
Niederreiter (Generalized Reed-Solomon codes)
Janwa-Moreno (Algebraic geometry codes)
McEliece:
Let C be a class of codes that have efficient decoding algorithms correcting t errors with $t \leq (d - 1)/2$

Secret key: (S, G, P)
- S an invertible $k \times k$ matrix
- G a $k \times n$ generator matrix of a code C in C
- P an $n \times n$ permutation matrix

Public key: $G' = SGP$

Message: m in \mathbb{F}_q^k

Encryption: $y = mG' + e$ with random chosen e in \mathbb{F}_q^n of weight t

Decryption: $yP^{-1} = mSG + eP^{-1}$ and eP^{-1} has weight t

Decoder gives $c = mSG$ as closest codeword
Binary Goppa codes with parameters \([n, k, d]\) where

\[n = 2^m, \ k \geq 2^m - mr, \ d \geq 2r + 1 \]

Are subfield subcodes of GRS codes over \(\mathbb{F}_{2^m}\) with parameters

\([2^m, 2^m - mr, r + 1] \)

Testcase: binary Goppa code with \(m = 10, r = 50 \)

\([1024, \geq 524, \geq 101] \)

Corrects 50 errors
Attacking McEliece PKC system

- McEliece 1978
- Brickell-Lee 1988
- Leon 1988
- van Tilburg 1988
- Stern 1989
- Canteaut-Chabaud-Sendrier 1998
- Bernstein-Lange-Peters 2008

McEliece PKC system using binary Goppa \([1024, 524, 101]\) can be broken in:

- 1400 days by a single CPU or
- 7 days by a cluster of 200 CPU’s
Suppose C is the class of Generalized Reed-Solomon codes

A GRS code of length n and dimension $k = r + 1$
gives a projective system of n points in general position
on a NRC of degree r in projective space of dimension r

Special case: $k = 3$ and $r = 2$:
a NRC of degree 2 in the projective plane is a conic
5 points in general position determine this conic

Steiner: parametrization of this conic in the plane given these 5 points

Algorithm of Sidelnikov-Shestakov for arbitrary k
Complexity: linear algebra $O(n^3)$
Conic determined by 5 points
NRC of degree r determined by $r + 2$ points

Veronese 1882, Bordiga 1885, Castelnuovo 1885:

Let \mathcal{P} be a collection of $r + 3$ points in general position in \mathbb{P}^r
Then there is a unique NRC of degree r passing through the points of \mathcal{P}

Twisted cubic, $r=3$:

(spiraal)
PKC system using subcodes of GRS codes

Berger-Loidreau: use subcodes of GRS codes

Attack: Wieschebrink, Marquez-Martinez-P

Projection of NRC to linear subspace
Singular rational curve in projective space
Interpolation problem

Goppa codes are specific subfield subcodes of GRS codes
Janwa-Moreno: use algebraic geometry codes

Problem for the attacker:

Input: a generator matrix of an AG code $C_L(\mathcal{X}, \mathcal{P}, E)$

Output: $(\mathcal{X}, \mathcal{P}, E)$ if this triple is unique or $(\mathcal{X}', \mathcal{P}', E')$ otherwise

This system was broken for codes on curves of genus $g \leq 2$ by Faure-Minder
A code C over \mathbb{F} is called weakly algebraic-geometric (WAG) if $C = C_L(\mathcal{X}, \mathcal{P}, E)$ for some triple $(\mathcal{X}, \mathcal{P}, E)$ where:

- \mathcal{X} is an algebraic curve over \mathbb{F}_q
- \mathcal{P} is an n-tuple of mutually distinct points of $\mathcal{X}(\mathbb{F}_q)$
- E is divisor of degree m on \mathcal{X}

Then $(\mathcal{X}, \mathcal{P}, E)$ is called a WAG representation of C

If $m < n$, then it is called AG
If $2g - 2 < m < n$, then it is called strongly algebraic-geometric (SAG)

Theorem[P-Shen-van Wee]: Every code has a WAG representation
Equivalent representations

Two representations (X, P, E) and (Y, Q, F) are called **equivalent** or **isomorphic** if there is an isomorphism of curves $\varphi : X \rightarrow Y$ such that $\varphi(P) = Q$ and $\varphi(E) \equiv F$

They are called **strict equivalent** or **strict isomorphic** if moreover $\varphi(E) \equiv_Q F$

Proposition
Let (X, P, E) and (Y, Q, F) be WAG representations of C and D, resp. Then:

1. If (X, P, E) and (Y, Q, F) are equivalent, then $C \equiv D$
2. If (X, P, E) and (Y, Q, F) are strict equivalent, then $C \equiv D$
Theorem [Munuera-P]:

Let \mathcal{X} be a curve of genus g and $D = P_1 + \cdots + P_n$

Let E and F be divisors of degree m with $2g - 1 < m < n - 1$

Then

$$C_L(\mathcal{X}, \mathcal{P}, E) = C_L(\mathcal{X}, \mathcal{P}, F) \text{ if and only if } E \equiv_{\mathcal{P}} F$$
Strict equivalent representations

Let \((X, P, E)\) be a WAG representation of \(C\) such that \(m > 2g\)
Let \(r = l(E) - 1\) and \(\{f_0, \ldots, f_r\}\) be a basis of \(L(E)\)
Consider the following map:

\[
\varphi_E : X \rightarrow \mathbb{P}^r
\]
defined by \(\varphi_E(P) = (f_0(P), \ldots, f_r(P))\)
If \(m > 2g\), then \(r = m - g\) and \(\varphi_E\) defines an embedding of
the curve \(X\) in \(\mathbb{P}^r\) of degree \(m\) with image \(Y = \varphi_E(X)\)

Let \(Q_j = \varphi_E(P_j)\) and \(Q = (Q_1, \ldots, Q_n)\) then \(\varphi_E(E) = X \cdot H = F\)
for some hyperplane \(H\) of \(\mathbb{P}^r\) that is disjoint from \(Q\)

Furthermore \((Y, Q, F)\) is also a WAG representation of the code \(C\)
that is strict isomorphic with \((X, P, E)\)
Curves defined by quadrics

Normal rational normal curve is defined by quadratic equations.

The canonical model of a non-hyperelliptic projective curve of genus at least three is the intersection of quadrics and cubics, and of quadrics only except in case of a trigonal curve and a plane quintic

Enriques 1919, Petri 1923 and Babbage 1939

This result for the canonical divisor was generalized for arbitrary divisors E under certain constraints on the degree

Mumford 1970, Saint-Donat 1972 and Arbarello 1978
Curves defined by quadrics

Let \(\mathcal{X} \) be an absolutely irreducible and nonsingular curve of genus \(g \) over the perfect field \(\mathbb{F} \negr \)

Let \(E \) be a divisor on \(\mathcal{X} \) of degree \(m \)

If \(m \geq 2g + 1 \) then \(\varphi_E \) gives an embedding of \(\mathcal{X} \) onto \(\mathcal{Y} = \varphi_E(\mathcal{X}) \) which is a normal curve in \(\mathbb{P}^{m-g} \)

If \(m \geq 2g + 2 \), then \(\mathcal{Y} \) is an intersection of quadrics

More precisely:
\(I(\mathcal{Y}) \) is generated by \(I_2(\mathcal{Y}) \) the set of homogeneous elements of degree two in \(I(\mathcal{Y}) \)
Retrieving \((X, D, E)\) from \(C_L(X, D, E)\)

Let \(Y\) be a curve embedded in projective \(r\)-space of degree \(m\)
Let \(I(Y)\) be the vanishing ideal of \(Y\)
Let \(Q\) be a subset of \(Y\) of \(n\) points
Then
\[
I(Y) \subseteq I(Q)
\]

Hence
\[
I(Y)_2 \subseteq I_2(Q)
\]

Suppose \(I(Y)\) is generated by \(I_2(Y)\)

If \(n > 2m\), then \(I(Y) = I_2(Q)\)

By Bézout’s Theorem
Determination of $l_2(\mathcal{Q})$

Let \mathcal{Q} be an n-tuple of points in \mathbb{P}^{k-1} over \mathbb{F} not in a hyperplane. Let $G_{\mathcal{Q}}$ be the $k \times n$ matrix associated to \mathcal{Q} with basis g_1, \ldots, g_k. Denote the second symmetric power of C by $S^2(C)$.

If $x_i = g_i$ then $S^2(C)$ has basis $\{x_ix_j \mid 1 \leq i \leq j \leq n\}$ and dimension $\binom{k+1}{2}$.

Denote by $\langle C \ast C \rangle$ or $C^{(2)}$ the square of C that is, the linear subspace in \mathbb{F}^n generated by $\{a \ast b \mid a, b \in C\}$.

Consider the linear map $\sigma : S^2(C) \longrightarrow C^{(2)}$ where the element x_ix_j is mapped to $g_i \ast g_j$.

The kernel of this map will be denoted by $K^2(C)$.
Determination of $I_2(Q)$

Then

$$0 \rightarrow K^2(C) \rightarrow S^2(C) \rightarrow C^{(2)} \rightarrow 0$$

is an exact sequence and

$$I_2(Q) = \{ \sum_{1 \leq i \leq j \leq k} a_{ij}X_iX_j \mid \sum_{1 \leq i \leq j \leq k} a_{ij}x_ix_j \in K^2(C) \}$$

Proposition

Let Q be an n-tuple of points in \mathbb{P}^r over \mathbb{F} not in a hyperplane

Then the complexity of the computation of $I_2(Q)$ is at most $\mathcal{O}(n^2 \binom{r}{2})$
A code C over \mathbb{F}_q is called very strong algebraic-geometric (VSAG) if $C = C_L(X, P, E)$ and the curve X over \mathbb{F}_q has genus g. P consists of n points and E has degree m such that

$$2g + 2 < m < \frac{1}{2}n \quad \text{or} \quad \frac{1}{2}n + 2g - 2 < m < n - 4$$

The dimension of a such a code is $k = m + 1 - g$.

Thus the dimension satisfies the following bound

$$g + 3 < k < \frac{1}{2}n - g + 1 \quad \text{or} \quad \frac{1}{2}n + g - 1 < k < n - g - 3.$$

Note that the dual of a VSAG code is again VSAG.
Main theorem

Let C be a VSAG code

Then a VSAG representation can be obtained efficiently from its generator matrix

Moreover all VSAG representations of C are strict isomorphic
shortening SAG codes

The dimension of a VSAG code satisfies the following bound

\[g + 3 < k < \frac{1}{2}n - g + 1 \quad \text{or} \quad \frac{1}{2}n + g - 1 < k < n - g - 3. \]

Let \(R = \frac{k}{n} \) and \(\gamma = \frac{g}{n} \).

Then for \(n \to \infty \) and \(\gamma \leq \frac{1}{4} \) (so \(q \geq 25) \):

\[\gamma \leq R \leq \frac{1}{2} - \gamma \quad \text{or} \quad \frac{1}{2} + \gamma \leq R \leq 1 - \gamma \]

Proposition

If \(\gamma \leq \frac{1}{4} \) and \(C \) is a SAG code in the range

\[\gamma \leq R \leq 1 - 3\gamma \quad \text{or} \quad 3\gamma \leq R \leq 1 - \gamma \]

then by shortening \(C \) sufficiently many times one gets a VSAG code.
Conclusion

SAG codes are not secure for a code based PKC

1. If \(\frac{1}{6} \leq \gamma \leq \frac{1}{4} \) in the range:

 \[\gamma \leq R \leq 1 - 3\gamma \enspace \text{or} \enspace 3\gamma \leq R \leq 1 - \gamma \]

2. If \(\gamma \leq \frac{1}{6} \) in the range:

 \[\gamma \leq R \leq 1 - \gamma \]