On the existence of order functions

Ruud Pellikaan *

Appeared in:

Abstract
The notions of well-behaving sequences and order functions is fundamental in
the elementary treatment of geometric Goppa codes. The existence of order
functions is proved with the theory of Gröbner bases.

Keywords: Geometric Goppa codes, algebraic geometry codes, Gröbner bases,
order function, weight function, discrete valuation.

AMS classification: 94B25

1 Introduction

In the papers [5, 6, 7, 11, 12] a method is given to treat geometric Goppa
codes without algebraic geometry, that is to say that the parameters \([n, k, d]\)
and the decoding of these codes up to half the (designed) minimum distance
can be done without the theory of algebraic curves over finite fields [25], or
equivalently the theory of function fields of one variable over finite fields [24],
in particular without the theorem of Riemann-Roch. In their treatment the
notion of a well-behaving sequence is fundamental. In this paper a method is
given to prove the existence of well-behaving sequences or, in the terminology
of this paper, the existence of order or weight functions using the theory of
Gröbner bases [1, 2].

*Department of Mathematics and Computing Science, Technical University of Eind-
hoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Let \mathcal{X} be an algebraic curve defined over the finite field \mathbb{F}_q. The genus of the curve \mathcal{X} is denoted by g. The function field of rational functions on \mathcal{X} that are defined over \mathbb{F}_q is denoted by $\mathbb{F}_q(\mathcal{X})$. The principal divisor of a nonzero rational function f is denoted by (f). Let P_1, \ldots, P_n be n distinct rational points of \mathcal{X}. Let $D = P_1 + \cdots + P_n$. Let G be a divisor which has disjoint support with the support of D. The vector space $L(G)$ is defined by

$$L(G) = \{ f \in \mathbb{F}_q(\mathcal{X}) | f = 0 \text{ or } (f) \geq -G \}.$$

The index of speciality $i(G)$ of a divisor G is a nonnegative integer which is zero if $\deg(G) > 2g - 2$. Then

$$\dim(L(G)) = \deg(G) + 1 - g + i(G),$$

by the Theorem of Riemann-Roch. Consider the evaluation map

$$ev : L(G) \longrightarrow \mathbb{F}_q^n$$

defined by $ev(f) = (f(P_1), \ldots, f(P_n))$. The code $C_L(D, G)$ is by definition the image of $L(G)$ under this evaluation map. The dual $C_\Omega(D, G)$ of the code $C_L(D, G)$ can also be defined by a residue map of differential forms. Both these codes have the property that

$$k + d \geq n + 1 - g,$$

where k is the dimension and d is the minimum distance of the code.

If P is a rational point of \mathcal{X} that is not in the support of D, and $G = mP$, then $C_L(D, G)$ is called a one point geometric Goppa code. For a fixed P two sequences of codes $(C_L(D, mP)|m \in \mathbb{N}_0)$ and $(C_\Omega(D, mP)|m \in \mathbb{N}_0)$ are obtained. The nonnegative integer m is called a (Weierstrass) gap at P if $L(mP) = L((m - 1)P)$ and a nongap otherwise. The integer m is a nongap if and only if there exists a rational function f with poles only at P and pole order m. So 0 is a nongap and the sum of two nongaps is again a nongap. Hence the nongaps form a (numerical) semigroup. The number of gaps is equal to the genus g, and the largest gap is at most $2g - 1$. Let $(\rho_l|l \in \mathbb{N})$ be the sequence of nongaps in increasing order. Then $\rho_l = l + g - 1$ for all $l > g$.

The rational functions on \mathcal{X} that have only a pole at P form a ring $K_\infty(P)$ and the function

$$\rho : K_\infty(P) \rightarrow \mathbb{N}_0 \cup \{-\infty\},$$
where $\rho(f) = -v_P(f)$ and v_P is the discrete valuation at P, will be the prime example of a weight function in the terminology of this paper. The map ρ was denoted by \deg in [21]. The image of the map ρ is exactly the set of nongaps at P and for every l there exists a function $f_l \in K_\infty(P)$ such that $\rho(f_l) = \rho_l$. In this way a basis $(f_l| l \in \mathbb{N})$ of $K_\infty(P)$ over \mathbb{F}_q is obtained. Let $L(l)$ be the vector space generated by f_1, \ldots, f_l, or equivalently $L(l) = \{ f \in K_\infty(P) | \rho(f) \leq \rho_l \}$. Let $l(i,j)$ be the smallest positive integer l such that $f_i f_j \in L(l)$. Then the function $l(i,j)$ is strictly increasing in both arguments, since

$$\rho_i + \rho_j = \rho_{l(i,j)}$$

and ρ_i is strictly increasing with i.

The same can be done on the level of words in \mathbb{F}_q^n after applying the evaluation map. Denote the coordinatewise multiplication of a and b in \mathbb{F}_q^n by $a \ast b$. So $a \ast b = (a_1 b_1, \ldots, a_n b_n)$. Then \mathbb{F}_q^n becomes an \mathbb{F}_q-algebra. The evaluation map can be extended to a map

$$ev : K_\infty(P) \longrightarrow \mathbb{F}_q^n.$$

Notice that $ev(fg) = ev(f) \ast ev(g)$, so this map ev is a morphism of \mathbb{F}_q-algebras. Let $f_l = ev(f_l)$. The basis h_1, \ldots, h_n is obtained from this sequence by deleting superfluous elements as follows. The vector h_1 is the first nonzero element of the sequence $(f_l| l \in \mathbb{N})$. Suppose that h_1, \ldots, h_{l+1} are defined for $l < n$, then h_{l+1} is the first element of the sequence $(f_l| l \in \mathbb{N})$ which is not in the vector space generated by h_1, \ldots, h_l. The evaluation map is surjective, so the finite sequence $(f_l| l \in \mathbb{N})$ generates \mathbb{F}_q^n as a vector space. Therefore indeed a basis h_1, \ldots, h_n is obtained.

Let $S(l)$ be the vector space generated by h_1, \ldots, h_l. Let $\phi(i,j)$ be the the smallest positive integer such that $h_i \ast h_j \in S(l)$. The function $\phi(i,j)$ is strictly increasing for many values but not for all values of i, j. Well-behaving sequences in \mathbb{F}_q^n are introduced in terms of the function $\phi(i,j)$ being increasing for certain values of i and j [5, 6]. In this paper the distinction between functions and words is emphasized and the notion of well-behaving is studied on the level of functions.

Now a more abstract point of view is taken. Let R be an \mathbb{F}_q-algebra R, that is to say a commutative ring with a unit that has \mathbb{F}_q as a unitary subring. Suppose that R has a basis consisting of a well-behaving sequence together
with a surjective morphism \(\varphi : R \rightarrow \mathbb{F}_q^n \) of \(\mathbb{F}_q \)-algebras. In the following section a sketch will be given how this gives rise to a sequence of codes \(C(l) \) and a bound on the minimum distance of these codes following the ideas of [5, 6, 7, 11, 12, 13, 19, 20, 22, 23]. This was generalized to a bound on the generalized Hamming weights by [10].

In Section 3 the notion of an order function is defined. It is shown that the \(\mathbb{F} \)-algebra \(R \) has a basis consisting of a well-behaving sequence if and only if \(R \) has an order function. If \(R \) has an order function, then it is an integral domain. A stronger notion than an order function is a weight function. If \(R \) has a weight function, then the values of the weight function form a semigroup, and the bounds on the minimum distance of the codes \(C(l) \) can be formulated in terms of parameters of this semigroup. See [13].

What remains is to show the existence of well-behaving sequences in an elementary way. This is done in Sections 4 and 5.

2 A bound on the minimum distance

Let \(\mathbb{F} \) be a field. Let \(R \) be an \(\mathbb{F} \)-algebra. In this paper it is assumed that

\[
\varphi : R \longrightarrow \mathbb{F}_q^n,
\]

is a surjective morphism of \(\mathbb{F} \)-algebras.

Example 2.1 **Affine \(\mathbb{F} \)-algebras.** Let the set \(\mathcal{P} \) consist of \(n \) distinct points \(P_1, \ldots, P_n \) in \(\mathbb{F}^m \), the affine space over \(\mathbb{F} \) of dimension \(m \). Consider the evaluation map

\[
ev_P : \mathbb{F}[X_1, \ldots, X_m] \longrightarrow \mathbb{F}^n,
\]

defined by \(ev_P(f) = (f(P_1), \ldots, f(P_n)) \). This is a morphism of \(\mathbb{F} \)-algebras from \(\mathbb{F}[X_1, \ldots, X_m] \) to \(\mathbb{F}^n \), since \(fg(P_i) = f(P_i)g(P_i) \) for all polynomials \(f \) and \(g \), and all \(i \). The map \(ev_P \) is surjective [3, 10].

Suppose that \(I \) is an ideal in the ring \(\mathbb{F}[X_1, \ldots, X_m] \). Let \(\mathcal{P} = \{P_1, \ldots, P_n\} \) be in the zerset of \(I \) with coordinates in \(\mathbb{F} \). So \(f(P_j) = 0 \) for all \(f \in I \) and all \(j = 1, \ldots, n \). Then the evaluation map induces a well-defined linear map

\[
ev_P : \mathbb{F}[X_1, \ldots, X_m]/I \longrightarrow \mathbb{F}^n,
\]

which is also a surjective morphism of \(\mathbb{F} \)-algebras.
Definition 2.2 Let \((f_i|i \in \mathbb{N}) \) be a basis of \(R \) over \(F \). Let \(L(l) \) be the vector space generated by \(f_1, \ldots, f_l \). So for all \(f \in R \) there exists a positive integer \(l \in \mathbb{N}_0 \) such that \(f \in L(l) \). Let \(l(i, j) \) be the smallest nonnegative integer \(l \) such that \(f_i f_j \in L(l) \).

The sequence \((f_i|i \in \mathbb{N}) \) is called well-behaving if \(l(i, j) \) is strictly increasing in both arguments, that is to say

\[
l(i, j) < l(i + 1, j)
\]

for all \(i, j \in \mathbb{N} \), by symmetry. See [5, 6], and [13, 19] for the similar notion of an error-correcting array.

Remark 2.3 The associativity of the triple product \(f_i f_j f_k \) implies the associativity of \(l(i, j) \), that is to say \(l(i, l(j, k)) = l(l(i, j), k) \).

Remark 2.4 If \((f_i|i \in \mathbb{N}) \) is a well-behaving sequence, then \(l(i, j) \) is not zero for all \(i, j \in \mathbb{N} \). Because, if \(l(i, j) = 0 \) for \(i > 1 \), then \(0 \leq l(i - 1, j) < l(i, j) = 0 \) which is a contradiction. By symmetry it is not possible that \(l(i, j) = 0 \) for \(j > 1 \). Suppose that \(l(1, 1) = 0 \). Then \(f_1 f_1 = 0 \), so \(f_1 f_1 f_3 = 0 \). So \(l(1, l(1, 3)) = 0 \). But if \(j = l(1, 3) \), then \(j > l(1, 2) > 0 \). So \(l(1, l(1, 3)) = l(1, j) > 0 \), which is a contradiction.

Definition 2.5 Let \(F = \mathbb{F}_q \). Let \(f_i = \varphi(f_i) \). Define the evaluation code \(E(l) \) and its dual \(C(l) \) by

\[
E(l) = \varphi(L(l)) = \langle f_1, \ldots, f_l \rangle,
C(l) = \{ c \in \mathbb{F}_q^n \mid c \cdot f_i = 0 \text{ for all } i \leq l \}.
\]

Definition 2.6 Define

\[
N(l) = \{ (i, j) \in \mathbb{N}^2 \mid l(i, j) = l + 1 \}.
\]

Let \(\nu(l) \) be the number of elements of \(N(l) \).

Proposition 2.7 If \(y \in C(l) \setminus C(l + 1) \), then \(\text{wt}(y) \geq \nu(l) \).

Proof. See [5, 6, 7, 10, 11, 12, 13, 19, 20, 22, 23].
Definition 2.8
\[d_{\text{ORD}}(l) = \min\{\nu(l') \mid l' \geq l\}, \]
\[d_{\text{ORD},\varphi}(l) = \min\{\nu(l') \mid l' \geq l, C(l') \neq C(l' + 1)\}, \]
If \(R \) is an affine algebra of the form \(\mathbb{F}[X_1, \ldots, X_m]/I \) and \(\varphi \) is the evaluation map \(ev_{\mathcal{P}} \) of the set \(\mathcal{P} \) of \(n \) points in \(\mathbb{F}^m \), then \(d_{\text{ORD},\varphi} \) is denoted by \(d_{\text{ORD},\mathcal{P}} \).

Theorem 2.9 The numbers \(d_{\text{ORD}}(l) \) and \(d_{\text{ORD},\varphi}(l) \) are lower bounds for the minimum distance of \(C(l) \):
\[d(C(l)) \geq d_{\text{ORD},\varphi}(l) \geq d_{\text{ORD}}(l). \]

Proof. The theorem is a direct consequence of Definition 2.8 and Proposition 2.7.

Remark 2.10 The notation \(d_{\text{ORD}} \) refers to the order function associated to the well-behaving sequence as will be done in the next section. This bound was called the Feng-Rao bound in [13] and denoted by \(d_{\text{FR}} \).

The set \(N(l) \) and the numbers \(\nu(l) \) and \(d_{\text{ORD}} \) do not depend on the map \(\varphi \), or in case \(R \) is an affine algebra and \(\varphi \) is the evaluation map \(ev_{\mathcal{P}} \), on the choice of the set \(\mathcal{P} \).

If \(\mathcal{P} \subseteq \mathcal{P}' \), then \(d_{\text{ORD,}\mathcal{P}} \geq d_{\text{ORD,}\mathcal{P}'} \). So, the number \(d_{\text{ORD,}\mathcal{P}} \) depends on the choice of the set of points. Hence in many examples an improvement of the order bound \(d_{\text{ORD}} \) is obtained. In particular for the Reed-Muller codes the bound \(d_{\text{ORD}} \) is very weak whereas \(d_{\text{ORD,}\mathcal{P}} \) is tight. See [10, 11, 12].

Example 2.11 Let \(R = \mathbb{F}_q[X] \). Let \(f_i = X^{i-1} \). Then \((f_i \mid i \in \mathbb{N}) \) is a well-behaving sequence of \(R \) and \(l(i, j) = i + j - 1 \). Let \(\alpha \) be a primitive element of \(\mathbb{F}_q \). Let \(n = q - 1 \). Let \(\varphi : R \to \mathbb{F}_q^n \) be the evaluation map defined by \(\varphi(f) = (f(\alpha^0), f(\alpha^1), \ldots, f(\alpha^{n-1})) \). Then \(C(l) \) is a Reed-Solomon code. The sequence \(\alpha^0, \alpha^1, \ldots, \alpha^{l-1} \) is a defining set of the cyclic code \(C(l) \) and \(d_{\text{ORD}}(l) = l + 1 \) is the BCH bound.

Example 2.12 Let \(I \) be the ideal in \(\mathbb{F}[X, Y] \) generated by \(X^3 + Y^2 + Y \).

Let \(R = \mathbb{F}[X, Y]/(X^3 + Y^2 + Y) \). Let \(f_1 = 1, f_{2i} = X^i \) and \(f_{2i+1} = X^{i-1}Y \) for \(i \in \mathbb{N} \). Then \((f_i \mid i \in \mathbb{N}) \) is a well-behaving sequence of \(R \), and \(l(1, 1) = 1, l(1, 2) = l(2, 1) = 2 \) and \(l(i, j) = i + j \) for all \(i, j > 1 \). Furthermore \(\nu(1) = 2 \) and \(\nu(l) = l \) for all \(l > 1 \). So \(d_{\text{ORD}}(l) = \nu(l) \).
Remark 2.13 It is possible to give a version of these ideas on the level of words in F_n^q without any reference to the functions. See [5, 6, 11, 12, 13, 19, 20, 22, 23]. Let h_1, \ldots, h_n be a basis of F_n^q. Let $S(l)$ be the vector space generated by h_1, \ldots, h_l. Let C_r be the dual of the code $S(r)$. Let $\phi(i, j)$ be the smallest positive integer such that $h_i \ast h_j \in S(l)$. The pair (i, j) is called well-behaving if $\phi(i', j') < \phi(i, j)$ for all i', j' such that $i' \leq i, j' \leq j$ and $(i', j') \neq (i, j)$. Define

$$N_{WB}(l) = \{(i, j) | \phi(i, j) = l + 1 \text{ and } (i, j) \text{ is well-behaving}\}.$$

Let $\nu_{WB}(l)$ be the number of elements of $N_{WB}(l)$. Define

$$d_{WB}(r) = \min \{|\nu_{WB}(r')| r \leq r' < n\}.$$

Then $d_{WB}(r)$ is a lower bound on the minimum distance of C_r.

Let the basis h_1, \ldots, h_n be obtained by deleting superfluous elements of the sequence $(f_l | l \in \mathbb{N})$, where $(f_l | l \in \mathbb{N})$ is a well-behaving sequence of an F_q-algebra R with surjective map φ and $f_l = \varphi(f_l)$. If the dimension of $C(l)$ is k, $r = n - k$ and $C(l) \neq C(l + 1)$, then $d_{WB}(r) \geq d_{ORD, \varphi}(l)$.

3 Order, degree and weight functions

Consider the following definitions from [10, 11, 12].

Definition 3.1 An order function on an F-algebra R is a function

$$\rho : R \rightarrow \mathbb{N}_0 \cup \{-\infty\},$$

such that the following conditions hold

(O.0) $\rho(f) = -\infty$ if and only if $f = 0$
(O.1) $\rho(\lambda f) = \rho(f)$ for all nonzero $\lambda \in F$
(O.2) $\rho(f + g) \leq \max\{\rho(f), \rho(g)\}$
and equality holds when $\rho(f) < \rho(g)$.
(O.3) If $\rho(f) < \rho(g)$ and $h \neq 0$, then $\rho(fh) < \rho(gh)$
(O.4) If $\rho(f) = \rho(g)$, then there exists a nonzero $\lambda \in F$ such that $\rho(f - \lambda g) < \rho(g)$.

for all $f, g, h \in R$. Here $-\infty < n$ for all $n \in \mathbb{N}_0$.

Definition 3.2 Let R be an F-algebra. A weight function on R is an order function on R that satisfies furthermore

\[(O.5)\quad \rho(fg) = \rho(f) + \rho(g)\]

for all $f, g \in R$. Here $-\infty + n = -\infty$ for all $n \in \mathbb{N}_0$.

If ρ is a weight function and $\rho(f)$ is divisible by an integer $d > 1$ for all $f \in R$, then $\rho(f)/d$ is again a weight function. Hence we may assume that the greatest common divisor of the integers $\rho(f)$ with $0 \neq f \in R$ is 1.

Definition 3.3 A degree function on R is a map that satisfies conditions $(O.0)$, $(O.1)$, $(O.2)$ and $(O.5)$.

It is clear that condition $(O.3)$ is a consequence of $(O.5)$.

Example 3.4 The standard example of an F-algebra R with a degree function ρ is obtained by taking $R = F[X_1, \ldots, X_m]$ and $\rho(f) = \deg(f)$, the degree of $f \in R$. It is a weight function if and only if $m = 1$.

Theorem 3.5 Let R be an F-algebra. Let $(f_i| i \in \mathbb{N})$ be a well-behaving sequence of R. Let $(\rho_i| i \in \mathbb{N})$ be a strictly increasing sequence of nonnegative integers. Define $\rho(0) = -\infty$, and $\rho(f) = \rho_i$ if l is the smallest positive integer such that $f \in L_l$ for a nonzero $f \in R$. Then ρ is an order function on R. If moreover $\rho_{\iota(fg)} = \rho_i + \rho_j$, then ρ is a weight function.

Proof. Conditions $(O.0)$, $(O.1)$, $(O.2)$ and $(O.4)$ are a direct consequence of the definitions.

With every nonzero element $f \in R$ the unique positive integer $\iota(f)$ is associated such that $f \in L(\iota(f))$ and $f \not\in L(\iota(f) - 1)$. So $\rho(f) = \rho_{\iota(f)}$.

Let f and g be nonzero elements of R. Then

$$f = \sum_{i \leq \iota(f)} \lambda_i f_i, \quad g = \sum_{j \leq \iota(g)} \nu_j f_j \quad \text{and} \quad fg = \sum_{l \leq \iota(fg)} \mu_l f_l,$$

with $\lambda_{\iota(f)} \neq 0$, $\nu_{\iota(g)} \neq 0$ and $\mu_{\iota(fg)} \neq 0$. There exist $\mu_{ij} \in F$ such that

$$f_i f_j = \sum_{l \leq \iota(i,j)} \mu_{ij} f_l$$
and $\mu_{ijl(i,j)} \neq 0$, by definition of $l(i, j)$. So

$$
\mu_l = \sum_{l(i,j)=l} \lambda_i \nu_j \mu_{ijl}.
$$

The function $l(i, j)$ is strictly increasing in both arguments, by assumption. So $l(i, j) < l(\nu(f), \nu(g))$ if $i < \nu(f)$ or $j < \nu(g)$. Furthermore, if $i = \nu(f)$ and $j = \nu(g)$, then

$$
\lambda_i \nu_j \mu_{ijl(i,j)} \neq 0.
$$

This element is therefore equal to $\mu_{\nu(fg)}$. So $\nu(fg) = l(\nu(f), \nu(g))$. Hence $\rho(fg) = \rho(\nu(f), \nu(g))$ and (O.3) holds, since $l(i, j)$ is strictly increasing. Therefore ρ is an order function.

If moreover $\rho_{i(j,i)} = \rho_i + \rho_j$, then

$$
\rho(fg) = \rho(\nu(fg)) = \rho(\nu(f), \nu(g)) = \rho(f) + \rho(g).
$$

Therefore ρ is a weight function. \qed

Lemma 3.6 Let ρ be an order function on R. Then:

1) If $\rho(f) = \rho(g)$, then $\rho(fh) = \rho(gh)$ for all $h \in R$.

2) $\rho(1) \leq \rho(f)$ for all nonzero elements $f \in R$.

3) $\mathbb{F} = \{f \in R \mid \rho(f) \leq \rho(1)\}$.

4) If $\rho(f) = \rho(g)$, then there exists a unique nonzero $\lambda \in \mathbb{F}$ such that $\rho(f - \lambda g) < \rho(g)$

Proof.

1) If $\rho(f) = \rho(g)$, then there exists a nonzero $\lambda \in \mathbb{F}$ such that $\rho(f - \lambda g) < \rho(g)$, by (O.4). So $\rho(fh - \lambda gh) < \rho(gh)$, by (O.3). Now $fh = (fh - \lambda gh) + \lambda gh$. Hence $\rho(fh) = \rho(\lambda gh) = \rho(gh)$, by (O.2) and (O.1), respectively.

2) Suppose that f is a nonzero element of R such that $\rho(f) < \rho(1)$. Then $\rho(1) > \rho(f) > \rho(f^2) > \cdots$ is a strictly decreasing sequence, by (O.3), but this contradicts the fact that $\mathbb{N}_0 \cup \{-\infty\}$ is a well-order. Hence $\rho(1) \leq \rho(f)$ for all nonzero elements f in R.

3) It is clear that \mathbb{F} is a subset of $\{f \in R \mid \rho(f) \leq \rho(1)\}$, by (O.0) and (O.1) If f is nonzero and $\rho(f) \leq \rho(1)$, then $\rho(f) = \rho(1)$, by 1). So there exists a nonzero $\lambda \in \mathbb{F}$ such that $\rho(f - \lambda) < \rho(1)$, by (O.4). Hence $f - \lambda = 0$ and $f \in \mathbb{F}$.

4) Let $\rho(f) = \rho(g)$. The existence of λ is assured by (O.4). Suppose that $\rho(f - \lambda g) < \rho(f)$ and $\rho(f - \mu g) < \rho(f)$ for nonzero $\lambda, \mu \in \mathbb{F}$. Let
\[u = f - \lambda g \quad \text{and} \quad v = f - \mu g. \] Then \((\mu - \lambda)f = \mu u - \lambda v.\) So \(\rho((\mu - \lambda)f) \leq \max\{\rho(u), \rho(v)\} < \rho(f)\) by (O.2). If \(\mu \neq \lambda\), then \(\rho((\mu - \lambda)f) = \rho(f)\), by (O.1), which is a contradiction. Hence \(\mu = \lambda\). \hfill \Box

Proposition 3.7 If there exists an order function on \(R\), then \(R\) is an integral domain.

Proof. Suppose that \(fg = 0\) for some nonzero \(f, g \in R\). We may assume that \(\rho(f) \leq \rho(g)\). So \(\rho(f^2) \leq \rho(fg) = \rho(0) = -\infty\). So \(\rho(f^2) = -\infty, and f^2 = 0\). Now \(f \neq 0\), hence \(\rho(1) \leq \rho(f)\), by Lemma 3.6. So \(\rho(f) \leq \rho(f^2) = \rho(0) = -\infty\). Hence \(f = 0\), which is a contradiction. Therefore \(R\) has no zero divisors. \hfill \Box

Example 3.8 The \(\mathbb{F}\)-algebra \(R = \mathbb{F}[X_1, X_2]/(X_1X_2 - 1)\) is an integral domain. Denote the coset of \(X_i\) modulo the ideal \((X_1X_2 - 1)\) by \(x_i\). If \(\rho\) is an order function on \(R\), then \(\rho(1) \leq \rho(x_1)\), so \(\rho(x_2) \leq \rho(x_1x_2) = \rho(1)\), hence \(\rho(x_2) = \rho(1)\) and in the same way we get \(\rho(x_1) = \rho(1)\). Therefore \(\rho(f) \leq \rho(1)\) for all \(f \in R\). Hence \(\mathbb{F} = R\) by Lemma 3.6, which is a contradiction since \(x_1 \notin \mathbb{F}\). So not every integral domain has an order function. \hfill \Box

Proposition 3.9 Let \(R\) be an \(\mathbb{F}\) algebra with order function \(\rho\). Then there exists a well-behaving sequence \((f_i | i \in \mathbb{N})\) of \(R\).

Proof. Let \((\rho_i | i \in \mathbb{N})\) be the increasing sequence of all nonnegative integers that appear as the order \(\rho(f)\) of a nonzero element \(f \in R\). By definition there exists an \(f_i \in R\) such that \(\rho(f_i) = \rho_i\) for all \(i \in \mathbb{N}\). So \(\rho(f_i) < \rho(f_{i+1})\) for all \(i\), and for all nonzero \(f \in R\) there exists an \(i\) with \(\rho(f) = \rho(f_i)\), by definition. The fact that \(\{f_i | i \in \mathbb{N}\}\) is a basis is proved by induction and Lemma 3.6 (4). That the function \(l(i, j)\) is strictly increasing is a consequence of (O.3). \hfill \Box

Remark 3.10 In a sense the theory of algebraic curves is reversed. In the classical way one first has to show, among other things, that the curve is irreducible, and than one computes a well-behaving sequence of the \(\mathbb{F}\)-algebra \(K_\infty(P)\). In the new approach one starts to show that an \(\mathbb{F}\)-algebra \(R\) has an order function, or equivalently a well-behaving sequence, and one gets as a consequence that \(R\) is an integral domain.
4 On the existence of order and weight functions

The notion of a well-behaving sequence is well known in the theory of Gröbner bases [1, 2].

Definition 4.1 Let $R = \mathbb{F}[X_1, \ldots, X_m]$. Suppose that \prec is a total order on the set of monomials in the variables X_1, \ldots, X_m such that for all monomials M_1, M_2, and M the following holds

(R.1) If $M \neq 1$, then $1 \prec M$,
(R.2) If $M_1 \prec M_2$, then $MM_1 \prec MM_2$.

Then \prec is called a reduction, term or admissible order on the monomials.

The multi-index notation is used for monomials. That means $X^{\alpha} = \prod_{i=1}^{m} X_i^{\alpha_i}$ if $\alpha = (\alpha_1, \ldots, \alpha_m)$. The degree of a monomial and of its exponent is defined by

$$\deg(X^\alpha) = \deg(\alpha) = \sum_{i=1}^{m} \alpha_i.$$

Giving a reduction order on monomials in m variables is the same as giving a total order on \mathbb{N}_0^m such that, for all α_1, α_2, and α in \mathbb{N}_0^m, the following holds

(E.1) If $\alpha \neq 0$, then $0 \prec \alpha$,
(E.2) If $\alpha_1 \prec \alpha_2$, then $\alpha + \alpha_1 \prec \alpha + \alpha_2$.

We use \prec both for monomials and exponents.

Example 4.2 The lexicographic order \prec_L is defined by

$\alpha \prec_L \beta$ if and only if $\alpha_1 = \beta_1, \ldots, \alpha_{l-1} = \beta_{l-1}$ and $\alpha_l < \beta_l$ for some l, $1 \leq l \leq m$.

The lexicographic order is a reduction order that is not isomorphic with \mathbb{N} with its ordinary order \prec.

Remark 4.3 Let \prec be a reduction order that is isomorphic with \mathbb{N} with its ordinary order \prec. Then the monomials can be listed by the sequence $(M_l| l \in \mathbb{N})$ such that $M_l \prec M_{l+1}$ for all l. Furthermore for all i, j there exists an $l(i, j)$ such that $M_i M_j = M_{l(i, j)}$. The function $l(i, j)$ is strictly increasing, since \prec is a reduction order. So $(M_l| l \in \mathbb{N})$ is a well-behaving sequence of $R = \mathbb{F}[X_1, \ldots, X_m]$. Hence R has an order function by Theorem 3.5.
Example 4.4 Let \(w = (w_1, \ldots, w_m) \) be an \(m \)-tuple of positive integers called *weights*. The *weighted degree* of \(\alpha \in \mathbb{N}_0^m \) and the corresponding monomial \(X^\alpha \) is defined by

\[
\text{wdeg}(X^\alpha) = \text{wdeg}(\alpha) = \sum_{i=1}^{m} \alpha_i w_i,
\]

and of a nonzero polynomial \(F = \sum \lambda_\alpha X^\alpha \) by

\[
\text{wdeg}(F) = \max \{ \text{wdeg}(X^\alpha) \mid \lambda_\alpha \neq 0 \}.
\]

This gives a degree function \(\text{wdeg} \) on the ring \(\mathbb{F}[X_1, \ldots, X_m] \). The *weighted graded lexicographic order* \(\preceq_w \) on \(\mathbb{N}_0^m \) is defined by

\[
\alpha \preceq_w \beta \text{ if and only if } \text{wdeg}(\alpha) < \text{wdeg}(\beta) \text{ or } \text{wdeg}(\alpha) = \text{wdeg}(\beta) \text{ and } \alpha \prec_L \beta,
\]

and similarly for the monomials. This is indeed a reduction order that is isomorphic with \(\mathbb{N} \). Hence \(\mathbb{F}[X_1, \ldots, X_m] \) has an order function by Remark 4.3 which will be denoted by \(\omega \).

Example 4.5 Let \(I \) be the ideal in \(\mathbb{F}[X,Y] \) generated by a polynomial of the form

\[
X^a + Y^b + G(X,Y)
\]

with \(\deg(G) < \min\{a, b\} \) and \(\gcd(a, b) = 1 \). So it is of type I according to [5], see also [15]. Let \(R = \mathbb{F}[X,Y]/I \). Denote the cosets of \(X \) and \(Y \) modulo \(I \) by \(x \) and \(y \), respectively. Then \(x^a = -y^b - g(x,y) \). So \(x^a \) is a linear combination of elements of the form \(x^\alpha y^\beta \) with \(0 \leq \alpha < a \), since \(\deg(G) < b \). By recursion one shows that the set

\[
\{ x^\alpha y^\beta \mid 0 \leq \alpha < a \}
\]

is a basis for \(R \). Using the properties of order functions one shows that \(\rho(x) = b \) and \(\rho(y) = a \) if there exists a weight function \(\rho \) on \(R \) such that \(\gcd(\rho(x), \rho(y)) = 1 \).

In the following it is shown that indeed such a weight function exists.

Proposition 4.6 Let \(I \) be the ideal in \(\mathbb{F}[X,Y] \) generated by a polynomial of the form \(X^a + Y^b + G(X,Y) \) with \(\deg(G) < \min\{a, b\} \) and \(\gcd(a, b) = 1 \). Let \(R = \mathbb{F}[X,Y]/I \). Then there exists a weight function \(\rho \) on \(R \). The ring \(R \) is an integral domain, \(I \) is a prime ideal and \(X^a + Y^b + G(X,Y) \) is absolutely irreducible.
Proof. See also [5, 15]. A generalization of this proposition will be given in Theorem 5.11 and Proposition 5.12. Consider the total weighted degree lexicographic order \(<_w \) on the monomials in \(X \) and \(Y \) with respect to the weights \(\text{wdeg}(X) = b \) and \(\text{wdeg}(Y) = a \). This weight function is injective on the set \(\{ X^\alpha Y^\beta | 0 \leq \alpha < a \} \), since \(\gcd(a, b) = 1 \). Let \(f_1, f_2, \ldots \) be an enumeration of the elements \(x^\alpha y^\beta \) of the basis of \(R \), and let \(\rho_1, \rho_2, \ldots \) be an enumeration of the nonnegative integers of the form \(\alpha b + \beta a \) with \(0 \leq \alpha < a \), in such a way that \(\rho_i < \rho_{i+1} \) and \(f_i = x^\alpha y^\beta \) if \(\rho_i = \alpha b + \beta a \) and \(0 \leq \alpha < a \), for all \(i \).

It is proved by induction that \(\rho_{l(i,j)} = \rho_i + \rho_j \). The induction is with respect to the well-order \(<_w \) on \(\mathbb{N}^2 \). Now \(f_1 = 1 \) and \(\rho_1 = 0 \). So \(l(1, 1) = 1 \) and the start of the induction is satisfied. Suppose that the claim is proved for all \((i', j') <_w (i, j) \). Let \(f_i = x^\alpha y^\beta \), \(\rho_i = \alpha b + \beta a \) with \(0 \leq \alpha < a \).

Let \(f_j = x^\gamma y^\delta \), \(\rho_j = \gamma b + \delta a \) with \(0 \leq \gamma < a \). Then \(f_i f_j = x^{\alpha+\gamma} y^{\beta+\delta} \) and \(\rho_i + \rho_j = (\alpha + \gamma)b + (\beta + \delta)a \).

If \(\alpha + \gamma < a \), then \(f_i f_j \) is a basis element. So \(f_{l(i,j)} = f_i f_j \) and \(\rho_{l(i,j)} = \rho_i + \rho_j \).

If \(\alpha + \gamma \geq a \), then \(\alpha + \gamma = a + \epsilon \) with \(0 \leq \epsilon < a \). So

\[
\rho_i + \rho_j = (\alpha + \gamma)b + (\beta + \delta)a = eb + (b + \beta + \delta)a
\]

and

\[
f_i f_j = -x^\epsilon y^{b+\beta+\delta} - x^\epsilon g(x, y).
\]

The term \(x^\epsilon y^{b+\beta+\delta} \) is a basis element \(f_l \). We may assume by induction that \(x^\epsilon g(x, y) \in L(l - 1) \), since \(\deg(G) < \min\{a, b\} \). So \(l = l(i, j) \) and \(\rho_l = eb + (b + \beta + \delta)a = \rho_i + \rho_j \).

So in both cases \(f_i f_j \in L(l) \setminus L(l - 1) \), where \(l = l(i, j) \) and \(\rho_l = \rho_i + \rho_j \). Therefore \(l(i, j) < l(i + 1, j) \).

Hence there exists a weight function \(\rho \) on \(R \) such that \(\rho(x^\alpha y^\beta) = \alpha b + \beta a \), by Theorem 3.5. So \(R \) is an integral domain by Proposition 3.7 and \(I \) is a prime ideal. These results still hold after extending the field \(\mathbb{F} \) to its algebraic closure. Therefore \(X^a + Y^b + G(X, Y) \) is absolutely irreducible. \(\square \)

5 Gröbner bases and weight functions

Definition 5.1 Let \(\mathbb{F} \) be a field. Let \(R = \mathbb{F}[X_1, \ldots, X_m] \). The set of monomials in \(X_1, \ldots, X_m \) will be denoted by \(\mathcal{M} \). Let \(< \) be a reduction order on \(\mathcal{M} \).
If $F = \sum \lambda_{\alpha} X^\alpha$, then $\{X^\alpha | \lambda_{\alpha} \neq 0\}$ is called the *support* of F and is denoted by $\text{supp}(F)$. The support is finite and \prec is a total order, so $\text{supp}(F)$ has a largest element that is called the *leading monomial* of F and is denoted by $\text{lm}(F)$. If X^α is the leading monomial of F, then $\lambda_{\alpha} X^\alpha$ is called the *leading term* of F and is denoted by $\text{lt}(F)$, and λ_{α} is called the *leading coefficient* of F.

Definition 5.2 The partial order \leq_P on \mathcal{M} is defined by $X^\alpha \leq_P X^\beta$ if and only if $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, m$.

Definition 5.3 Let \mathcal{B} be a finite subset of R. If $F, G \in R$, then F *reduces* to G with respect to \mathcal{B} if there exists a monomial X^α in the support of F with coefficient λ_{α}, and an element $B \in \mathcal{B}$ such that $\text{lt}(B) = \mu_{\beta} X^\beta$, $\beta \leq_P \alpha$ and

$$G = F - \frac{\lambda_{\alpha}}{\mu_{\beta}} BX^{\alpha-\beta}.$$

This is denoted by $F \rightarrow_B G$, or $F \rightarrow G$ for short. If $F = G$ or there is a sequence G_1, \ldots, G_k such that $F = G_1$, $G = G_k$ and $G_i \rightarrow_B G_{i+1}$ for all $1 \leq i < k$, then this is denoted by $F \rightarrow^* \mathcal{B} G$.

The ideal generated by \mathcal{B} is denoted by (\mathcal{B}). If $F \rightarrow^* \mathcal{B} 0$, then $F \in (\mathcal{B})$. A finite set \mathcal{B} in R is called a *Gröbner basis* if the converse holds as well; that is to say, if $F \rightarrow^* \mathcal{B} 0$ for all $F \in (\mathcal{B})$.

The following theorem characterizes Gröbner bases.

Theorem 5.4 Let \mathcal{B} be a finite set in R. Then \mathcal{B} is a Gröbner basis if and only if

$$\{\text{lm}(F) | F \in (\mathcal{B}), F \neq 0\} = \{\text{lm}(BM) | B \in \mathcal{B}, B \neq 0, M \in \mathcal{M}\}.$$

Proof. See [1, 2].

Definition 5.5 The *footprint* or Δ-set of a Gröbner basis \mathcal{B} is defined by

$$\Delta(\mathcal{B}) = \mathcal{M} \setminus \{\text{lm}(BM) | B \in \mathcal{B}, B \neq 0, M \in \mathcal{M}\}.$$

Corollary 5.6 If \mathcal{B} is a Gröbner basis for the ideal I in R, then the cosets modulo I of the elements of the footprint $\Delta(\mathcal{B})$ form a basis of R/I.
Definition 5.7 Let F_1 and F_2 be nonzero polynomials. Let $M_i = \text{lcm}(F_i)$ and $\lambda_i = \text{lc}(F_i)$. Then there exist monomials N_1 and N_2 such that $M_i N_i = \text{lcm}(M_1, M_2)$ for $i = 1, 2$. The S-polynomial of F_1 and F_2 is defined as

$$S(F_1, F_2) = \lambda_2 N_1 F_1 - \lambda_1 N_2 F_2.$$

Another useful characterization of Gröbner bases is given by the following.

Proposition 5.8 Let \mathcal{B} be a finite set in R. Then \mathcal{B} is a Gröbner basis if and only if $S(B_1, B_2) \rightarrow^\bullet_\mathcal{B} 0$ for all $B_1, B_2 \in (\mathcal{B})$.

Proof. See [1, 2].

Remark 5.9 The theory of Gröbner bases can be developed for any \mathbb{F}-algebra with an order function.

Let \preceq_w be the weighted graded lexicographic order on $\mathbb{F}[X_1, \ldots, X_m]$ with respect to the weights (w_1, \ldots, w_m). Let ω be the associated order function. See Example 4.4.

Lemma 5.10 Let \preceq_w be the weighted graded lexicographic order. Let \mathcal{B} be a set of polynomials such that every element of \mathcal{B} has exactly two monomials of highest weighted degree in its support. If $F \rightarrow^\bullet_\mathcal{B} G$ with respect to \preceq_w and F has exactly one monomial of highest weighted degree in its support, then $\text{wdeg}(F) = \text{wdeg}(G)$ and G has exactly one monomial of highest weighted degree in its support.

Proof. By induction it is enough to show the lemma when $F \rightarrow_\mathcal{B} G$ and F has exactly one monomial of highest weighted degree in its support. Let $F = F' + \lambda \alpha X^\alpha$ for some polynomial F' such that $\text{wdeg}(F') < \text{wdeg}(F)$ and λX^α is the leading term of F. Let $F \rightarrow_\mathcal{B} G$. Then $G = F - \mu MB$ for some $B \in \mathcal{B}$ and monomial M such that $\text{lt}(\mu MB)$ is a nonzero term of F. So $\text{wdeg}(MB) \leq \text{wdeg}(F)$.

If $\text{wdeg}(MB) < \text{wdeg}(F)$, then $G = (F' - \mu MB) + \lambda \alpha X^\alpha$. So the weighted degree of $F' - \mu MB$ is strictly smaller than $\text{wdeg}(G)$, and F and G both have X^α as the unique monomial of highest weighted degree in their support.

If $\text{wdeg}(MB) = \text{wdeg}(F)$, then the assumption is used that B has exactly two monomials of highest weighted degree in its support. So there exist a polynomial B', monomials M_1, M_2 and nonzero elements $\mu_1, \mu_2 \in \mathbb{F}_q$ such...
that $B = B' + \mu_1 M_1 + \mu_2 M_2$, $\text{wdeg}(B') < \text{wdeg}(M_1) = \text{wdeg}(M_2)$ and $M_1 \prec_w M_2$. Therefore the leading term of μMB is $\mu_2 MM_2$ is equal to $\lambda_0 X^a$, since it is the only nonzero term of F of weighted degree $\text{wdeg}(MB)$. So $G = (F' - \mu MB') - \mu_1 M M_1$ and the weighted degree of $F' - \mu MB'$ is strictly smaller than $\text{wdeg}(G) = \text{wdeg}(M M_1)$. Hence $\text{wdeg}(G) = \text{wdeg}(F)$ and $M M_1$ is the only monomial of highest weighted degree in the support of G. □

Theorem 5.11 Let I be an ideal in $\mathbb{F}[X_1, \ldots, X_m]$ with Gröbner bases B with respect to \prec_w. Suppose that the elements of the footprint of I have mutually distinct weighted degrees and that every element of B has exactly two monomials of highest weighted degree in its support. Then there exists a weight function ρ on $R = \mathbb{F}[X_1, \ldots, X_m]/I$ with the property that $\rho(f) = \text{wdeg}(F)$, where f is the coset of F modulo I, for all polynomials F with support in $\Delta(I)$.

Proof. The condition on the footprint implies that there exists a sequence F_1, F_2, \ldots enumerating the elements of the footprint such that $\text{wdeg}(F_i) < \text{wdeg}(F_{i+1})$ for all i. Let f_i be the coset of F_i modulo I. Then f_1, f_2, \ldots is a basis of R by Corollary 5.6. Let $\rho_i = \text{wdeg}(F_i)$. Then $\rho_i < \rho_{i+1}$ for all i. The product f_if_j can be expressed as

$$f_if_j = \sum_{l \leq l(i,j)} \lambda_l f_l$$

with $\lambda_l \in \mathbb{F}$ for all l and $\lambda_{l(i,j)} \neq 0$. So $F_i F_j - \sum_{l \leq l(i,j)} \lambda_l F_l \in I$. Hence

$$F_i F_j \leadsto_B \sum_{l \leq l(i,j)} \lambda_l F_l,$$

since B is a Gröbner bases for I. Let $F = F_i F_j$ and $G = \sum_{l \leq l(i,j)} \lambda_l F_l$. Now F satisfies the assumption of Lemma 5.10, since F is a monomial. Hence

$$\rho_i + \rho_j = \text{wdeg}(F_i F_j) = \text{wdeg}(F) = \text{wdeg}(G) = \text{wdeg}(F_{l(i,j)}) = \rho_{l(i,j)}.$$

Theorem 3.5 implies that there exists a weight function ρ on R with the stated property. □
Proposition 5.12 Let I be the ideal in $\mathbb{F}[X_1, \ldots, X_m]$ generated by

$$F_i = X_i^{a_i} + X_{i+1}^{b_i} + G_i$$

for $i = 1, \ldots, m - 1$,

where $G_i \in \mathbb{F}[X_1, \ldots, X_{i+1}]$, $\text{wdeg}(G_i) < a_1 \cdots a_ib_1 \cdots b_{m-1}$ and $\gcd(a_i, b_j) = 1$ for all $i \leq j$. Then the ring $R = \mathbb{F}[X_1, \ldots, X_m]/I$ has a weight function ρ.

Proof. This is a generalization of Proposition 4.6 and a consequence of Theorem 5.11.

Let $w_i = a_1 \cdots a_{i-1}b_i \cdots b_{m-1}$. Let $w = (w_1, \ldots, w_m)$. Let \prec_w be the graded lexicographic order with respect to the weights w. Then

$$\text{wdeg}(X_i^{a_i}) = \text{wdeg}(X_{i+1}^{b_i}) = a_1 \cdots a_ib_1 \cdots b_{m-1} \geq \text{wdeg}(G_i).$$

So $X_i^{a_i}$ is the leading monomial of F_i and F_i has exactly two monomials in its support of the same highest weighted degree.

Let $B = \{F_1, \ldots, F_{m-1}\}$. Then the footprint of B is equal to

$$\{X^a | 0 \leq a_i < a_i \text{ for all } 1 \leq i < m\}.$$

The weighted degree of elements of this footprint are mutually distinct, since $\gcd(a_i, b_j) = 1$ for all $i \leq j$.

Consider the S-polynomial of F_i and F_j

$$S(F_i, F_j) = X_i^{a_i}X_{i+1}^{b_i} + X_j^{a_j}G_i - X_i^{a_i}X_{i+1}^{b_j} + X_i^{a_i}G_j \rightarrow_F$$

$$-X_j^{b_j}X_{i+1}^{b_i} - G_iG_j - X_i^{a_i}X_{i+1}^{b_j} + X_i^{a_i}G_j \rightarrow_F 0.$$

So $S(F_i, F_j) \rightarrow_B 0$ for all $F_i, F_j \in B$. Hence B is a Gröbner basis for I by Proposition 5.8. So the ring R has a weight function by Theorem 5.11. □

Remark 5.13 Notice that it is essential that one assumes that the G_i do not depend on X_j for all $j > i + 1$. Take for instance $m = 3$, $a_1 = 3, b_1 = 5, a_2 = 5, b_2 = 2$ and $G_1 = X_2^3, G_2 = 0$, then $X_1^3 \in I = (X_1^3 + X_2^5 + X_3^2, X_2^3 + X_3^2)$, but $X_1 \notin I$.

The assumption "gcd(a_i, b_i) = 1 for all $i" as in [4], instead of "gcd(a_i, b_j) = 1 for all $i \leq j"", is not enough to guarantee the existence of an order function, and as a consequence that I is a prime ideal. Take for example $m = 3$, $a_1 = b_2 = 2, a_2 = b_1 = 3$ and $G_1 = G_2 = 0$, then $I = (X_1^2 - X_2^3, X_2^3 - X_3^2)$ is not prime, since

$$(X_1 - X_3)(X_1 + X_3) = X_1^2 - X_3^2 = (X_1^2 - X_2^3) + (X_2^3 - X_3^2) \in I,$$

but $X_1 - X_3$ nor $X_1 + X_2$ is an element of I.

17
This paper was submitted on August 1996. In the meantime it was found that Proposition 5.11 and its converse were shown by Miura [16, 17, 18]. In Matsumoto-Miura [14] this was done by the same Gröbner bases techniques as in this paper. A generalization of these results were obtained by Geil and the author in [8, 9].

References

