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Contents of this talk

• terminology 2-level factorial designs

• functional description of Least Squares

• design and ideals

• estimable sets

• replications

• mixture designs

Recommended reading:

Pistone and Wynn, Biometrika 83 (1996), 653-666.

Pistone, Riccomagno and Wynn, Algebraic Statistics. Computational Commu-
tative Algebra in Statistics, Chapman & Hall, 2001.
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Full factorial 22 design

u u

u u

(−1,−1)

(−1, 1) (1, 1)

(1,−1)

40 55

30 50

-A

6

B Â = 1
2 ((50− 30) + (55− 40)) etc.

setting I A B AB

(−1,−1) = (1) + − − +

(1,−1) = a + + − −
(−1, 1) = b + − + −

(1, 1) = ab + + + +
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23−1 factorial design

setting I A B C AB AC BC ABC

a + + − − + − + +

b + − + − − + − +

c + − − + − − − +

abc + + + + + + + +

Aliasing relations (Abelian group theory: Fisher, Ann. Eugenics 11 (1942))

I = ABC

A = BC

B = AC

C = AB
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Limitations group theoretic approach

• interpretation aliasing relations + computational rules

• only works for “regular” fractions

– Plackett-Burman designs (main effect designs)

– unsuccessful runs of experimental design (cf. Holliday et al., Comp.
Stat. 14 (1999))

– . . .

• how about more than 2 levels (including mixed number of levels)?

full factorial 23

y = θ0 + θ1x1 + θ2x2 + θ3x3 + θ12x1x2 + θ13x1x3 + θ23x2x3 + θ123x1x2x3

nonregular fraction 23 \ {(0, 0, 0), (1, 1, 0)}

y =??
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Pistone-Wynn approach in a nutshell

• designs are finite subsets of Rd

• view finite subsets of Rd as solutions of polynomial equations

• write models as polynomial functions on the design points

• equivalence class of models (identifiability) through polynomials that
vanish on the design points (ideals in ring of polynomials)

• compute minimal representations of ideals (Gröbner bases)

• build estimable models from Gröbner bases

Estimability and identifiability are translated to operations with polynomials
and zeros of polynomials (algebraic geometry).

Least squares estimation can also be put in polynomial context (Cohen et al.,
mODa 6 proceedings (2001), 37–44).
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Polynomial approach to Least Squares

A design D is a finite set of points Rd.

L(D) is the vector space of all functionsD 7→ R. Any element of L(D) can
be represented as a polynomial (interpolation!).

If f, g ∈ L(D) , then an inner product is defined by

〈f , g〉D :=
∑
a∈D

f (a)g(a)

A norm is defined on L(D) by

‖f‖D =
√
〈f , f〉D
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Least Squares and Inner Product

Y (x) = f (x, θ) + ε(x)

Observations Y1, . . . , Yn where Yi taken at design point ai.
Polynomial g interpolates data: g(ai) = yi, i = 2, . . . , n

θ̂ = min
θ∈Θ

n∑
i=1

| Yi − f (ai, θ) |2

= min
θ∈Θ

〈g − f (., θ) , g − f (., θ)〉D
= min

θ∈Θ
‖g − f (., θ)‖2

D

Hence, θ̂ is related to orthogonal projection in (L(D), 〈. , .〉D).

Y = X tθ + ε ⇒ θ̂ = (X tX)−1X tY

Is there an analogue in terms of the inner product 〈. , .〉D?
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Least Squares and Orthonormal Expansions

Restrict to linear models:

Y (x) =
∑
α∈M

θα pα(x) + ε(x)

Y = X tθ + ε

where the design matrix X is given by

1 pα1
(a1) pα2

(a1) . . .
1 pα1

(a2) pα2
(a2) . . .

... ... ... ...


∑

α∈M θ̂α pα is the orthogonal projection of g (interpolator of data) onto
span{pα | α ∈M}.

If {pα | α ∈M} is an orthogonal subset of (L(D), 〈. , .〉D), then

θ̂α =
〈g , pα〉D
〈pα , pα〉D

.
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Confounding and identifiability

A linear model is identifiable by a designD if the functions pα (α ∈M) are
linearly independent elements of L(D) .

Y = Xθ + ε

If the design matrix X is not of full rank, then θ is not identifiable since
different values of θ yield the same value of Xθ. This actually means that
the model coincides for different parameter values when restricted to the
design points. In other words, the functions on D that take as values the
components of the columns of X are linearly dependent.

Further development of this idea in Galetto et al., J. Stat. Plann. Inf. 117
(2003), 345–363.
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23−1 factorial design revisited

I = ABC really means 1 = xAxBxC when restricted to D.

x = ±1 ⇒ x = 1/x yields the other aliasing relations like A = BC etc.

setting I A B C AB AC BC ABC
a = (1,−1,−1) + + − − + − + +
b = (−1, 1,−1) + − + − − + − +
c = (−1,−1, 1) + − − + − − − +
abc = (1, 1, 1, ) + + + + + + + +

Assume identifiable model y = θI + θAxA + θBxB + θCxC .

〈g , xA〉D = Y (a)xA|(1,−1,−1)+Y (b)xA|(−1,1,−1)+Y (c)xA|(1,1,−1)+Y (abc)xA |(1,1,1)

This is the reason behind coding levels as−1 and +1.
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Further applications of polynomial approach to
Least Squares

The polynomial approach also yields :

• formulas of covariance of estimators θ̂α

• simple proof of Gauss-Markov theorem

• unbiasedness of estimator for the variance

• symbolic orthonormalisation through Gram-Schmidt procedure on
polynomials

• interpretation of sums of squares in terms of norms of monomials

Contrasts and orthogonality is treated in a polynomial way in Fontana et al.,
J. Stat. Plann. Inf. 87 (2000), 149–172.
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Sums of squares

θ̂I =
〈g , 1〉D
‖1‖D

=

∑n
i=1 Yi

n
= Y

n∑
i=1

(
Yi − Ȳ

)2
=

n∑
i=1

(
Ŷi − Ȳ

)2
+

n∑
i=1

(
Yi − Ŷi

)2
.

g interpolates data: g(ai) = Yi

g − P1g = PM (g − P1g) + PM⊥ (g − P1g)

= (PMg − P1g) + (I − PM) (g − P1g)

= (PMg − P1g) + (g − PMg)

Ŷi corresponds to PMg evaluated at the ith design point.

n∑
i=1

(
Yi − Ȳ

)2
= ‖g − P1g‖2

D . etc.
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Back to Wynn-Pistone approach

Direct problem: given design D, how to find identifiable models∑
α∈M θαx

α.

xα = xα1
1 . . . xαd

d where αi ∈ Z≥0

Full computational answer in terms of Gröbner bases (details follow). De-
signs are interpreted in algebraic geometric fashion.

Inverse problem: given model
∑

α∈M θαx
α, find all designs D for which

this model is identifiable.

Work in progress by Robbiano and Caboara (latest paper ISSAC 2001 con-
ference).
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Designs as variety

Full factorial 22 design with 0 and 1 coding: {(0, 0), (0, 1), (1, 0), (1, 1)}.
These points are the solutions of the polynomial equations{

x2
1 − x1 = 0

x2
2 − x2 = 0

An (affine) variety is the solution set of a system of polynomial equations.
For arbitrary polynomials s1, s2, we have

s1(x
2
1 − x1) + s2(x

2
2 − x2) = 0 on D

Polynomials that vanish on D are polynomial ideal I(D):

1. for all f, g ∈ I(D) then f + g ∈ I(D),

2. for all f ∈ I(D) and h polynomial, then hf ∈ I(D).
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Polynomial ideals and confounding

If f, g are polynomials such that f = g on D, then f ∼ g.

A polynomial ideal defines an equivalence relation on the set of polynomials:

f ∼ g ⇐⇒ f − g ∈ I(D)

e.g., f = x2(x
2
1 − x1) and g = x1(x

2
2 − x2)

Identifiable models are elements of quotient space L(D)/I .

〈f1, . . . , fv〉 =

{
v∑

i=1

fisi : si ∈ k[x1, . . . , xd]

}
This is the ideal generated by (f1 . . . , fv).

• polynomial ideals are finitely generated (Hilbert basis theorem)

• Gröbner bases are bases (in algebraic sense!) with suitable properties
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Term ordering

Term ordering τ is a relation on Zd
+ (monomials) such that for all α, β, γ

(xα, xβ, xγ)

1. α �τ α (reflexive)

2. if α � β and β � γ then α � γ (transitive)

3. α � β and β � α then α = β (antisymmetric)

4. either α � β or β � α or α = β (total ordering)

5. every subset of Zd
+ has a smallest element (well-ordering)

5’. 1 ≺ xα for all α 6= (0, . . . , 0)

5”. there is not an infinite decreasing sequence

6. if α � β and γ ∈ Zd
+ then α + γ � β + γ (compatible with simplifica-

tion)
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Examples of term orderings

(a) The lexicographic order : a �lex b (or xa �lex xb) if the first nonzero entry
from the left in a− b is positive.

x1x
2
2x3 �lex x1x2x

2
3; x

2
1 �lex x1x2x

2
3

(b) The lexicographic total degree order or graded lex order: a �grlex b (or
xa �grlex xb) if deg xa � deg xb or deg a = deg b and a �lex b. In
words: graded lex order orders by total degree first and breaks ties using
lex order.

x1x
2
2x3 �grlex x1x2x

2
3; x1x2x

2
3 �grlex x2

1

(c) The graded reverse lexicographic order: a �lex b (or xa �lex xb) if and only
if deg xa � deg xb or deg xa = deg xb and the right-most nonzero entry
in a− b is negative.

x1x2x
2
3 �degrevlex x1x

2
2x3; x1x2x

2
3 �degrevlex x2

1

For connection with regression strategies, see Giglio et al. , J. Appl. Stat. 7
(2000), 923–938.
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Leading terms

The leading term of a monomial w.r.t. a certain term ordering is the largest
element w.r.t. that term ordering.

f = x2
1 − x1

LT(f ) = x2
1 for all τ because

x2
1 � x1 ⇐⇒ x1 � 1

g = x1x
2
2x3 + x1x2x

2
3 + x2

1
LTgrlex (x2�x1�x3)(g) = x1x

2
2x3

LTlex (x1�x2�x3)(g) = x2
1

LTdegrevlex (x1�x2�x3)(g) = x1x2x
2
3
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Gröbner bases

A finite subset G of a polynomial ideal I is a Gröbner basis of I with respect
to a term-ordering τ if and only if

〈LTτ(f ) : f ∈ I〉 = 〈LTτ(g) : g ∈ G〉

Gröbner bases are not unique:
both {x2

2 − x2x1, x
2
1} and {x2

2 − x1x2 + x2
1, x

2
1} are Gröbner bases of the

same ideal with respect to degrevlex (x2 � x1).
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Some properties of Gröbner bases

• Every nonzero ideal has Gröbner bases, and a Gröbner basis is a basis in
the algebraic sense.

• Let G be a Gröbner basis. For f ∈ Q[x] there exist a unique r such that

f =
∑
g∈G

sgg + r

such that LT(r) is not divisible by LT(g) for all g ∈ G.

• Gröbner bases are computable (Buchberger algorithm); available in soft-
ware (Maple, Mathematica, CoCoA, Singular, . . . ).

• Convenient representation of the quotient space.
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The quotient space

Let D be a design

Q[x]/Ideal(D) = {[f ] : f ∈ Q[x] and
[f ] = {g : f − g ∈ Ideal(D)} }

• Vector space

• Finite

• Given τ ,and Gröbner basis G

Est = {xα : xα is not divisible by LT(g), g ∈ G}
= {xα : α ∈M}
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The 23−1 fractional factorial design
A B C
1 1 1 ABC = I
1 −1 −1 BC = A

−1 1 −1 AC = B
−1 −1 1 AB = C{

a2 − 1, b2 − 1, c2 − 1
bc− a, ac− b, ab− c

For degrevlex

LT =
{
a2, b2, c2, ab, ac, bc

}
and

Est = {1, a, b, c}
Any function over 23−1 is represented as linear combinations of those four
monomials.
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Replicates

Replicates cause problems because interpolation is no longer possible.
Work-around: introduce dummy variable as counting label
Consider the standard 23−1 design with generator I = ABC and 4 addi-
tional centre points. I.e., the design points D are

{(1,−1,−1, 1), (−1, 1,−1, 1), (−1,−1, 1, 1), (1, 1, 1, 1) ,

(0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 0, 4)} .

Using the degrevlex with elimination of the counting variable t, we ob-
tain

Est(D) =
{
1, x1, x2, x3, x

2
3, t, t

2, t3
}

.

An orthonormal basis for the linear span of the terms not involving t is
given by {

1√
8
,
x1

2
,
x2

2
,
x3

2
,
x2

3 − 1
2√

2

}
.
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Mixture designs

In chemical experiments concentrations add up to 100%. Thus we have the
extra constraint x1 + . . . + xd = 1.

Example:

x1 x2 x3

1 0 0
0 1 0
0 0 1
1
2

1
2 0

0 1
2

1
2

1
2 0 1

2
1
3

1
3

1
3

For degrevlex we obtain Est = {1, x1, x2, x
2
1, x1x2, x

2
2, x

2
3}.

Note that x3 is missing because x3 = 1− x1 − x2.

More information: Giglio et al., in: Optimum design 2000, 33–44.


