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Contents of this talk

• General remarks on rank-based methods
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• Double generating function

• Distributions under alternative hypotheses

• Use of symmetries

• Branch-and-bound algorithm
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Parametric statistical inference

sample X1, . . . , Xn

assumption: Xi ∼ N(µ, σ2)

goal: knowledge about parameters µ and/or σ2

null hypothesis: H0 : µ = µ0

alternative hypothesis:H1 : µ 6= µ0

test statistics: under H0, we have

X ∼ N(µ0, σ
2) and

X − µ0

S/
√

n
∼ tn−1

Drawback: one cannot always assume normality in practice.
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Nonparametric statistical inference

sample X1, . . . , Xn

assumption: continuous distribution

median m : Pr(Xi ≤ m) = 1/2

null hypothesis: H0 : m = m0

test statistic: T = {#i : Xi ≤ m0} (sign test)

under H0, we have T ∼ Bin(n, 1/2)

more sophisticated: W =
∑

Xi≤m rank(Xi) (Wilcoxon signed rank test)

null distribution of W ?
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Null distribution of signed rank statistic

null hypothesis: Pr(Xi ≤ m) = 1/2

W =
∑

Xi≤m rank(Xi)

Example: m = 0, ordered observations−3, 4, 6,−7, thus W = 1 + 4 = 5

Under H0: W
d
=

∑n
i=1 iWi with Wi i.i.d. Bin(0,1/2)

pgf(W ) =

1
2n(n+1)∑

k=0

P (W = k)zk =

n∏
i=1

pgf(Wi) =
(1 + x) (1 + x2) . . . (1 + xn)

2n

Can be evaluated directly using computer algebra.
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Computer algebra: session in Mathematica
In[1]:= Expand[(1+x) * (1+x^2)]

2 3
Out[1]= 1 + x + x + x

In[2]:= Coefficient[Product[1 + x^n,{n, 0, 30}],x,400]

Out[2] = 28964

In[3]:= <<DiscreteMath‘RSolve‘

In[4]:= Assuming[n>0,SeriesTerm[1/(1-x^2),{x,0,n}]

1 n
Out[4]= - ( 1 + (-1) )

2
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General remarks on rank-based methods

• Practical problems

– tables (limited, errors, not exact,. . .)

– limited availability in general statistical software

– procedures in statistical software often based on asymptotics

– exact procedures for practical sample sizes require dedicated software
(StatXact, SPSS module)

• Mathematical problems

– in general no closed expression for distribution function

– evaluation distribution by direct enumeration only feasible for small
sample sizes

– evaluation distribution by recurrences is time-consuming
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Another example: Mann-Whitney statistic

Mann-Whitney: Mm,n = # {(i, j) | (Yj < Xi)}
rank configuration: X Y X X Y X Y⇒ M4,3 = 4

u u u u u

u u u u u

u u u u u

u u u u u

Note: M4,3 equals area beneath path
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Combinatorial interpretation of Mann-Whitney
statistic

Mm,n = k

Statistical terminology: Mm,n is area beneath Gnedenko path

Combinatorial terminology: Mm,n is restricted partition of k with at most
m parts, each of which≤ n (Ferrers diagram)

Generating functions for restricted partitions go back to Gauss.

Interpretations in terms of Gnedenko paths or restricted partitions easily
yield recurrence relations.
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Distribution Mann-Whitney statistic: recur-
rences

Under H0 : F = G, we have P (Mm,n = k) =
f (m,n, k)(

m + n

n

)
Recursion 1 (Mann-Whitney 1947):

f (m,n, k) = f (m− 1, n, k − n) + f (m,n− 1, k)

Proof: check whether path passes through (m− 1, n) or (m, n− 1).

Recursion 2 (Brus 1989):

f (m, n, k) =

n∑
i=0

f (m− 1, i, k − i)

Proof: condition on last right-turn (m− 1, i) of path.
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More serious recurrences

Recursion 3 (Brus 1989)

f (m, n, k) =

n∑
i1=0

i1∑
i2=0

. . .

ij−1∑
ij=0

f (m− j, ij, k − i1 − . . .− ij)

Proof: condition on last j right-turns of path.

Instead of looking at the end of the path we may also look at the other end
of the path.

Recursion 4

f (m,n, k) = f (m− 1, n, k) + f (m, n− 1, k −m)

Proof: path must go through (1, 0) or (0, 1).
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More serious recurrences: continued

Recursion 5 (Brus 1989)

f (m, n, k) =

n∑
i=0

f (m− 1, n− i, k − im)

Proof: condition on first right-turn of path; count paths from (0, i) to (m,n).

Recursion 6

f (m,n, k) =

n∑
ij=0

ij∑
ij−1=0

. . .

i2∑
i1=0

f (m−j, n−ij, k−i1−. . .−ij−1−ij(m−j+1))

Proof: condition on first j right-turns of path.
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Generating function for Mann-Whitney null dis-
tribution

mn∑
k=0

P (Mm,n = k) xk =
1(

m+n
n

) ∏m+n
i=n+1 (1− xi)∏m

j=1(1− xj)

Example 1:

exact: P (M5,5 ≤ 4) = 1
21 ≈ 0.0476; normal approximation: 0.0387

computing time: 0.00 sec (gen. function is polynomial of degree 25)

Example 2:

exact: P (M20,20 ≤ 138) = 237538006
4923090315 ≈ 0.0482; normal approximation:

0.0475

computing time: 0.28 sec (gen. function is polynomial of degree 400)

Computations performed on laptop (Pentium: 2 GHz).
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Recurrences versus generating functions

m n k Method 1 Method 2 Method 5
5 5 6 0.2 0.2 0.3
5 5 18 0.3 0.3 0.3
5 10 10 0.8 0.9 0.3
5 10 40 1.1 1.0 0.4

10 5 10 0.9 0.8 0.3
10 5 25 4.2 4.0 0.3
10 5 40 1.0 1.1 0.4
10 10 25 28 27 0.7
10 10 50 140 140 0.9
10 10 75 31 31 1.2

Computing time in Mathematica on (old) SunSPARCstation 5 in seconds.

Method 1 and 2 are based on recurrences; method 5 is direct evaluation of
generating function.
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Rank statistics with closed form generating func-
tion

• Wilcoxon signed rank statistic

• Wilcoxon rank sum statistic = Mann-Whitney statistic

• Kendall rank correlation statistic

• Kolmogorov one-sample statistic

• Smirnov two-sample statistic (for many combinations of sample sizes)

• Jonckheere-Terpstra statistic



12

/ department of mathematics and computer scienceJJ J N I II 16/49JJ J N I II 16/49

Methods when direct evaluation of pgf is not
possible

• Fourier methods: Pagano and Tritchler, Baglivo

• various shift-algorithms: Streitberg and Röhmel , Edgington

• network algorithms developed: Mehta and co-workers, commercial im-
plementation in StatXact

• recursive computation of generating functions: Hirji and Johnson, Di
Bucchianico and Van de Wiel

All these methods may be described as efficient methods to calculate gener-
ating functions.
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Exact distributions under alternative hypotheses

For control charts, we need distributions under alternative hypotheses.
Literature only gives some special cases (Lehmann alternatives).

sample X1, . . . , Xn from continuous distribution with symmetric density

H0 : m = 0 and H1 : m = δ.

X|j| is jth order statistic of |X1|, . . . , |Xn|

πj = 1 if X|j| corresponds to positive observation and -1 otherwise.
Linear signed rank statistic:

Tp,a =

p∑
j=1

a(j)πj,

where a(j) is the jth rank score and 1 ≤ p ≤ n.
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Recursions for alternative distributions

Problem: under H1 rank configurations are no longer equiprobable, hence
nice generating functions no longer exist.

Idea: embed recursions on probabilities (Klotz (1962) and Arnold (1965))
into recursions for generating function

(π, 0) = (π1, . . . , πp, 0), (π, 1) = (π1, . . . , πp, 1).

Ap,π(u) = P(π̄ = π, |Xi| ≤ u for i = 1, . . . , p)

Ap+1,(π,1)(u) = (p + 1)

∫ u

0
Ap,π(v)f (v) dv

Ap+1,(π,0)(u) = (p + 1)

∫ u

0
Ap,π(v)f (−v) dv

where f (w) = f0(δ − w). (f0 is density under H0).
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Generating function

Now define generating function.

Πp := {0, 1}p

Ap,π(u) = P(π̄ = π, |Xi| ≤ u for i = 1, . . . , p)

Hp(u, x) =
∑

`

∑
π∈Πp,`

Ap,π(u)x`

H0(u, x) = 1,

where Πp,` = {π ∈ Πp|Tp(π) = `}.
Note that ∑

`

P(Tn = `)x` =
∑

`

∑
π∈Πn,`

An,π(∞)x` = Hn(∞, x).
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Recursion for generating function

Hp(u, x) = p

(
xa(p)

∫ u

0
Hp−1(v, x)f (v) dv +

∫ u

0
Hp−1(v, x)f (−v) dv

)
.

Evaluation of recursion:

• symbolically if f has primitive in closed form

• numerically using midpoint algorithm adapted from Milton (1970)



12

/ department of mathematics and computer scienceJJ J N I II 21/49JJ J N I II 21/49

Note on integrals in recursion

H1(u, x) =p

(
xa(1)

∫ u

0
f (v) dv +

∫ u

0
f (−v) dv

)
=p

(
xa(1) (F (u)− F (0)) + F (0)− F (−u)

)
H2(u, x) = 2

(
xa(2)

∫ u

0
H1(v, x)f (v) dv

∫ u

0
H1(v, x)f (−v) dv

)
.

Some simplification is possible by using∫ u

0
F j(v) f (v) dv = F j+1(u)− F j+1(0).

However, we also need ∫ u

0
F j(v) f (−v) dv.



12

/ department of mathematics and computer scienceJJ J N I II 22/49JJ J N I II 22/49

Nonparametric CUSUM chart

King and Longnecker calculate (using time-consuming numerical integra-
tion) the ARL of the following CUSUM chart:

observations Xi = (Xi1, . . . , Xin) from continuous distribution, target
value θ0

S0 = 0, Si = max {0, Si−1 + Tn,a(Xi)− θ0 − k}
Signal if Si > h.

Out-of-control run length distribution of S under location shift can be ob-
tained, since (S0, S1, . . .) is Markov chain with finite state space (cf. Brook
and Evans (1972)).

Transition probabilities can be expressed in terms of the alternative distri-
bution.
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Spearman’s rank correlation test

Together with Kendall’s τ the most popular rank test statistic for testing
correlation.

Bivariate data: (X1, Y1), . . . , (Xn, Yn)

Ri : rank of Xi in X1, . . . , Xn; Si : rank of Yi in Y1, . . . , Yn.

H0 : X and Y are not correlated.

Test statistic: ρ =
∑n

i=1 (Ri − Si)
2.

Tail probabilities: P (ρ ≥ d) or P (ρ ≤ d).

Goal: fast computation of tail probabilities and critical values

All permutations: too time and memory consuming.
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Permutations and Spearman’s ρ

Sn denotes the symmetric group of n elements

null distribution of ρ equivalent to enumeration of statistic on Sn × Sn:

S2 : (σ, τ ) 7−→
n∑

j=1

(σ(j)− τ (j))2.

equivalence relation on Sn × Sn:

(σ, τ ) ∼ (ρ, ς) −→ ∃ν ∈ Sn : ρ = σ ◦ ν and ζ = τ ◦ ν

S2(σ ◦ ν, τ ◦ ν) = S2(σ, τ )

S1 : σ 7−→
n∑

j=1

(σ(j)− j)2

S1 is statistically equivalent to S̃1 :=
∑n

j=1 j σ(j).
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Generating function and permanent

per(A) =
∑
σ∈Sn

n∏
j=1

aσ(j),j.

Olds (1938) and Kendall (1939):

∞∑
k=0

Pr(S1 = k) xk =
1

n!
per(P ) and

∞∑
k=0

Pr(S̃1 = k) xk =
1

n!
per(P̃ )

where
Pij = x(i−j)2 and P̃ij = xij, i, j = 1, . . . , n.

• permanent does not share nice properties of determinant

• Ryser’s algorithm not fast enough for permanents with monomial en-
tries of size >10

• exploit symmetries to break down permanents into smaller permanents
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Reduction 1: Laplace expansion + symmetries

per

 1 x x4 x9

x 1 x x4

x4 x 1 x
x9 x4 x 1

 = per

(
1 x
x 1

)
per

(
1 x
x 1

)
+ per

(
1 x4

x x

)
per

(
x x
x4 1

)

+ per

(
1 x9

x x4

)
per

(
x 1
x4 x

)
+ per

(
x x4

1 x

)
per

(
x4 x
x9 1

)

+ per

(
x x9

1 x4

)
per

(
x4 1
x9 x

)
+ per

(
x4 x9

x x4

)
per

(
x4 x
x9 x4

)
.

symmetry: per

(
1 x9

x x4

)
per

(
x 1
x4 x

)
= per

(
x x4

1 x

)
per

(
x4 x
x9 1

)
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Reduction 2: More symmetries

P =


1 x x4 x9 x16 x25

x 1 x x4 x9 x16

x4 x 1 x x4 x9

x9 x4 x 1 x x4

x16 x9 x4 x 1 x
x25 x16 x9 x4 x 1


Take S = (1, 4, 6)

Λ(S) = (1, 2, 3, 4, 5, 6) \ S = (2, 3, 5)

T (S) = (6 + 1− 2, 6 + 1− 3, 6 + 1− 5) = (1, 3, 6)

T (Λ(S)) = (2, 4, 5)

P (U |S) =

 1 x9 x25

x x4 x16

x4 x x9

 = P (L|T (S)) =

x9 x x4

x16 x4 x
x25 x9 1
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Symmetry around mean

S1 : σ 7−→
∑n

j=1 (σ(j)− j)2 is symmetric around n(n2 − 1)/3

n = 3:

 1 x x4

x 1 x
x4 x 1


Ψ(xb) = x(1

3n(n2−1)−b) + extension by linearity to polynomials

Ψ(1 + x2) = x8 + x6 = x4(x4 + x2) Take S = (1, 2), then Λ(S) = (3),
T (S) = (2, 3), T (Λ(S)) = (1).

Ψ8

(
per

(
P (U |S)

)
per

(
P (L|Λ(S))

))
= Ψ8(1 + x2) = x6 + x8

= per
(
P (U |T (S))

)
per

(
P (L|T (Λ(S)))

)
.
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Page’s L statistic

test for ordered alternatives in a randomised block design with b blocks.

βj denotes the block effect of the jth treatment.

H0 : β1 = . . . = βt

H1 : β1 ≤ . . . ≤ βt,

with at least one strict inequality.

L =

t∑
j=1

j Rj,

Gb,t(x) =

∞∑
k=0

P (L = k) xk =

(
1

t!
per(P̃ )

)b
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Remarks and results

• Cases with ties can be treated in a similar way.

• Cases with ties important, because no tables available.

• Existing tables of Spearman’s ρ extended from n = 18 to 24 (extension
of work of Franklin)

• Asymptotics are very accurate for n = 24

• Implementation faster than implementations in available statistical
packages.
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Linear rank score statistics

samples X1, . . . , Xm and Y1, . . . , Yn

Zi =

{
1 if ith order statistic in combined sample is an x-observation,

0 otherwise

T =

n+m∑
i=1

a(i)Zi

Examples:

• Wilcoxon rank sum statistic: a(x) = x

• Mood scale statistic: a(x) =
(
x− n+m+1

2

)2

• . . .
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Generating function for linear rank statistics

consider generating functions w.r.t. to both k (the values of T ) and m (the
sample size of the first sample).

Streitberg & Röhmel 1986 (cf. Euler 1748)∑
m+n=N

∑
k

(
N

m

)
P (Tm,n = k) xk ym = (1 + xa(1) y) . . . (1 + xa(N) y),

where Tm,n =

m+n∑
`=1

a(`) Z`.

The Streitberg-Röhmel generating function can be applied directly to :

• Mood scale statistic

• Freund-Ansari-Bradley statistic

• percentile modified rank statistics
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Halperin statistic

Sometimes the Streitberg-Röhmel formula is not redundant:

independent samples X1, . . . , Xm and Y1, . . . , Yn

continuous distribution functions F and G, resp.

fixed right-censoring at time pointT .

rm X -observations and rn Y -observations censored.

Halperin statistic (1960) Hm,n is lower bound for Mm,n:

Hm,n = # {(i, j) | (Yj < Xi ≤ T )} + rn ∗ (m− rm)
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Halperin statistic: continued

Hm,n = # {(i, j) | (Yj < Xi ≤ T )} + rn ∗ (m− rm)

Using

Pr(A|B) =

N∑
k=1

Pr(A|B ∩ Ck) Pr(Ck|B)

we may rewrite ∑
k

P (Hm,n = k | rm + rn = r) xk

in terms of Mann-Whitney statistics for sample sizes (`, m+n−rm−rn−`)
(1 ≤ ` ≤ m).

This sum coincides with the Streitberg & Röhmel generating function.
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Branch-and-bound algorithm

It is too time-consuming to expand the Streitberg & Röhmel generating
function directly for other cases like

• Van der Waerden (normal scores) statistic (for m = n = 15 the generat-
ing function contains approximately 60000 terms).

• Klotz scale statistic

For testing purposes one only needs tail of distribution, e.g.

P (T > c) = α.

Branch-and-bound algorithm exploit this by step-wise expansion of generat-
ing function with throwing parts that will not contribute.
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Toy example Branch-and-bound: signed-rank
statistic

2n

1
2n(n+1)∑

k=0

P (W = k)xk = (1 + x) (1 + x2) . . . (1 + xn)

Expand product term by term. Suppose we have already expanded
(1 + x)(1 + x2) = 1 + x + x2 + x3 and n = 4.

Minimal contribution of remaining terms to exponents equals 0 .

Maximal contribution of remaining terms to exponents equals 3 + 4 = 7.

If interested in 16P (W ≥ 9): drop 1 and x from further expansion.

If interested in 16P (W ≥ 3): drop x3 and add contribution 4.
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Intermezzo: contingency tables

The branch-and-bound method has also been applied to tests for contin-
gency tables, although sometimes in disguised form.

Current approaches:

• network algorithms of Mehta and co-workers (implemented in StatXact)

• Recursive Polynomial Generating Method for 2 × K tables: Hirji and
Johnson, Comp. Stat. Data Anal. 21 (1996), 419–429

• Recursive Domain Partitioning for (likelihood ratio statistic for r×K ta-
bles, Cressie-Read statistics): Bejerano et al., J. Comp. Biology 11 (2004),
867–886

Alternative: Markov Chain Monte Carlo sampling, random sampling of con-
tingency tables using Gröbner bases ( Diaconis and Sturmfels, Ann. Stat.
26 (1998), 173–193).
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Rank statistics for ANOVA

t independent samples of sizes nj, j = 1, . . . , t; N =
∑t

j=1 nj

observationsXij (i = 1, . . . , nj) belonging to treatment j are mutually inde-
pendent and have unknown distribution function F (x− γj), j = 1, . . . , t.

H0 : γ1 = . . . = γt = 0

H1 : ∃j, j = 2, . . . , t : γj 6= 0.

Rj =

N∑
`=1

a(`)Z`j

a is rank score function (increasing w.l.o.g.)

Z`j =

{
1 if ` th smallest observation belongs to the jth sample

0 otherwise.
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Kruskal-Wallis type statistics

Q~n =

t∑
j=1

R2
j/nj

where ~n = (n1, . . . , nt).

Kruskal-Wallis: a(`) = `

Direct enumeration of Q~n not feasible.

Iman 1975 derived recursion for probabilities (inefficient).

Alternative approach: recursive build-up of pgf + branch-and-bound

Recursion: at each step we assign a rank to one of the treatments.

R is set of ranks already assigned; recursion starts at R = ∅.
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Recursion for pgf Q~n

FR
~u = { f : R → {1, . . . , t}| , (|f−1(1)|, |f−1(2)|, . . . , |f−1(t)|) = ~u }

Af =

 ∑
r1∈f−1(1)

a(r1), . . . ,
∑

rt∈f−1(t)

a(rt)

 .

SR
~u = { Af | f ∈ FR

~u }.

Generating function: GR
~u (~x) =

∑
~v∈SR

~u

#(f ∈ FR
~u | Af = ~v)

t∏
i=1

xi
vi

εj(~u) = (u1, . . . , uj − 1, . . . , ut) for j : uj > 0.

Recursion: GR
~u (~x) =

∑
j:uj>0

G
R\{r}
εj(~u) (~x)xj

a(r) if ~u 6= ~0
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Exchangeability

Terms in recursion may be computed efficiently by permuting labels:

π(y) := (yπ(1), . . . , yπ(t)), π ∈ St

Gπ(~u)(~x) = G~u(π
−1(~x))

where π−1 is inverse permutation of π

CorollaryWe only need recursion for u1 ≥ . . . ≥ ut.

Further reduction is necessary because polynomials involved in recursion
grow fast.

Reduction is possible for computing tail probabilities. Idea is similar to
network algorithm of Mehta et al., but more transparent because of setting
in terms of generating functions.
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Branch-and-bound

given GR
~u (~x) at certain recursion step

kth term of this polynomial is of the form: c x1
v1 · · ·xt

vt

QR,k
~u =

t∑
j=1

vj
2

nj

.

P (Q~n ≥ g) requires computing QR,k
~n for all k, adding the coefficients c of

those terms for which QR,k
~n ≥ g and dividing by N !/(n1! · · ·nt!).

It is not necessary to compute all QR,k
~n !
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Bounding

~u = (u1, . . . , ut) keeps track of number of assigned ranks to treatments.

Assume U =
∑t

j=1 uj < N at certain step in recursion

QR,k
~u,~n =

t∑
j=1

(vj + wj)
2

nj

,

where ~w = (w1, . . . , wt) are unknown unassigned ranks.

Key idea: obtain lower and upper bounds for QR,k
~u,~n .

If our lower bound ≥ g, then QR,k
~u,~n ≥ g for every assignment of remain-

ing ranks. Hence, we have fixed contribution c
(

N−U
n1−u1,...,nt−ut

)/(
N

n1,...,nt

)
to

P (Q~n ≥ g).
If our upper bound is< g, thenQR,k

~u,~n < g for every assignment of remaining
ranks. Hence, this term may be deleted.
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Optimization problems

min
~w

QR,k
~u,~n and max

~w
QR,k

~u,~n ,

subject to : wj =
∑
rj∈Sj

a(rj),

|Sj| = nj − uj

t⋃
j=1

Sj = R,

quadratic form of QR,k
~u,~n and complex constraints obstruct fast computation

non-classical optimization problem because of repeated optimization

exact bounds for L∗ and L∗ not necessary: L ≤ L∗ and U ≥ U ∗ the better
the safe bounds, the more efficient our computation.
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Splitting the objective function

QR,k
~u,~n =

t∑
j=1

(vj + wj)
2

nj

,

where ~w = (w1, . . . , wt) are unknown unassigned ranks.

L := C + 2 L1 + L2 =
∑t

j=1
vj

2

nj
+ 2 min~w

∑t
j=1

vjwj

nj
+ min~w

∑t
j=1

wj
2

nj

U := C + 2 U1 + U2 =
∑t

j=1
vj

2

nj
+ 2 max~w

∑t
j=1

vjwj

nj
+ max~w

∑t
j=1

wj
2

nj

Computation of bounds requires:

1. constant C (easy)

2. linear optimization (closed form)

3. quadratic optimization (hard, but does not depend on ~v)
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Relaxation of quadratic optimization

min~w

∑t
j=1

w2
j

nj
and max~w

∑t
j=1

w2
j

nj
,

subject to :
∑

i∈S wi ≤
∑|R|

j=|R|−NS+1 a(j) for all S ⊆ T

w1 + w2 + . . . + wt =
∑|R|

j=1 a(j)

Next step is to identify the extreme points of the feasible region.

Solution can be generated in a simple way because of hierarchical structure
of constraints.

Our solution is much faster than the network algorithm in StatXact 4.
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Summary

• probability generating functions are convenient tool to compute exact
(null) distributions of rank statistics

• use recursion on level of generating functions rather than individual
probabilities

• ideas to compute probability generating functions:

– direct evaluation

– reduction using symmetries (cf. Spearman’s ρ)

– double generating function (Streitberg-Röhmel)

– blocks can be handled by exponentiation

– for p- values one does not need complete generating function:
branch-and-bound
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