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Goals of this talk

• introduce hypothesis testing framework for control charts in SPC

• develop monitoring procedures for practical out-of-control situations
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Contents of talk

• Background:

– statistical process control: control charts

– change-point problems

– sequential analysis

• Testing and control charts

• Some alternative hypotheses

• Some thoughts on performance measures of monitoring procedures

• Likelihood ratio tests

• Asymptotics for critical values

• Simulations

• Future work
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Background

1. SPC (Statistical Process Control)

• background in industry (Shewhart 1924)

• uses control charts as monitoring tools (detection of out-of-control
situations)

• emphasis on on-line monitoring (Phase II)

2. changepoint analysis (cf. Lai, J. Roy. Stat. Soc. B 57 (1995))

• background in mathematical statistics

• aims at estimation of changepoint

• main emphasis on retrospective analysis

3. sequential analysis (cf. Lai, Stat. Sinica 11 (2001))

• developed in military context (Wald, Wolfowitz 1940’s)

• initial emphasis on hypothesis testing
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SPC: Shewhart charts

• introduced by Shewhart in 1924

• practical tool without theoretical background

• specific terminology: in-control (common causes), out-of-control (spe-
cial causes), rational subgroups, . . .

• chart signals if summary statistic of i th group is above or below 3σT

• variants: X, R, S, MR, attribute control charts, . . .

• additions: VSR (Variable Sampling Rate), runs rules (Western Electric
1956), warning zones, . . .
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Shewhart X-chart with control lines.

u
@

@
@u��

�
�
�
�
u
J

J
J

JJu���
u���

�
�
�
�
�
�
u
C
C
C
C
C
C
C
C
C
C
CCu
@

@
@u

µ

µ + 3σ/
√

n

µ − 3σ/
√

n

CL

UCL

LCL



12

/ department of mathematics and computer scienceJJ J N I II 7/48JJ J N I II 7/48

SPC: CUSUM charts

• introduced in 1954 by Page

• cumulative sums enable to detect small changes of the mean (< 1.5σ )

• recursive practical form: threshold on cumulative sums:

Qi = max{0, Qi −1 + Xi − k)}

• optimality with respect to ARL proved by Moustakides and Ritov

• performance quickly deteriorates away from optimal alternative (fine-
tuning of k and decision threshold)

• additions: FIR (Fast Initial Response) by Lucas

• monograph Hawkins and Olwell



12

/ department of mathematics and computer scienceJJ J N I II 8/48JJ J N I II 8/48

SPC: EWMA chart

• based on ideas from Girshick, Rubin, Roberts and Shiryaev (early
1960’s)

• inspired by Bayesian analysis (prior distribution on changepoint)

• Vi = λ(Xi ) + (1 − λ)Vi −1, V0 = 0

• λ → 0: CUSUM, λ = 1: Shewhart

• practical choice for λ: 0.1 < λ < 0.3

• performance nearly as good as CUSUM, but less sensitive to non-
normality

• decision threshold changes with i
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SPC: other charts

• control charts based on robust statistics

• combined control charts (e.g., Shewhart-CUSUM)

• cuscore charts (Box; based on Fisher’s efficient score statistics)

• nonparametric control charts

– linear rank statistics (Wilcoxon, . . . )

– precedence statistics (Chakraborti and V.d. Laan)

– regression-type control charts (monitoring linear profiles)

• . . .
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SPC: Phase I and II

Phase I

• retrospective (usually pilot study of new production process)

• determination of in-control parameter values

Phase II

• on-line (full scale process)

• uses in-control parameter values from Phase I

Detection performance of control charts in Phase II may heavily deteriorate
when using estimated parameters in the control limits (see e.g., Chakraborti,
Comm. Stat. Simul. 29 (2000)). Robust estimation of parameters is re-
quired in noisy environments (see e.g., Gather et al. , Estadistica 53 (2001)).

Hawkins et al. (J. Qual. Techn. 35 (2003)) argue that application likelihood
ratio methods from changepoint analysis in SPC context makes Phase I/II
distinction superfluous.
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Neyman-Pearson Lemma

sample X1, . . . , Xn

H0 : µ = µ0

H1 : µ = µ1

reject H0 if
PH1(x1, . . . , xn)

PH0(x1, . . . , xn)
> c.

This test has maximal power under all tests with the same type I error.

Frisén and De Maré, Biometrika 78 (1991), have version of Neyman-Pearson
for detection of critical events at given time point.

Tests for composite hypotheses H0 : µ ≤ µ0 against H1 : µ > µ0 may be
treated similarly if likelihood ratio is monotone.
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Wald SPRT (Sequential Probability Ratio Test)

sample X1, X2, . . .

H0 : µ = µ0 against H1 : µ = µ1

accept H0 if
PH1(x1, . . . , xn)

PH0(x1, . . . , xn)
< a

accept H1 if
PH1(x1, . . . , xn)

PH0(x1, . . . , xn)
> b

continue testing if a ≤
PH1(x1, . . . , xn)

PH0(x1, . . . , xn)
≤ b

This procedure simultaneously minimizes the ASN’s (Average Sample
Number) under H0 and H1, given PH0(reject H0) ≤ α and PH1(reject H0) ≤

β.
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Summary of existing procedures

Existing procedures either are not based on optimality criteria or are optimal
w.r.t. to ARL (Average Run Length).

However, run length distributions are highly skewed (often close to geomet-
ric distribution). Performance should be judged on other features of run
length distributions (e.g., quantiles).

Cf. PSD (Probability of Successful Detection) in medical applications
(Frisén, Stat. Medicine 11 (1992) and Frisé and Wessmann, Comm. Stat.
Simul. 28 (1999)). In case of active surveillance: predictive value of alarm.

It would be nice to reconcile classical hypothesis testing with sequential de-
tection. This would allow to develop optimal monitoring procedures for
specific alternative hypotheses.
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Examples of alternative hypotheses

Usually theoretical studies of control charts focus on persistent changes of
the mean (mathematical convenience?!).

Examples of other alternative hypotheses (cf. Gitlow et al., Quality Manage-
ment: Tools and Methods for Improvement, Chapter 8):

• persistent threshold crossing (sea and river levels)

• persistent monotone threshold crossing (tool wear, e.g., chisels)

• persistent shift or drift in variance (wear of bearing)

• epidemic alternatives (e.g., joint SPC APC scheme: feedback controller
removes special cause )

• . . .

One may also think of monitoring cycles (e.g., business cycles or medical
cycles (Frisén)) or profiles (cf. Kim et al., J. Qual. Technology 35 (2003) ).
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Our Model

Sequential observations X1, . . . , Xk (k ≤ n)

n fixed beforehand (batch industry, medical event,. . . )

Xi = µi + ei , i = 1, . . . , n,

e1, . . . , en are i.i.d. error terms with density f symmetric around 0

µ1, . . . , µn are unknown parameters.

Test statistic based on likelihood ratios (details later).

Critical value of test statistics based on false alarm rate (details later).
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Possible alternative hypotheses

Persistent change of mean (µ0 and δ known)

H0 : µ1 = . . . = µn

H1 :

{
µi = µ0, i = 1, . . . , m,

µi = µ0 + δ, i = m + 1, . . . , n

Epidemic alternative (µ0 and δ known)

H0 : µ1 = . . . = µn

H1 :


µi = µ0, i = 1, . . . , `,

µi = µ0 + δ, i = ` + 1, . . . , m,

µi = µ0, i = m, . . . , n
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Possible alternative hypotheses: continued

Persistent non-monotone threshold crossing (δ known)

H0 : µi ≤ δ, i = 1, . . . , n,

H1 :

{
µi ≤ δ, i = 1, . . . , m,

µi > δ, i = m + 1, . . . , n,

Persistent monotone threshold crossing (δ known)

H0 : µ1 ≤ . . . ≤ µn ≤ δ

H1 :

{
µ1 ≤ . . . ≤ µm < δ i = 1, . . . , m

δ < µm+1 ≤ µm+2 ≤ . . . ≤ µn i = m + 1, . . . , n

Similar alternative hypotheses for the variance are also important (cf. phi-
losophy SPC).
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Toy example: Shewhart chart + persistent
threshold crossing alternative

Xi independent with densities f (x − µi ), where f is a symmetric density
that is nonincreasing for x > 0.
Hypotheses with known δ0:

H0i : E Xi = µi ≤ δ0

against
H1i : E Xi = µi > δ0

The ML-estimators µ̂i 0 and µ̂i 1 based on Xi under H0i and H1i , respectively,
are given by:

µ̂i 0 =

{
Xi if Xi ≤ δ0

δ0 if Xi > δ0
µ̂i 1 =

{
δ0 if Xi ≤ δ0

Xi if Xi > δ0
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The loglikelihood ratio based on Xi thus equals

log
(

f (Xi − µ̂i 1)/ f (Xi − µ̂0i )
)

Under normality with common known variance σ 2 this reduces up to a mul-
tiplicative constant 1/2 to:

Zi (δ0) =
(Xi − δ0)

2

σ 2
sign (Xi − δ0).

Since (t − δ0)
2 sign (δ0− t) is a monotone function of t , we restrict ourselves

to the least favourable situation of the null hypothesis H0: the restricted null
hypothesis H∗

0 .
H∗

0 : µ1 = µ2 = . . . = δ0.

NS =

{
min{1 ≤ k ≤ n; Zk(δ0) ≥ c} if max1≤k≤n Zk ≥ c

∞ if max1≤k≤n Zk < c
.
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Critical values Zi

Standard choice of 3σ control limits yields in-control ARL of 1/0.027≈ 370.

EH∗

0
NS =

1

1 − H(c)
,

where H is distribution function of Zi . Note that EH∗

0
NS is not meaningful

because there is no good way to incorporate the event {max1≤k≤n Zk < c}.

Alternative 1: jointly considering H(c)n, the probability of no alarm at all,
and the conditional ARL:

EH∗

0
(NS | NS ≤ n) =

1

1 − H(c)
−

n(H(c))n

1 − H(c)n
.

Alternative 2: 100α% quantile of the distribution of NS.

1 − H(c)nS(α)
= PH∗

0

(
max

1≤i ≤nS(α)
Zi (δ0) ≥ c

)
= PH∗

0
(NS ≤ nS(α)) ≤ α
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Critical values Zi : continued

Alternative 2: 100α% quantile of the distribution of NS. The lower bound
nS(α) for the 100α% quantile of the distribution of NS satisfies

PH∗

0

(
max

1≤i ≤nS(α)
Zi (δ0) ≥ c

)
= PH∗

0
(NS ≤ nS(α)) ≤ α

In other words, the test H0 against H1 based on nS(α) observations has
significance level α. Hence, this choice of the critical value can be easily
connected to the Neyman-Pearson framework.

Thinking in terms of hypothesis testing with level α it will be typically
chosen small, while thinking in terms of the median of the run length
distribution we think more about α = 1/2.

The next slides present tables with numerical values.
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quantile of NS
n EH∗

0
(NS | NS ≤ n) PH∗

0
(NS > n) 1% 5% 50% 80% 90%

100 49 0.87 7 38 100 100 100
200 96 0.76 7 38 200 200 200
300 140 0.67 7 38 300 300 300
400 183 0.58 7 38 400 400 400
500 223 0.51 7 38 500 500 500
600 260 0.44 7 38 513 600 600
700 296 0.39 7 38 513 700 700
800 330 0.34 7 38 513 800 800
900 361 0.30 7 38 513 900 900
1000 391 0.26 7 38 513 1000 1000
1500 513 0.13 7 38 513 1191 1500
2000 597 0.07 7 38 513 1191 1705

Influence of n on the run length distribution: c = 9.
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β = 0.8 β = 0.9 β = 1
n 90% 95% 99% 90% 95% 99% PH∗

0
(NS > n) = 0.05

100 9.1 10.4 13.4 9.26 10.6 13.6 10.8
200 10.3 11.6 14.7 10.5 11.9 14.9 12.1
300 11.1 12.4 15.5 11.3 12.6 15.7 12.8
400 11.6 12.9 16.0 11.8 13.2 16.2 13.4
500 12.0 13.4 16.4 12.2 13.6 16.7 13.8
600 12.4 13.7 16.8 12.6 13.9 17.0 14.1
700 12.6 14.0 17.1 12.9 14.2 17.3 14.4
800 12.9 14.2 17.3 13.1 14.5 17.6 14.7
900 13.1 14.5 17.6 13.3 14.7 17.8 14.9
1000 13.3 14.7 17.8 13.5 14.9 18.0 15.1
1500 14.1 15.4 18.5 14.3 15.7 18.8 15.9
2000 14.6 16.0 19.1 14.8 16.2 19.3 16.4

Critical values for Shewhart charts with prescribed lower bound for
quantiles of run length distribution and for prescribed false alarm rate:

ns = β n.
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Detection performance Zi

distribution function H of Zi (δ0) if E Xi = δ has the form:

H(x) =


8
(
−

√
|x| −

δ−δ0
σ

)
, x < 0

8
(
√

x −
δ−δ0

σ

)
, x ≥ 0

In the next table, we assume that no false alarm takes place before the
changepoint, which gives a good impression of the performance, because
the Shewhart chart is memoryless.
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H1-quantile of NS − m | NS > m
n m c PH1(NS > n | Ns > m) 1% 5% 50% 80% 90%

100 0 10.8 0.676 1 5 62 100 100
100 25 10.8 0.570 1 5 62 75 75
100 50 10.8 0.431 1 5 50 50 50
100 75 10.8 0.245 1 5 25 25 25
500 0 13.8 0.812 3 15 207 481 500
500 125 13.8 0.715 3 15 207 375 375
500 250 13.8 0.567 3 15 207 250 250
500 375 13.8 0.342 3 15 125 125 125
1000 0 15.1 0.860 5 26 353 820 1000
1000 250 15.1 0.771 5 26 353 750 750
1000 500 15.1 0.625 5 26 353 500 500
1000 750 15.1 0.388 5 26 250 250 250

Detection performance for Shewhart charts with prescribed false alarm
probability 0.05 under jump alternative with δ1 = δ0 + σ : E Xi = δ0 + σ

for i > m.
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Detection performance Zi : uniform alternative

Another interesting alternative is that the mean of Xi after the changepoint
is uniformly distributed on [δ0, δ0 + γ σ ] with γ > 0. We then have

PH1(Zi ≤ c) =
1

γ σ

∫ γ σ

0
P(Zi ≤ c | µi = δ0+x) dx =

1

γ σ

∫ γ σ

0
8
(√

c −
x

σ

)
dx =

1

γ

∫ √
c

√
c−γ

8(u) du.

Writing 8 as an integral and interchanging the order of integration, we ob-
tain that ∫ b

a
8(u) du = b8(b) − a8(a) + ϕ(b) − ϕ(a),

where ϕ is the density of the standard normal distribution. Combining ev-
erything, we obtain

PH1(Zi ≤ c) =
√

c8(
√

c) − (
√

c − γ )8(
√

c − γ ) + ϕ(
√

c) − ϕ(
√

c − γ ).
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General approach: likelihood ratio tests

max
1≤m≤k

maxθ∈2

∏m
i =1 f (xi ; θ) maxη∈2

∏k
i =m+1 fi (xi ; η)

maxθ∈2

∏k
i =1 f (xi ; θ)

“Persistent non-monotone threshold crossing” and “Persistent monotone
threshold crossing” for normally distributed data with known variance:

Qn = max
m<k

1

2σ 2


k∑

i =m+1

(Xi − δ)2 sign (Xi − δ)

 , k = 2, . . . , n.

Standardization necessary to obtain distributional results (cf. critical values).

Qkn =
1

√
n

Qk Qkk =
1

√
k

Qk.

Qkn may perform poorly for early changes.
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Likelihood ratio: windowed versions (Willsky - Jones)

Qk = max
m<k

1

2σ 2


k∑

i =m+1

(Xi − δ)2 sign (Xi − δ)

 , k = 2, . . . , n.

The above expression (standardized or not) needs to be maximized once or
twice with respect to m.
Problems:

• maximization may be time consuming

• asymptotical distributional results may be hard to obtain

Qk,G =
1

√
G

max
k−G≤m<k

1

2σ 2

k∑
i =m+1

(Xi − δ)2 sign (Xi − δ),

Q
simp
k,G =

1
√

G

1

2σ 2

k∑
i =k−G+1

(Xi − δ)2 sign (Xi − δ).
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Isotonic regression

Chang and Fricker (J. Qual. Technology 31 (1999)) : isotonic regression
method for “Persistent monotone threshold crossing” alternative

Mk =

k∑
i =1

(Xi − Zi )
2
−

k∑
i =1

(Xi − Yi )
2

=


0 for Yk ≤ δ

k∑
i =J

(Xi − δ)2
−

k∑
i =J

(Xi − Yi )
2 for Yk > δ,

where

• Z1, . . . , Zk denotes an isotonic regression restricted to increase up to at
most δ

• Y1, . . . , Yk is the corresponding unrestricted isotonic regression

• J = min{i : Yi > δ}.



12

/ department of mathematics and computer scienceJJ J N I II 30/48JJ J N I II 30/48

Intermezzo: scale alternatives

Xi = µ + σi ei , i = 1, . . . , n,

where µ is a known constant , σi , i = 1, . . . , n are unknown positive param-
eters, e1, . . . , en are i.i.d. random variables with N(0, 1) distribution.
Hypotheses:

H0 : σi ≤ δ, i = 1, . . . ,

against

H1 : there is an msuch that σi ≤ δ, i = 1, . . . , σi > δ i = m+1, . . . , n,

The estimator σ̂ 2
i 0(H0) of σ 2

i under the restriction that σ 2
i ≤ δ2 is the solution

of the minimization problem:

min
σ2

i ≤δ2

{
logσ 2

i +
1

σ 2
i

(Xi − µ)2
}
.
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Scale alternatives: continued

σ̂ 2
i 0 = min((Xi − µ)2, δ2)

The estimator σ̂ 2
i 1 of σ 2

i under the restriction that σ 2
i ≥ δ2 is

σ̂ 2
i 1 = max((Xi − µ)2, δ2).

Hence, the loglikelihood ratio for the i -th observation is(
log

( δ2

(Xi − µ)2

)
− 1 +

(Xi − µ)2

δ2

)
sign

((Xi − µ)2

δ2
− 1

)
.

q(t) = (− log(t2) − 1 + t2)sign (t − 1), t > 0 is nondecreasing

Qσ2

k = max
0≤ j ≤k

k∑
i = j +1

(
−log

(
−

(Xi − µ)2

δ2

)
−1+

(Xi − µ)2

δ2

)
sign ((Xi −µ)2/δ2

−1).

Clearly, the test statistics Qσ2

k are similar to the Qk’s.



12

/ department of mathematics and computer scienceJJ J N I II 32/48JJ J N I II 32/48

Critical values

The most common way to control false alarm in SPC is to use run lengths,
in particular the in-control ARL (average run length). Sometimes also the
SRL (standard deviation of the run length) is taken into account, or even
better one uses quantiles.
We reject H0 as soon as for some k ≤ n

Tk > cn,α,

where Tk denotes any of the statistics presented in this talk and cN,α is cho-
sen in such a way the significance level is α, i.e.

PH0

(
max

1≤k≤n
Tk > cn,α

)
= α.

Since the distribution of our statistics do not admit closed-form expression,
these critical values have to be obtained by simulations or by asymptotics.
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Asymptotics of critical values

PH∗

0
(NC(c) > nC(α)) = (≥)1 − α

for a prechosen α and a prechosen integer nC(α). We write c = cC(α) and
rewrite the above relations as

PH∗

0

(
max

1≤k≤nC(α)
Qk < cC(α)

)
≥ 1 − α,

so the probability of false alarm based on nC(α) observations is ≤ α.

lim
n→∞

PH∗

0

(
max

1<k≤n
Qk < c

√
n(VarH∗

0
Z1(δ0))

1/2
)

= P

(
sup

0<s<t<1
W(t) − W(s) < c

)
,

where {W(t), t ∈ (0, 1)} is a Wiener process. This implies that

lim
n→∞

cC(α)
√

n = cα

(
VarH∗

0
Z1(δ0)

)1/2
,

where cα is such that P
(
sup0<s<t<1 W(t) − W(s) < cα

)
= 1 − α.
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Asymptotics of critical values continued

Hence, cC(α) can be approximated by cα

√
n(VarH∗

0
Z1(δ0))

1/2 and as soon as
n is large so does cC(α) and the procedure will perform poorly in detecting
early changes.
Alternative: weighted CUSUM

NC,β(cn(β), n) = min{k ≥ 1; (k/n)−β Qk ≥
√

ncn(β)}, β ∈ [0, 1/2],

where cn(β) is determined in such a way that

PH∗

0

(
max

1≤k≤n
(k/n)−β Qk <

√
ncn(β)

)
≥ 1 − α.

Hence, we reject H0 as soon as there is a k such that

Qk ≥
√

n cn(β)(k/n)β .

Obviously, choosing β = 0 we have back the original procedure but for
β ∈ (0, 1/2] larger weights are assigned to smaller k’s.
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Asymptotics of critical values: weighted version

lim
n→∞

cn(β) = dα(β)
(
VarH∗

0
Z1(δ0)

)1/2
, β ∈ [0, 1/2),

where dα(β) is determined as

P

(
sup

0<s<t<1

1

tβ
(W(t) − W(s)) ≤ dα(β)

)
= 1 − α,

where {W(t), t ∈ (0, 1)} is a Wiener process. It implies that
cn(β)(VarH∗

0
Z1(δ0)/n)−1/2 can be approximated by dβ(α).

For β = 1/2 we have for cn(1/2) the approximation
dα,n(1/2)(VarH∗

0
Z1(δ0))

1/2, where

P

(
sup

1≤s≤t≤n

1
√

t
(W(t) − W(s)) ≤ dα,n(1/2)

)
= 1 − α.

We can show that limn→∞ cn(β) = O(1), β ∈ [0, 1/2), while cn(1/2) =

O(
√

log logn).
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Background of asymptotics I

Komlós et al. (Z. Wahr. Verw. Gebiete 32 (1975) and 34 (1976))

Y1, . . . , Yn i.i.d. with zero mean, unit variance and E |Xi |
2+1 < ∞ for some
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Background of asymptotics II

Erdös-Darling theorems

P(d1(logn) max
1<k≤n
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k∑
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Yi ≤ y + d2(logn)) → exp{− exp{−y}}.

and

P(d1(logn) max
1<k≤n

1
√

k
|

k∑
i =1

Yi | ≤ y + d2(logn)) → exp{−2 exp{−y}},

where
d1(t) =

√
2 logt, t > 1,

d2(t) = 2 logt +
1

2
log logt − log(π), log t > 1.
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Simulation of critical values

Sample quantiles ξα are asymptotically normal with variance α(1−α)

f 2(ξα)
(Ba-

hadur)

We estimated f 2(ξα) by applying a kernel density estimator to a pre-run of
reasonable size.

Example: for the 90% quantile the standard deviation equals
(

0.9∗0.1
0.152n

)1/2
,

because the the density at the quantile approximately equals 0.15 .
Hence, if n = 10000, then the standard deviation of this quantile approxi-
mately equals 0.02.
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Performance simulation

Simulation performed using R (see www.r-project.org ), version 1.8.1
on a Unix platform.

Its new built-in procedure isoreg() is much faster in computing the iso-
tonic regression (needed for simulations of the Mn statistics) than the PAVA
algorithm.

Source codes of all procedures we used are available at
http://www.karlin.mff.cuni.cz/ ∼klaster/compstat04
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Simulation improvement

Since Var NS ≈ E (NS)
2, so increase in ARL leads to increase in variance of

estimates.
Variance reduction techniques have been developed for these simulations.
Jun and Choi, Comm. Stat. A 22 (1993) present two techniques for CUSUM
simulations:

1. hazard controlled estimator (following a suggestion of Ross to use the
total hazard of a Markov chain)

2. ratio estimators using a cycle.
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Simulation setup

n = 100, α = 0.05, G = 0.1n = 10, σ = 1, 1000 repetitions.

Two types of changes, each of which has a “small” and a “large” version:

small version corresponds to change of mean of σ

large version corresponds to change of mean of 3σ

general change mean is uniformly distributed on [δ − r, δ] before change-
point, and uniformly distributed on [δ, δ + r ] after the change-point,
where r = 1 (small change) or r = 3 (large change), respectively (so the
expected mean increases by 1 and 3, respectively).

gradual change mean increases on 5 equally spaced intervals before change
point fromµ to δ and on 5 equally spaced intervals after the change-point
from δ to 2δ − µ, where δ = 1 and µ = 0.5 (small change) or δ = 3 and
µ = 1.5 (large change).
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Simulation interpretation

Detection delays must be interpreted with care.

Suppose change at x and number of observations equals n, then in our sim-
ulations the number n − x indicates either

• a detection at time point n

• or no detection at all

Summary statistics of simulation include (run lengths are skewed!):

• mean

• standard deviation

• quantiles
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Simulation results: general small change

Qkn Qkk Qn,G Q
simp
n,G Mn

m mean; sd mean; sd mean; sd mean; sd mean; sd
5 42.34; 15.07 37.08; 23.10 52.12; 31.69 51.54; 31.47 37.99; 20.81
15 42.95; 15.68 44.87; 23.05 48.79; 29.11 48.69; 28.99 38.67; 21.47
25 41.88; 14.38 47.51; 19.86 46.10; 25.10 45.68; 24.86 37.34; 19.10
40 41.35; 12.47 49.39; 13.89 41.80; 19.40 41.46; 19.32 36.45; 16.25
60 35.32; 6.56 38.16; 9.73 31.18; 11.96 31.06; 11.86 30.47; 10.88
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Gradual small change

Qkn Qkk Qk,G Q
simp
k,G Mk

m mean; sd mean; sd mean; sd mean; sd mean; sd
5 74.96; 16.29 80.98; 20.88 82.96; 20.38 82.96; 20.09 75.19; 20.06
15 69.49; 14.55 76.26; 15.85 75.88; 16.58 75.67; 16.78 69.72; 17.41
25 63.37; 12.53 69.48; 13.36 66.67; 16.24 66.60; 16.13 62.79; 15.68
40 54.29; 9.03 57.96; 9.32 55.21; 11.38 55.24; 11.20 53.45; 11.51
60 38.43; 4.20 39.01; 8.77 37.30; 8.24 37.36; 7.89 37.06; 7.87
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General large change

Qkn Qkk Qk,G Q
simp
k,G Mk

m mean; sd mean; sd mean; sd mean; sd mean; sd
5 10.45; 3.99 5.35; 3.33 6.22; 3.19 8.03; 2.52 6.32; 3.57
15 10.52; 3.90 7.42; 3.82 6.15; 3.32 8.15; 2.52 6.24; 3.53
25 10.60; 4.35 7.80; 3.22 5.70; 2.31 7.60; 1.71 5.30; 2.71
40 10.71; 3.93 10.64; 5.38 6.34; 3.20 8.18; 2.51 6.47; 3.67
60 10.57; 3.83 12.39; 5.58 6.16; 3.05 8.07; 2.38 6.29; 3.49
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Gradual large change

Qkn Qkk Qk,G Q
simp
k,G Mk

m mean; sd mean; sd mean; sd mean; sd mean; sd
5 42.34; 8.60 39.47; 13.24 44.50; 15.26 44.07; 15.24 37.78; 10.78
15 39.69; 8.47 40.49; 10.99 39.98; 14.86 39.57; 14.75 34.83; 10.61
25 37.45; 7.38 40.24; 9.25 37.45; 12.88 37.20; 12.63 33.18; 9.51
40 33.29; 7.04 37.63; 7.99 32.06; 11.09 31.90; 10.90 28.77; 8.59
60 27.37; 5.17 32.27; 5.90 24.89; 7.79 24.84; 7.62 22.89; 6.61
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Conclusions

• Chang and Fricker’s Mk has the smallest mean (both general and grad-
ual case)

• Qkn has a considerably smaller standard deviation.

• Mk has better low quantiles

• Qkn has better median and higher quantiles

Summary: In most cases Qkn performs better, but Mk sometimes detects
extremely fast.
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Future work

• other alternative hypotheses (in particular, changes of the variance)

• composite alternative hypotheses

• (asymptotical) distributional results

• combination of procedures

• application to real data

• . . .


