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Goals of this talk

e introduce hypothesis testing framework for control charts in SPC

e develop monitoring procedures for practical out-of-control situations
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Contents of talk

e Background:

— statistical process control: control charts
— change-point problems
— sequential analysis

e Testing and control charts

e Some alternative hypotheses

e Some thoughts on performance measures of monitoring procedures
e Likelihood ratio tests

e Asymptotics for critical values

e Simulations

e Future work
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Background

1. SPC (Statistical Process Control)

e background in industry (Shewhart 1924)

e uses control charts as monitoring tools (detection of out-of-control
situations)

e emphasis on on-line monitoring (Phase II)
2. changepoint analysis (cf. Lai, ]J. Roy. Stat. Soc. B 57 (1995))

e background in mathematical statistics
e aims at estimation of changepoint

e main emphasis on retrospective analysis
3. sequential analysis (cf. Lai, Stat. Sinica 11 (2001))

e developed in military context (Wald, Wolfowitz 1940’s)
e initial emphasis on hypothesis testing
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SPC: Shewhart charts

e introduced by Shewhart in 1924
e practical tool without theoretical background

e specific terminology: in-control (common causes), out-of-control (spe-
cial causes), rational subgroups, ...

e chart signals if summary statistic of i th group is above or below 3ot
e variants: X, R, S, MR, attribute control charts, ...

e additions: VSR (Variable Sampling Rate), runs rules (Western Electric
1956), warning zones, ...
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Shewhart X-chart with control lines.

n+3o/yn A\ UCL
R

n—30/4/N LCL
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SPC: CUSUM charts

e introduced in 1954 by Page
e cumulative sums enable to detect small changes of the mean (< 1.50)

e recursive practical form: threshold on cumulative sums:
Qi = max0, Qi—1+ Xi —Kk)}
e optimality with respect to ARL proved by Moustakides and Ritov

e performance quickly deteriorates away from optimal alternative (fine-
tuning of k and decision threshold)

e additions: FIR (Fast Initial Response) by Lucas

e monograph Hawkins and Olwell
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SPC: EWMA chart

e based on ideas from Girshick, Rubin, Roberts and Shiryaev (early
1960’s)

e inspired by Bayesian analysis (prior distribution on changepoint)
oVi=A(Xi)+ (1L -A1)Vie, Vo=0

e . — 0: CUSUM, A = 1: Shewhart

e practical choice for A: 0.1 < A < 0.3

e performance nearly as good as CUSUM, but less sensitive to non-
normality

e decision threshold changes with i
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SPC: other charts

e control charts based on robust statistics

e combined control charts (e.g., Shewhart-CUSUM)

e cuscore charts (Box; based on Fisher’s efficient score statistics)
e nonparametric control charts

— linear rank statistics (Wilcoxon, ...)
— precedence statistics (Chakraborti and V.d. Laan)
— regression-type control charts (monitoring linear profiles)
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SPC: Phase | and Il

Phase I

e retrospective (usually pilot study of new production process)

e determination of in-control parameter values

Phase II
e on-line (full scale process)
e uses in-control parameter values from Phase I

Detection performance of control charts in Phase II may heavily deteriorate
when using estimated parameters in the control limits (see e.g., Chakraborti,
Comm. Stat. Simul. 29 (2000)). Robust estimation of parameters is re-
quired in noisy environments (see e.g., Gather et al. , Estadistica 53 (2001)).

Hawkins et al. (J. Qual. Techn. 35 (2003)) argue that application likelihood
ratio methods from changepoint analysis in SPC context makes Phase I/II
distinction superfluous.
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Neyman-Pearson Lemma

sample X1, ..., Xp
Ho: n = o
Hi:p=pug
Pr, (X1, ..., X
reject Hp if Hy (X1 n) > C.
PHo(X1, - .., Xn)
This test has maximal power under all tests with the same type I error.

Frisén and De Maré, Biometrika 78 (1991), have version of Neyman-Pearson
for detection of critical events at given time point.

Tests for composite hypotheses Hp : u < uo against Hy : © > puo may be
treated similarly if likelihood ratio is monotone.
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Wald SPRT (Sequential Probability Ratio Test)

sample X1, Xo, ...
Ho: u = poagainst Hy : = g

.~ PH; (X1, ..., Xn)

t Hy if 1 a
LA -V
P, (X1, ..., Xn)
PHo (X1, .. ., Xn)

: : PH. (X1, ..., X
continue testing if a < Hy (X1 n) <b
PHo (X1, .. ., Xn)

> Db

accept Hp if

This procedure simultaneously minimizes the ASN’s (Average Sample
Number) under Hg and Hj, given Pn,(reject Ho) < o and Pn, (reject Hp) <

B.
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Summary of existing procedures

Existing procedures either are not based on optimality criteria or are optimal
w.r.t. to ARL (Average Run Length).

However, run length distributions are highly skewed (often close to geomet-
ric distribution). Performance should be judged on other features of run
length distributions (e.g., quantiles).

Cf. PSD (Probability of Successful Detection) in medical applications
(Frisén, Stat. Medicine 11 (1992) and Frisé and Wessmann, Comm. Stat.
Simul. 28 (1999)). In case of active surveillance: predictive value of alarm.

It would be nice to reconcile classical hypothesis testing with sequential de-
tection. This would allow to develop optimal monitoring procedures for
specific alternative hypotheses.
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Examples of alternative hypotheses

Usually theoretical studies of control charts focus on persistent changes of
the mean (mathematical convenience?!).

Examples of other alternative hypotheses (cf. Gitlow et al., Quality Manage-
ment: Tools and Methods for Improvement, Chapter 8):

e persistent threshold crossing (sea and river levels)
e persistent monotone threshold crossing (tool wear, e.g., chisels)
e persistent shift or drift in variance (wear of bearing)

e epidemic alternatives (e.g., joint SPC APC scheme: feedback controller
removes special cause )

One may also think of monitoring cycles (e.g., business cycles or medical
cycles (Frisén)) or profiles (cf. Kim et al., J. Qual. Technology 35 (2003) ).
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Our Model

Sequential observations X1, ..., Xk (K <n)

n fixed beforehand (batch industry, medical event,...)

X|:M|+aa i:]-,'°"na
€1, ..., ey are i.i.d. error terms with density f symmetric around O
U1, - .., Mn are unknown parameters.

Test statistic based on likelihood ratios (details later).

Critical value of test statistics based on false alarm rate (details later).
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Possible alternative hypotheses

Persistent change of mean (o and § known)

Ho: u1=...= un

i = [0, I =1,...,m,
Hy : Mi J240) |

wi=po+d6, I=m+1...,n

Epidemic alternative (1o and 6 known)

Ho: pu1=...= un
Ki = [0, =1...,¢
Hy: {pui=po+4, i=£24+1...,m,
ni = Mo, i=m,...,Nn
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Possible alternative hypotheses: continued

Persistent non-monotone threshold crossing (6 known)

Ho:uj <48, 1=1...,n,
i <46, i=1...,m
Hl: lu“l_ ’ . ’ ’ ’
wi >46, Il=m+1 ...,n,

Persistent monotone threshold crossing (6§ known)

Ho:pu1<...<un=<96

H U1 <...<uUm<3$4 I =1,....,m

1: .
§<pmpl<MUme2=...<un I=m+1....n

Similar alternative hypotheses for the variance are also important (cf. phi-
losophy SPC).
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Toy example: Shewhart chart + persistent
threshold crossing alternative

Xj independent with densities f (X — wj), where f is a symmetric density
that is nonincreasing for x > 0.
Hypotheses with known do:

Hoi : EXi = ui <do

against
Hii : EX = uj > do

The ML-estimators 1o and i1 based on Xj under Hg and Hj;, respectively,
are given by:

~ Xi if X; <dg ~ o 1if Xj < 8o
0= 150 if X > 8o FILZ % iE X > 8o
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The loglikelihood ratio based on X; thus equals
log (f (Xi — min)/f(Xi — o))

Under normality with common known variance o2 this reduces up to a mul-
tiplicative constant 1/2 to:

Xi — 809)%
Zi(60) = (0—20) sign (Xj — o).

Since (t — 8g)? sign (8o —t) is a monotone function of t, we restrict ourselves
to the least favourable situation of the null hypothesis Hp: the restricted null
hypothesis Hj.

Hy: wni=p2=...=4do.

Ne— JMinfl =k =n; Z«(80) = ¢} if MaxX<k<n Zk 2 C
T oo if maxq<k<n Zx < C'
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Critical values Z

Standard choice of 3o control limits yields in-control ARL of 1/0.027~ 370

1

EpsNg= —
M ST 1T " H(o)

where H is distribution function of Z;. Note that EjyxNs is not meaningtul
because there is no good way to incorporate the event {max <x<n Zk < C}.

Alternative 1: jointly considering H(c)", the probability of no alarm at all,
and the conditional ARL:

_ 1 n(H(c))"

~1-H@ 1-H@"™

Eng(Ns | Ns < n)
Alternative 2: 10Qx% quantile of the distribution of Ns.

1—H@©"® = Py ( max Zi(8o) = C) = Prz(Ns = ns(a)) <«

1<i<ns(a)
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Critical values Z;: continued

Alternative 2: 100x% quantile of the distribution of Ns. The lower bound
Ns(«) for the 100x% quantile of the distribution of Ng satisfies

Py max Zj(6o) > ) = Py:(Ns < ns(a)) <«
0 \1<i=ng(@) 0

In other words, the test Hp against Hy based on ng(a) observations has

significance level «. Hence, this choice of the critical value can be easily

connected to the Neyman-Pearson framework.

Thinking in terms of hypothesis testing with level « it will be typically
chosen small, while thinking in terms of the median of the run length

distribution we think more about @ = 1/2.

The next slides present tables with numerical values.
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quantile of Ns

N | Eng(Ns| Ns=1) | Pug(Ns>1) | 106 5% | 50% | 80% | 90%
100 49 0.87 7 | 38 | 100 | 100 | 100
200 906 0.76 7 | 38 | 200 | 200 | 200
300 140 0.67 7 | 38 | 300 | 300 | 300
400 183 0.58 7 | 38 | 400 | 400 | 400
500 223 0.51 7 | 38 | 500 | 500 | 500
600 260 0.44 7 |38 | 513 | 6oo | 600
700 296 0.39 7 | 38 | 513 | 70O | 70O
800 330 0.34 7 138 | 513 | 8oo | 800
900 361 0.30 7 |38 | 513 | 9oo | 90O
1000 301 0.26 7 | 38 | 513 | 1000 | 1000
1500 513 0.13 7 | 38 | 513 | 1191 | 1500
2000 597 0.07 7 | 38 | 513 | 1191 | 1705

Influence of n on the run length distribution: ¢ = 9.
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g =0.8 g =0.9 =1
N | 90%) 95%) 99%) 90% | 95%| 999% PHg(Ns>n) =0.05

I00 | 9.I |[10.4 |13.4 | 9.26|10.6 | 13.06 10.8
200 | 10.3 | 11.6 | 14.7 | 10.5 | I1.Q | I4.9 12.1
300 | IL.I | 12.4 | 15.5 | 11.3 | 12.6 | 15.7 12.8
400 | 11.6 | 12.9 | 16.0 | 11.8 | 13.2 | 16.2 13.4
500 | 12.0 | 13.4 | 16.4 | 12.2 | 13.6 | 16.7 13.8
600 |12.4 | 13.7 | 16.8 | 12.6 | 13.9 | I7.0 14.1
700 | 12.6 | 14.0 | 17.1 | 12.9 | 14.2 | 17.3 4.4
800 |12.9 | 14.2 | I7.3 | 13.1 | 14.5 | 17.6 14.7
900 | 13.I | 14.5 | I7.6 | 13.3 | 14.7 | 17.8 14.9
1000 | 13.3 | 14.7 | 17.8 | 13.5 | 14.9 | 18.0 15.1
1500 | 14.1 | 15.4 | 18.5 | 14.3 | 15.7 | 18.8 15.9
2000 | 14.6 | 16.0 | 19.1 | 14.8 | 16.2 | 19.3 16.4

Critical values for Shewhart charts with prescribed lower bound for
quantiles of run length distribution and for prescribed false alarm rate:

ns = B n.
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Detection performance Z;
distribution function H of Z;j(8g) if E X; = é has the form:
d (—m — 5;&) , X<0
P (f — ‘S‘Oﬁ) , x>0

In the next table, we assume that no false alarm takes place before the
changepoint, which gives a good impression of the performance, because
the Shewhart chart is memoryless.

HX) =
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Hi-quantile of Ns— m | Ns > m

n | m ;¢ [Pyu(Ns>n|Ns>m 106]c0[50%]80%| 90%
100 | 0o |10.8 0.676 I | 5| 62 | 100 100
100 | 25 |10.8 0.570 I |5 | 62| 75 75
100 | 50 |10.8 0.431 I | 5| 50 | 50 50
100 | 75 |10.8 0.245 I |5 | 25 | 25 25
500 | o |13.8 0.812 3 | 15 | 207 | 481 500
500 | 125 | 13.8 0.715 3 | 15 | 207 | 375 375
500 | 250 | 13.8 0.567 3 | 15 | 207 | 250 250
500 | 375 | 13.8 0.342 3 | 15 | 125 | 125§ 125
I000 | O | I5.I 0.860 5 | 26 | 353 | 820 1000
I000 | 250 | I5.T 0.771 5 | 26 | 353 | 750 750
I000 | 500 | I5.I 0.625 5 | 26 | 353 | 500 500
I000 | 750 | I5.I 0.388 5 | 26 | 250 | 250 250

Detection performance for Shewhart charts with prescribed false alarm
probability 0.05 under jump alternative with §1 = do+ 0: EX; = §o+ o
fori > m.
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Detection performance Z;: uniform alternative

Another interesting alternative is that the mean of X; after the changepoint
is uniformly distributed on [§g, 50 + y o] with y > 0. We then have

1 yo 1 yo X
PHl(Zi <C=— / P(Zi <c| i :80+X)dX:— (I)(\/___) dx
Yo Jo vo Jo o

Writing @ as an integral and interchanging the order of integration, we ob-
tain that

b
/ ®d(u)du = bd(b) —ad(a) + ¢(b) — ¢(a),
a

where ¢ is the density of the standard normal distribution. Combining ev-
erything, we obtain

PH,(Zi < ¢) = /cP(/C) — (VC— )P (V/C— ) + ¢(+/C) —p(/C—y).
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General approach: likelihood ratio tests

o WS [T, f (x5 0) maxeo [T mer fi(xi; m)
1<m<k MaXyco ]_[ik:l f(X;0)

“Persistent non-monotone threshold crossing” and “Persistent monotone
threshold crossing” for normally distributed data with known variance:

k
1 .
Qn=max_— 1 > (Xi—8’sign(Xi =8, k=2...n
i=m+1

Standardization necessary to obtain distributional results (cf. critical values).

Qkn = % Qk Qkk = % Qk-

Qkn may perform poorly for early changes.
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Likelihood ratio: windowed versions (willsky - jones)

1 .
Qu=max_—1 >, (Xi—8)sign(Xi =) ¢, k=2...n
i=m+1

The above expression (standardized or not) needs to be maximized once or

twice with respect to m.
Problems:

e maximization may be time consuming

e asymptotical distributional results may be hard to obtain

K
1 1 :
e = Zgu BBgz 2 06— i o)
1 1

Z (X — 8)%sign (X; — §).

i=k—G+1

Qﬂmp _
k,G VREZU
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|sotonic regression

Chang and Fricker (J. Qual. Technology 31 (1999)) : isotonic regression
method for “Persistent monotone threshold crossing” alternative

k k
M = ) (Xi —Z)? =) (Xi —Y)?
i=1 =1
o) for Yk <6

k k
Y (Xi—8)2— Y (X = Y))? for Yy > 8,

where
e Z1, ..., Zx denotes an isotonic regression restricted to increase up to at
most §
e Y1, ..., Yk is the corresponding unrestricted isotonic regression

e J=min{i :Y; > 6}
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Intermezzo: scale alternatives

Xi=u+oig, 1=1...,n,
where u is a known constant, oj, i = 1, ..., nare unknown positive param-
eters, €1, ..., €, are i.i.d. random variables with N (0O, 1) distribution.
Hypotheses:
Ho:0i <68, 1=1,...,
against
Hj : thereis an msuch that o; <4, i=1..., o >6 I =m+1,...,n,

The estimator 6]20( Ho) of O’iz under the restriction that aiz < §21is the solution
of the minimization problem:

: 1
min { Iogoi2 + ?(Xi — ,u)z}.
i
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Scale alternatives: continued
5o = min((Xi — p)?, 5%

The estimator 6\'21 of aiz under the restriction that aiz > §21ig
63 = max(Xi — w)°, 6%).

Hence, the loglikelihood ratio for the i-th observation is

(109(ig ) — 1+ XY sign (K 1),

qt) = (— Iog(tz) — 1+ tz)sign (t—1), t > Oisnondecreasing

k 2 2
o2 T O e O T O el D W _N2/62
R _orgjagﬁi:jﬂ( Iog( 52 ) T )Slgn ==

_ 2 .
Clearly, the test statistics Qf are similar to the Q’s.
b k
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Critical values

The most common way to control false alarm in SPC is to use run lengths,
in particular the in-control ARL (average run length). Sometimes also the
SRL (standard deviation of the run length) is taken into account, or even
better one uses quantiles.

We reject Hop as soon as for some k < n

Tk > Cn,Ot ’

where Ty denotes any of the statistics presented in this talk and cy 4 is cho-
sen in such a way the significance level is ¢, i.e.

PH, ( max Tk > cn,o,) = .

1<k<n

Since the distribution of our statistics do not admit closed-form expression,
these critical values have to be obtained by simulations or by asymptotics.
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Asymptotics of critical values

Prz(Nc(C) > nc(@) = ()1 -«

for a prechosen « and a prechosen integer nc(«). We write ¢ = cc(«) and
rewrite the above relations as

Pz ( max Qg < cc(a)> >1—-a,

1<k=nc(a)
so the probability of false alarm based on n¢ () observations is < «.
lim Py: [ max Qx < cv/N(Vary:Z1(80)Y?) = P sup W(t) — W(s) < ¢
n—oo 0 \1<k<n L O<s<t<1

where {W(t), t € (0, 1)} is a Wiener process. This implies that

. 2
lim_cc(er)v/ = Co(Varys Z1(50)) 7,
n—oo

where ¢, is such that P (supgy_s_;.1 W) —W(s) < ¢,) =1—a.
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Asymptotics of critical values continued

Hence, Cc(«) can be approximated by cy+/n (Varpy Z1(80))Y/? and as soon as
n is large so does Cc(«) and the procedure will perform poorly in detecting
early changes.

Alternative: weighted CUSUM

Nc. g(Ca(8), n) = min{k > 1; (k/n)"PQx > V/n&n(B)}, B €10,1/2],

where Cy(B) is determined in such a way that

P ( max (k/n) P Qx < \/ﬁ(‘n(ﬂ)) >1-oa.
0 \ 1<k<n
Hence, we reject Hp as soon as there is a k such that

Qk = VN (B)(k/n)P.

Obviously, choosing B = 0 we have back the original procedure but for
B € (0, 1/2] larger weights are assigned to smaller K’s.
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Asymptotics of critical values: weighted version

lim_ca(B) = de(B)(Varns Z160)) "%, B €10, 1/2),
where d, () is determined as

1
P ( sup t_ﬂ(W(t) —W()) = da(ﬁ)) =1l-«,

O<s<t<1

where {W(t),t € (0,1)} is a Wiener process. It implies that
Cn(B)(Varpy Z1(80)/n)~%/? can be approximated by dg(a).

For B = 1/2 we have for cpn(1/2) the approximation
du.n(1/2)(Varp Z1(80))Y2, where

1
P — (W) — W dyn(1/2)) =1 — a.
<1§§2&n¢f( (t) — W(S)) < Gyn(1/ >> »

We can show that limy_ o Ch(B) = O(), B € [0,1/2), while cy(1/2) =
O(y/loglogn).
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Background of asymptotics |

Komloés et al. (Z. Wahr. Verw. Gebiete 32 (1975) and 34 (1970))

Y1, ..., Ynii.d. with zero mean, unit variance and E | X;|?T2 < oo for some
A > 0. Then there exists a sequence of Wiener processes Wy = {Wj(1),t >
0}, n > ng, such that, as n — oo,

(1mkax ZY. Wi (k)| > x) <Cinx @A x>0
<k<n
X Ry kmm ZY. Wn(k)| = Op(1)
and
K
max Xi — Wh(K)| = op(nl/(2+2)y
max ; i — Wh(k)| = 0p( )
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Background of asymptotics Il

Erdos-Darling theorems

k
P(di(logn) 1r<nka§>l(n % ;Yi <y +dx(logn)) — exp{—exp{—y}}.

and
1 k
P(d1(logn) max W' ; Yi| <y + da(logn)) — exp{—2exg—Yy}},

where

di(t) = v2logt, t>1,

1
do(t) = 2logt + 5 loglogt — log(r), logt > 1.
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Simulation of critical values

Sample quantiles &, are asymptotically normal with variance “f(zl(g“)) (Ba-
hadur)

We estimated f2(&,) by applying a kernel density estimator to a pre-run of
reasonable size.

1/2
Example: for the 90% quantile the standard deviation equals <—%?L>;2#> ,

because the the density at the quantile approximately equals 0.15.
Hence, if n = 10000 then the standard deviation of this quantile approxi-
mately equals 0.02
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Performance simulation

Simulation performed using R (see www.r-project.org ), version 1.8.1
on a Unix platform.

Its new built-in procedure isoreg()  is much faster in computing the iso-
tonic regression (needed for simulations of the Mj, statistics) than the PAVA

algorithm.

Source codes of all procedures we used are available at
http://www.karlin.mff.cuni.cz/ ~klaster/compstatO4
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Simulation improvement

Since Var Ns ~ E (Ng)?, so increase in ARL leads to increase in variance of

estimates.
Variance reduction techniques have been developed for these simulations.

Jun and Choi, Comm. Stat. A 22 (1993) present two techniques for CUSUM
simulations:

1. hazard controlled estimator (following a suggestion of Ross to use the
total hazard of a Markov chain)

2. ratio estimators using a cycle.
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Simulation setup

n =100 o« = 0.05 G = 0.1n = 10, 0 = 1, 1000 repetitions.

Two types of changes, each of which has a “small” and a “large” version:
small version corresponds to change of mean of o

large version corresponds to change of mean of 3o

general change mean is uniformly distributed on [6 — r, §] before change-
point, and uniformly distributed on [§, § + r] after the change-point,
where r = 1 (small change) or r = 3 (large change), respectively (so the
expected mean increases by 1 and 3, respectively).

gradual change mean increases on 5 equally spaced intervals before change
point from p to § and on 5 equally spaced intervals after the change-point
from 4 to 25§ — u, where § = 1and u = 0.5 (small change) or § = 3 and
n = 1.5 (large change).
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Simulation interpretation

Detection delays must be interpreted with care.

Suppose change at X and number of observations equals n, then in our sim-
ulations the number n — X indicates either

e a detection at time point n

e or no detection at all

Summary statistics of simulation include (run lengths are skewed!):
e mean
e standard deviation

e quantiles
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Simulation results: general small change

Qkn Qkk Qn,G Q:]Hép Mn

m| mean; sd mean; sd mean; sd mean; sd mean; sd

5|l 42.34; 15.07 | 37.08; 23.10 | 52.12; 31.09 | 5I.54; 31.47 |37.99; 20.81

15 || 42.95; 15.68 | 44.87; 23.05 | 48.79; 29.11 | 48.69; 28.99 | 38.07; 21.47

25 | 41.88;14.38 | 47.51; 19.86 | 46.10; 25.10 | 45.68; 24.86 | 37.34; 19.10
40 || 41.35;12.47 | 49.39; 13.89 | 41.80; 19.40 | 41.40;19.32 | 36.45; 16.25
60 | 35.32; 6.56 | 38.16; 9.73 | 31.18; 11.96 | 31.00; 11.86 |30.47; 10.88
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Gradual small change

<« <4 A > >»
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Qkn Qkk Qk,G Que Mk

m| mean;sd mean; sd mean; sd mean; sd mean; sd

511 74.96; 16.29 | 80.98; 20.88 | 82.96; 20.38 | 82.90; 20.09 | 75.19; 20.006
15 | 69.49; 14.55 | 76.26; 15.85 | 75.88; 16.58 | 75.67;16.78 | 69.72; 17.41
25 | 03.37;12.53 | 69.48;13.36 | 66.67; 16.24 | 66.60; 16.13 | 62.79; 15.68
40 || 54.29; 9.03 | 57.90; 9.32 | 55.2T; 11.38 | 55.24; I1.20 | 53.45; I1.5I
60 | 38.43; 4.20 | 39.01; 8.77 | 37.30; 8.24 | 37.36; 7.89 | 37.06; 7.87
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General large change

Qkn Qkk Q.G Qil,rép Mg
m| mean; sd mean; sd mean; sd | mean; sd mean; sd
5|1 10.45; 3.99 | 5.35; 3.33 | 6.22; 3.19 | 8.03; 2.52 | 6.32; 3.57
15 || 10.52; 3.90 | 7.42; 3.82 | 6.15; 3.32 | 8.15; 2.52 | 6.24; 3.53
25 | 10.60; 4.35| 7.80; 3.22 | 5.70; 2.31 | 7.60; 1.71 | 5.30; 2.7I
40 || 10.71; 3.93 | 10.64; 5.38 | 6.34; 3.20| 8.18; 2.51 | 6.47; 3.67
6o || 10.57; 3.83 | 12.39; 5.58 | 6.16; 3.05| 8.07; 2.38 | 6.29; 3.49
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Gradual large change

Qkn Qkk Qk,G Qo My

m | mean; sd mean; sd mean; sd mean; sd mean; sd

51l 42.34; 8.60 | 39.47; 13.24 | 44.50; 15.20 | 44.07; 15.24 | 37.78; 10.78

15 || 39.69; 8.47 | 40.49; 10.99 | 39.98; 14.80 | 39.57; 14.75 | 34.83; 10.61

25 | 37.45;7.38 | 40.24; 9.25 | 37.45; 12.88 | 37.20; 12.63 | 33.18; 9.51
40 || 33.29;7.04 | 37.63; 7.99 | 32.00; 11.09 | 31.90; 10.90 | 28.77; &8.59
60 | 27.37;5.17 | 32.27; 5.90 |24.89; 7.79 | 24.84; 7.62|22.89; 06.01
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Conclusions

e Chang and Fricker’s My has the smallest mean (both general and grad-
ual case)

e Qn has a considerably smaller standard deviation.
e My has better low quantiles

e Qin has better median and higher quantiles

Summary: In most cases Qkn performs better, but My sometimes detects
extremely fast.
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Future work

e other alternative hypotheses (in particular, changes of the variance)
e composite alternative hypotheses

e (asymptotical) distributional results

e combination of procedures

e application to real data
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